
Atredis Partners ⚫ Bene Diagnoscitur, Bene Curatur Confidential ⚫ For Intended Recipient Only

Prepared for Agoric Systems

Operating Company

September 21, 2022 (version 1.1)

Atredis Partners www.atredis.com

Agoric
Kernel API Assessment
Security Assessment Report

Project Team:

Technical Testing Jordan Whitehead and Loren

Browman

Technical Editing Darren Kemp and Joshua Vaughn

Project Management Sara Bettes

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 2

Table of Contents

Engagement Overview ... 3
Assessment Components and Objectives ... 3

Engagement Tasks ... 4
Runtime Analysis ... 4

Source Code Analysis ... 4

Configuration and Architecture Review .. 4

Executive Summary ... 5
Key Conclusions .. 5

Platform Overview ... 6

Kernel Security Boundary ... 6

Instrumentation & Analysis ... 9

Findings Summary ... 17

Findings and Recommendations .. 19
Findings Summary ... 19

Findings Detail .. 19

Vats Lack Isolation .. 20

Exceeding LMDB Map Size Limit Causes Kernel Crash... 23

Unvalidated vatstore Key Length Causes Kernel Crash ... 25

Log Injection via Standard Output .. 28

Crash When Sending to Device .. 30

Appendix I: Assessment Methodology .. 32
Appendix II: Engagement Team Biographies .. 35
Appendix III: About Atredis Partners ... 39

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 3

Engagement Overview

Assessment Components and Objectives

Agoric Systems Operating Company (“Agoric”) recently engaged Atredis Partners (“Atredis”)

to perform a Kernel API Assessment of the Agoric platform. Objectives included validation

that the lowest level of the Agoric smart-contract platform was developed and deployed with

security best practices in mind.

Testing was performed from April 4, through April 20, 2022, by Jordan Whitehead and Loren

Browman of the Atredis Partners team, with Sara Bettes providing project management and

delivery oversight. For Atredis Partners’ assessment methodology, please see Appendix I of

this document, and for team biographies, please see Appendix II. Specific testing components

and testing tasks are included below.

COMPONENT ENGAGEMENT TASKS

Agoric Kernel API Assessment

Assessment Targets • Agoric Kernel API

• JavaScript-based kernel

• Provides interface that Agoric Vats use to communicate
with the kernel

• Approximately 13 syscalls and supporting functionality

• Unit test shim for Vats provides direct kernel interface
accessibility

Assessment Tasks • Source-Assisted Penetration Testing of the Agoric Kernel API

• Analyze kernel architecture and threat model

• Validate attack surface & define test cases

• Manual and automated testing or each kernel API
operation

• Proof of Concept (PoC) generation, validation, and

documentation of findings

Reporting and Analysis

Analysis and Deliverables • Status Reporting and Realtime Communication

• Comprehensive Engagement Deliverable

• Engagement Outbrief and Remediation Review

The ultimate goal of the assessment was to provide a clear picture of risks, vulnerabilities,

and exposures as they relate to accepted security best practices, such as those created by

the National Institute of Standards and Technology (NIST), or the Center for Internet Security

(CIS). Augmenting these, Atredis Partners also draws on its extensive experience in secure

development and in testing high-criticality applications and advanced exploitation.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 4

Engagement Tasks

Atredis Partners performed the following tasks, at a high level, for in-scope targets during the

engagement.

Runtime Analysis

For relevant software targets identified during the course of this engagement, Atredis

performed runtime analysis, using debugging and static analysis tools to analyze application

flow to aid in software security analysis. Where relevant, purpose-built tools such as fuzzers

and customized clients were utilized to aid in vulnerability identification.

Source Code Analysis

Atredis Partners reviewed the in-scope application source code, with an eye for security-

relevant software defects. To aid in vulnerability discovery, application components were

mapped out and modeled until a thorough understanding of execution flow, code paths, and

application design and architecture were obtained. To aid in this process, the assessment

team engaged key stakeholders and members of the development team, where possible, to

provide structured walkthroughs and interviews, helping the team rapidly gain an

understanding of the application’s design and development lifecycle.

