It all started with the perceptron...

"An IBM 704 - a 5-ton computer the size of a room - was fed a series of punch cards. After 50 trials, the computer taught itself to distinguish cards marked on the left from cards marked on the right."

https://news.cornell.edu/stories/2019/09/ professors-perceptron-paved-way-ai-60-years-too-soon

Frank Rosenblatt '50, Ph.D. '56, works on the "perceptron" – what he described as the first machine "capable of having an original idea."

Frank Rosenblatt's perceptron paved the way for AI 60 years ago.

Credit: https://news.cornell.edu/stories/2019/09/

professors-perceptron-paved-way-ai-60-years-too-soon

Classification

Given:

Training data: $(x_1, y_1), \ldots, (x_n, y_n)/x_i \in \mathbb{R}^d$ and y_i is discrete (categorical/qualitative), $y_i \in \mathbb{Y}$.

Task: Learn a classification function:

$$f: \mathbb{R}^d \longrightarrow \{-1, +1\}$$

$$f(x) = sign(\sum_{i=0}^{d} w_i x_i)$$

Given n examples and d features.

$$f(x_i) = sign(\sum_{j=0}^{d} w_j x_{ij})$$

- Works perfectly if data is linearly separable. If not, it will not converge.
- Idea: Start with a random hyperplane and adjust it using your training data.
- Iterative method.

Finally converged!

With some test data:

Perceptron visualization

Perceptron visualization

Perceptron expressiveness

- The perceptron works perfectly if data is linearly separable. If not, it will not converge.
- Idea: Iterative method that starts with a random hyperplane and adjust it using your training data.
- It can represent Boolean functions such as AND, OR, NOT but not the XOR function.
- Neural networks use the ability of the perceptrons to represent elementary functions and combine them in a network of layers of elementary questions: Multiple Layer Perceptron (MLP).

The XOR example

Let's try to create a MLP for the XOR function using elementary perceptrons.

x_1	x_2	x_1 XOR x_2	$(x_1 ext{ OR } x_2) ext{ AND } (x_1 ext{ NAND } x_2)$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

The XOR example

Let's put them together...

XOR as a combination of 3 basic perceptrons.

The XOR example

XOR as a combination of 3 basic perceptrons.