Configuration and Architecture Review

Atredis performed a high-level review of available documentation and configuration data with

an eye toward the overall functional design and soundness of the implementation. A key

aspect of this component was to identify gaps in the architecture and design regarding aspects

of design that reduce overall defensibility, aimed at pointing out fundamental issues in the

application architecture that should be addressed early in the development cycle as opposed

to later when the platform is closer to a full production state.

While specific vulnerabilities may be identified during the architecture and configuration

review, the intent was less on finding individual defects and more on how the design of a

given target affects its overall defensibility. Outcomes of the architecture review helped to

inform testing objectives throughout the rest of the engagement while also helping the client

define a long-term platform maturity and security design roadmap.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 5

Executive Summary

Testing targeted the Agoric Kernel’s API with the untrusted vats, which is only a segment of

the whole Agoric system. Atredis Partners assessed the system as seen in the public agoric-

sdk repository at the commit beginning with 63d329. The Agoric team provided instructions

for properly building and testing local instances of the system. The Agoric’s swingset-runner

tool was used to quickly establish testing environments targeting the kernel.

Atredis Partners performed testing from the perspective of an attack-controlled vat attacking

the kernel, with a focus on verifying the unique responsibilities of the kernel’s security

boundary. After isolating the security relevant responsibilities of the kernel, Atredis built

harnesses and tests to exercise the relevant code paths. Specific auditing was done for the

translation and handling of syscalls and deliveries, as these are the primary communication

methods between the vats and the kernel.

The focus of the testing was the boundary between the kernel and the vats (a vat being a

worker process used for running user defined JavaScript), but this is not the only security

boundary within the system. The security boundary between untrusted userspace code and

the supervising layers within the vat was not directly tested. The security boundary that

protects against malicious remote interactions was also not tested during this review.

Key Conclusions

Overall, Atredis Partners found the architecture of Agoric’s kernel to be well designed from a

security perspective, properly enforcing the interactions with the vats to ensure proper

scoping and access restriction. The architectural design effectively enables enforcing access

control through the kernel’s reference translation mechanisms.

Further development is needed to add proper vat isolation on the operating system level;

Atredis was able to identify key issues here that could lead to subversion of the kernel’s

security guarantees. Discussion with the Agoric team indicated this is an active area of

development and plans already exist to add proper operating system isolation for the vats.

Atredis Partners did not identify any issues that allowed untrusted userspace code to

compromise the Agoric Kernel and gain improper access or otherwise compromise the

environment. The boundary around userspace was not directly tested, and further testing

could be needed here.

As in any security assessment, some general areas for improvement were noted, but overall

Atredis Partners would rate the tested components of Agoric’s platform as sound from a

security perspective and well-aligned with modern secure development practices.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 6

Platform Overview

The tested Agoric platform is designed to enable untrusted JavaScript code to be used

deterministically in distributed systems. This JavaScript is limited by using a SES (Secure

ECMAScript) runtime which compartmentalizes the untrusted code; restricting its access and

seeking to remove mechanisms that could cause any non-deterministic logic. Deterministic

execution of the untrusted code is vital, as this system is intended to be able to run smart-

contracts, which depend on deterministic replay-ability.

The untrusted code, referred to as “userspace”, is supported by a “liveslots” library and a

supervisor layer running in the same JavaScript engine. The liveslots component abstracts

interactions with the kernel away from userspace and helps enforce deterministic execution.

Liveslots must restrict userspace’s interactions with the kernel to valid actions. A userspace

unrestricted by liveslots could emit invalid syscalls and use garbage collection to enable non-

deterministic logic.

Another important job of liveslots is to collect and report accurate metering data. The liveslots

component collects this information and reports it to the kernel, which can use it to halt vats,

or schedule other vats according to priority.

The SES runtime used is provided by Agoric’s JavaScript shim on top of the XS JavaScript

engine. Each untrusted vat is run inside a xsnap-worker process which runs the liveslots and

userspace using the XS engine. This worker process supports the snapshotting of the vat and

communication with the kernel.

The kernel of the system is responsible for starting and scheduling the worker processes, and

acts as the hub for dispatching messages and item references between vats. The kernel also

commits state changes for the vats at appropriate times. The kernel must only allow vats to

access objects they have been given references to, and to access state within the vats scope.

Kernel Security Boundary

The testing focused on the security boundary between the kernel and the xsnap-worker

processes. The Agoric system’s architecture depends on multiple different security boundaries,

each with unique responsibilities. The security boundary between the kernel and the workers

is an important one as it provides security in depth beyond the security boundary provided

between userspace and liveslots. Any exploitable vulnerability in liveslots or the XS JavaScript

engine could allow an attacker to control the worker process, and directly interact with the

kernel.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 7

The Agoric Kernel must provide guarantees that the vats cannot access a reference to an

object, promise, or device that was not given to them. To do this the kernel keeps a translation

layer between kernel references and references held by each vat. This translation mechanism

is used whenever an incoming syscall is parsed from a vat, or whenever an outgoing delivery

is crafted for a vat. This acts as an effective barrier by keeping unique translations for each

separate vat, and not letting the vat have direct influence over these translations. If a vat

were able to reference objects that it had not been given access to, then an attacker-

controlled vat could craft references that would allow access to admin devices and expose

sensitive objects in other vats.

Another important piece of the kernel’s security boundary is the scoping of stored state. The

kernel must ensure that each vats committed state cannot be influenced by another vat. The

kernel currently does this by prefixing the keys used when storing the data. Keys associated

with a vat will have that vat’s ID in the prefix, as well as a value indicating what kind of value

is being stored. Vat controlled data is stored with the ${vatID}.vs. prefix, for example. If

there were errors in this state scoping, it could allow an attacker-controlled vat to modify

other vat’s stored values or modify its reference translation table.

Many of the syscalls the kernel handles support garbage collection for items imported or

exported by the vats. Accurate garbage collection depends on cooperation with liveslots, but

the kernel should ensure that a vat cannot abuse the garbage collection system to break the

scoping or access enforcement mentioned above. Fortunately, the garbage collection system

does not reuse identifiers that have gone out of scope and is not vulnerable to many traditional

attacks associated with reusing freed objects. The architectural design of the garbage

collection system means that mistakes should only affect system stability, and not provide

attackers an opportunity to exploit the system when references are reused improperly.

An important requirement of the kernel’s security boundary is the isolation of each vat. Not

only is it important that vats cannot maliciously influence each other to support the two

previously mentioned guarantees, but vats should not be allowed to communicate with each

other cooperatively without going through the kernel. If vats could communicate without the

kernels involvement, they could bypass the imposed ordering and control the kernel uses to

help the system stay deterministic and monitored. If not properly isolated, the vats could also

use the host system to influence the actions of other vats, breaking the scoping and access

requirements imposed by the kernel.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 8

The kernel is also responsible for checking that incoming syscalls from the vats are properly

formatted. Invalid syscalls will result in the termination of the offending vat. These checks

are important, as mistyped data could lead to unexpected results and possible attacker

influence over critical kernel logic. This boundary is also supported by liveslots; usermode

code should not have the ability to craft arbitrary syscalls. As a result, validating syscalls is

the responsibility of both liveslots and the kernel. To further clarify security roles, Liveslots

should be viewed as an extra layer of filtering leaving the kernel to take ownership invaliding

malformed syscalls. Care should be taken in any system with multiple security boundaries to

make sure each boundaries responsibility is explicit.

When defining the security boundary of the kernel in a system that contains multiple

boundaries with separate responsibilities, it is important to also define what guarantees are

not being provided. The Agoric Kernel depends on the boundary between liveslots and

userspace for many things, including enforcement of determinism. If an attacker has broken

the boundary around userspace and has control over the vat process, then the kernel

boundary cannot currently ensure that the vat’s actions are deterministic. At that point the

vat can use timing information or other information from the host system to enable non-

deterministic execution. While the kernel provides many mechanisms used by liveslots to

maintain a deterministic system, the responsibility of enforcing system determinism can only

be on the shoulders of liveslots and XS.

The kernel also cannot guarantee that a compromised vat will not crash the system. While

code in userspace should not be able to cause the system to crash or panic, once the vat is

fully controlled by an attacker, the kernel may have no better option than to crash at

unexpected input or actions. If non-deterministic actions are detected, the kernel has no way

to gracefully respond, and should stop execution quickly while leaving logs that can be used

to identify the source of the problem.

The kernel can use metering information given by liveslots to schedule or stop vats according

to their amount of computation used. But here again the responsibility for ensuring proper

metering is up to the liveslots components. A vat that is fully controlled by an attacker can

simply lie about their metering usage to the kernel, and proper metering cannot be enforced.

While investigating the security boundary between the vats and the kernel the importance of

the security between userspace and liveslots was made even more apparent. The kernel

cannot enforce many of the systems requirements alone. A compromised vat could currently

cause havoc on the system through careful use of non-deterministic actions and fake metering

data. If the boundary between userspace and liveslots is not sufficient, architectural changes

could be made to add more responsibility to the kernel’s security boundary. Changes such as

running each vat in a deterministic emulator could be used to further enforce the system’s

determinism requirements.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 9

Instrumentation & Analysis

The agoric-sdk repository contains a swingset-runner package which will run an instance of

the kernel with some user defined vats. It contains many helpful demos and examples of tests

that will exercise the system with custom code that will run in the userspace of the vats.

For testing the kernel boundary, Atredis Partners needed finer gained control over the

communications between the vat and the kernel than swingset-runner alone could provide.

To accomplish this, a proxy for the xsnap-worker binary was created that would detect if a

raw vat was being setup. If so, the proxy would launch a separate handler, otherwise it would

run the original xsnap-worker. A working client was created that could respond how a real

xsnap-worker hosted vat would respond.

This testing harness was instrumental in validating the kernel’s security boundary. By crafting

tests that would not be possible from userspace Atredis was able to dynamically validate

kernel logic. Agoric could add similar functionality to the existing swingset-runner to benefit

future dynamic testing of the kernel.

Syscall Summaries

The primary mechanism used by a vat to communicate with the kernel is through the 13

different syscalls available to the vats. These syscalls allow vats to send messages to objects

on other vats or devices, inform the kernel on the state of objects for garbage collection, store

state in the key store, and work with promises. Below we summarize the security implications

considered when auditing each syscall.

send

send is the main syscall for interacting with objects exposed by other vats. Methods on an

object exported by a vat may be invoked using send by specifying the remote object, the

method name, and arguments to the remote method.

syscall[v3].send(o-53/ko25).talkToBot(@o-50, "encouragementBot")

Example send call to an object

The target object may be an object or promise that is specified using the slot identifier string.

After translation, the slot must map to an existing valid kernel object or promise reference

(koNN or kpNN respectively). Formatted messages are then placed into the kernels acceptance

queue to be processed and delivered later.

Specifying a promise as the target of a send can be used to pipeline calls without the sender

vat awaiting the resolution of the promise.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 10

syscall[v2].send(p+5/kp41).second(@p+5)

Example send call to a promise

Arguments contained in send syscalls destined for remote object methods pass though the

kernel to be parsed later by the corresponding remote object which does not a pose a risk to

the kernel security boundary. The kernel does however validate the message body contains

CapData strings and an array of slots.

The send syscall presents an opportunity for a compromised vat to send messages to object

references it may not have access to which includes references held by other regular vats or

privileged vats. Protection against such attacks is enforced during translation and was

inspected by Atredis. Vats sending to a target reference not previously allocated by the vat

or without a matching c-list entry will assert a failure and terminate the offending vat.

vat v1 terminated: error during translation: Error: unknown vatSlot "p-99" ["send","p-
99",{"method":"ping","args":{"body":"[]","slots":[]},"result":"p-60"}]
RAW: Got response from kernel: "error","syscall translation error: prepare to die"]
error during syscall translation: (Error#1)
Error#1: unknown vatSlot p-99

Error caught when translating an unknown vatSlot

subscribe

subscribe is used to register a vat for notification when a promise is resolved. Currently,

issuing an eventual send E() will automatically trigger a subscribe to the generated promise

so the calling vat can be notified when the promised is resolved. The subscribe syscall

requires an identifier to the promise object.

syscall[v3].subscribe(p+5/kp41)

Example valid subscribe syscall

Atredis confirmed promise identifiers are also protected during the slot translation phase from

vat space to kernel space. The example below shows the failure when a vat directly specifies

a kernel reference (kref) instead of a valid vat reference (vref).

vat v1 terminated: error during translation: Error: invalid vref (a string)
["subscribe","kp1"]
error during syscall translation: (Error#1)
Error#1: invalid vref kp1

Example invalid subscribe kref syscall

These checks also validate the vref exists:

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 11

vat v1 terminated: error during translation: Error: unknown vatSlot "p-99" ["subscribe","p-
99"]
error during syscall translation: (Error#1)
Error#1: unknown vatSlot p-99

Example invalid subscribe vref syscall

resolve

resolve can be used to resolve a promise and may only be called by the decider of the

promise. The resolve arguments include the promise object to be resolved, the result status,

and any promise result data to return to subscribers.

syscall[v2].resolve[0](p-60/kp41, false) = "Thanks for the setup. I sure hope I get some
encouragement...\nuser vat is happy\n" []/[]

Example valid resolve syscall

Aside from the regular checks performed during translation, an additional and important

security check is performed to ensure the vat resolving the promise is the decider of that

promise. This check is performed in KernelKeeper.js:623:

assert(
 p.decider === expectedDecider,
 X`${kpid} is decided by ${p.decider}, not ${expectedDecider}`,
);

Promise decider validation logic

The promise must be in an unresolved state to be resolved. This check is performed in

vatTranslator.js:45:

assert(
 p.state === 'unresolved',
 X`result ${msg.result} already resolved`,
);

 Validation of promise state

exit

exit is used in situations where a vat wishes to terminate itself. exit is passed an isFailure

flag and some additional CapData which are passed to terminateVat inside the kernel.

terminateVat will delete vat state, resolve orphaned promises, notify the parent, and

shutdown the worker.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 12

syscall[v1].exit(true,{body: "[]", slots: []})

Example valid exit syscall

The CapData argument can be used to provide more information regarding the reason for

termination or current task completion status. The isFailure flag can be used to avoid

committing state in the event of a vat failure. VATadmin is then notified the vat has been

terminated via a call to notifyTerminaion.

Vats cannot abuse the exit syscall to terminate other vats as the vatID is derived in the

kernel and is not a vat supplied parameter.

dropImports, retireImports, retireExports

dropImports is part of the distributed garbage collection and will mark all imports specified

by the vrefs argument as unreachable. This action is performed in translateDropImports

contained in vatTranslator.js. The supplied vrefs are converted into krefs and marked

unreachable by the garbage collector.

syscall[v3].dropImports(ko23 ko24 ko25 ko20 ko26)

Example dropImports syscall

retireImports is like dropImports except the c-list entry is deleted entirely for the supplied

import vrefs. This distinction makes retired imports unrecognizable and ready for garbage

collection. The supplied vrefs must be made unreachable prior to calling retireImports.

syscall[v3].retireImports(ko23 ko24 ko25 ko20 ko26)

Example retireImports syscall

retireExports is much the same as retireImports except the supplied vrefs to be deleted

from the c-list are exports previously allocated by the calling vat.

All garbage collection related syscalls are protected from releasing references which they do

not have access to. This is accomplished by the translation layer and by

mapVatSlotToKernelSlot. Any specified vref is first converted to its c-list equivalent in the

form vN.c.o-NN. If the any of the c-list entries do not exist for the vrefs in the array, the vat

will be terminated as demonstrated below.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 13

vat v1 terminated: error during translation: Error: vref o-1 not in clist
["dropImports",["o-1","o-49"]]
error during syscall translation: (Error#1)
Error#1: vref o-1 not in clist

Invalid vref causes vat termination

vatstoreGet, vatstoreSet, vatstoreDelete

These 3 syscalls provide read, write, and delete primitives for accessing the vatstore.

vatstore is additional storage space managed by the kernel and each vat may only access

its own data. vatstore keys are first translated into a scoped representation with the form

v1.vs.idCounters where vN specifies the vat and vs denotes a vatstore value. Values are

accessed using the underlying kvStore.get, kvStore.set and kvStore.delete functions after

calling vatstoreKeyKey to add the unique prefix.

syscall[v1].vatstoreGet(idCounters)
syscall[v3].vatstoreSet(vc.1.|entryCount,0)
syscall[v3].vatstoreDelete(lp20.status)

Example vatstore syscalls

These vatstore primitives provide direct access from user space to the kernel managed

storage. The default storage is a LMDB persistent storage. It is possible to exceed hard-coded

LMDB resource limits and crash the kernel as demonstrated in Exceeding LMDB Map Size Limit

Causes Kernel Crash and Unvalidated vatstore Key Length Causes Kernel Crash.

Other attack vectors include modifying sensitive internal state and vatstore values owned by

other vats. Atredis analyzed how vatstore key strings are built in the kernel and determined

they do not allow attackers to perform actions to modify values they should not have access

to.

vatstoreGetAfter

vatstoreGetAfter allows the caller to iterate over keys in its vatstore. vatstoreGetAfter

takes several arguments including the upper and lower bounds for iteration range. A call to

vatstoreGetAfter only executes one step and can be called successively in a loop until

undefined is returned.

syscall[v3].vatstoreGetAfter(, vom.kind., undefined)

Example vatstoreGetAfter syscall

vatstoreGetAfter accepts UTF-16 encoded characters for all arguments. This alone does not

pose a security risk but was analyzed to confirm it did not trigger any odd behaviour.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 14

Atredis verified access is restricted to the owning vat and only values contained in the

vatstore with the correct key prefix vN.vs were returned. The prefix is not user-controlled

input and is prepended by the kernel when vatstoreKeyKey is called.

const actualPriorKey = vatstoreKeyKey(vatID, priorKey);
const actualLowerBound = vatstoreKeyKey(vatID, lowerBound);

Prepending safe vatID in kernelSyscall.js:150

callNow

callNow is similar to send but is synchronous in nature and will not accept a promise as an

argument. callNow is intended to enable an immediate interface to device nodes.

syscall[v7].callNow(d-70/kd32).add({"body":"[\"bot\",1,\"1:0:deliver:ro+0:encourageMe:rp-
40;[\\\"user\\\"]\"]","slots":[]})

Example callNow syscall

callNow is also protected by the translation layer in that a vat cannot send messages to

devices which do not have a corresponding entry in the vat’s c-list.

vat v1 terminated: error during translation: Error: unknown vatSlot "d-1" ["callNow","d-
1","blah",{"body":"[]","slots":[]}]
error during syscall translation: (Error#1)
Error#1: unknown vatSlot d-1

Vat termination when specifying an unknown vat

Additional checks also validate the target is in fact a device and not an object or a promise.

const { type } = parseKernelSlot(dev);
assert(type === 'device', X`doCallNow must target a device, not ${dev}`);
for (const slot of args.slots) {
 assert(
 parseVatSlot(slot).type !== 'promise',
 `syscall.callNow() args cannot include promises like ${slot}`,
);
}

Device validation logic in vatTranslator:472

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 15

Delivery Summaries

When the kernel has information for the vats, it uses one of eight deliveries. These deliveries

are used to start or stop the vat, inform about the state of objects for garbage collection, and

deliver messages and resolved promise data.

While vats cannot directly craft deliveries, the logic behind these communication mechanisms

still should be audited for their security impact, as well as the handling of the vat’s response.

Below we summarize the security implications considered when auditing each delivery.

message

The message delivery is sent to a vat targeting a specific object exported by that vat. It is

often the result of a send syscall. It usually contains a method to be invoked on that object,

as well as arguments. The translation of the argument’s CapData will give the vat access to

any objects included in the arguments.

If the message were sent to the wrong vat, or if by some other means a vat were given access

to items it should not logically be able to reach, then that would be a security issue.

notify

The notify delivery is sent to any vat subscribed to a promise that has been resolved. This

delivery contains an argument with the data the related promises resolved to, or associated

error data. The kernel will recursively walk the promise data searching for all included promise

data.

If the kernel could be trapped in an infinite loop while resolving promises it would be an issue.

This delivery will give the destination vat access to any new items in the resolution data. As

such if it could accidentally include items that should not logically be accessible by the

destination vat that would be a security relevant issue.

dropExports, retireExports, retireImports

These three deliveries are used to notify the vats of garbage collection state for shared items.

Each has an array argument with references being retired or dropped. These deliveries are

only supposed to contain items that the target vat already has access to.

If a logic error allowed these deliveries contain an item that the target vat did not already

have access to, that would be a security issue.

startVat

The startVat delivery is sent to each vat to give them a chance to initialize and export objects.

This delivery contains a CapData argument that will give the target vat access to any included

items.

It would be a security issue if an attacker were able to cause a startVat to be delivered to

an attacker-controlled vat with references to items that the attacker cannot already access.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 16

stopVat

stopVat is delivered without any arguments and is meant to alert the vat that it is being

stopped. Because this delivery cannot provide any further access or control to a vat, it does

not raise any obvious security concerns.

bringOutYourDead

This delivery is sent to the vats after a certain number of deliveries, and has no arguments.

This is meant to prompt the vats to issue garbage collection syscalls so that the kernel can

clean up left over items.

Because this delivery does not grant any access or information to the vat it does not raise

any obvious security concerns.

Other Communication Mechanisms

Syscalls and deliveries are not the only type of message passed between an xsnap-worker

and the kernel. The kernel can emit many types of messages to control the vat including

telling it to import files, evaluate JavaScript, use a packaged bundle of code, and write a

snapshot. For any of these commands that are unidirectional from the kernel to the vat, the

relevant security consideration is in how the kernel handles the vat’s response. Fortunately,

the responses are typically not complex and simple to handle.

Syscalls are one type of query a xsnap-worker hosted vat can send to the kernel, but not the

only one. The other types of queries currently involve logging messages. These provide a

mechanism the vats can use to add items to the log, and the kernel will filter and annotate

the messages accordingly. The security considerations with these other mechanisms have to

do with ensuring that logs can be trusted, and not allowing spoofed log entries to be created

by a vat pretending to speak for another vat or the kernel.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 17

Findings Summary

In performing testing for this assessment, Atredis Partners identified one (1) high, two (2)

medium, one (1) low severity findings, and one (1) informational finding. No critical

severity findings were noted. As stated earlier, none of these issues constitute a potential for

direct compromise from userspace, and in the case of the high severity vulnerability, the

Agoric team has already noted development plans to address the issue.

Atredis defines vulnerability severity ranking as follows:

• Critical: These vulnerabilities expose systems and applications to immediate threat of

compromise by a dedicated or opportunistic attacker.

• High: These vulnerabilities entail greater effort for attackers to exploit and may result

in successful network compromise within a relatively short time.

• Medium: These vulnerabilities may not lead to network compromise but could be

leveraged by attackers to attack other systems or applications components or be

chained together with multiple medium findings to constitute a successful compromise.

• Low: These vulnerabilities are largely concerned with improper disclosure of

information and should be resolved. They may provide attackers with important

information that could lead to additional attack vectors or lower the level of effort

necessary to exploit a system.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 18

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 19

Findings and Recommendations

The following section outlines findings identified via manual and automated testing over the

course of this engagement. Where necessary, specific artifacts to validate or replicate issues

are included, as well as Atredis Partners’ views on finding severity and recommended

remediation.

Findings Summary

The below tables summarize the number and severity of the unique issues identified

throughout the engagement.

CRITICAL HIGH MEDIUM LOW INFO

0 1 2 1 1

Findings Detail
FINDING NAME SEVERITY
Vats Lack Isolation High

Exceeding LMDB Map Size Limit Causes Kernel Crash Medium

Unvalidated vatstore Key Length Causes Kernel Crash Medium

Log Injection via Standard Output Low

Crash When Sending to Device Info

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 20

Vats Lack Isolation

Severity: High

Finding Overview

The Agoric Kernel does not enforce any kind of host supported isolation on the vat processes.

An attacker-controlled vat can take over the communication channels between the kernel and

other vats, exposing private resources and violating trust.

Finding Detail

The Agoric architecture uses a xsnap-worker when running individual vats. This will run the

untrusted usermode code in a new process and under the protections given by the XS

JavaScript engine.

To provide defense in depth in the event the XS engine or liveslots cannot be trusted, the

kernel provides a security boundary against compromised vats. However, the xsnap-worker

used to start the vats does not provide any additional isolation to contain an untrusted vat.

Because of this it is possible for an attacker-controlled vat to access the file system, kill other

processes, and other dangerous actions. It is also possible for attackers to gain access to the

data streams between the kernel and its vats.

When the xsnap-worker processes are created, they inherit file descriptors 3 and 4. Nodejs

on Linux implements these data streams with unnamed Unix sockets connected between the

vat and the kernel.

$ ls -l /proc/3483/fd
total 0
lr-x------. 1 vm vm 64 Apr 13 13:15 0 -> /dev/null
l-wx------. 1 vm vm 64 Apr 13 13:15 1 -> 'pipe:[20267]'
l-wx------. 1 vm vm 64 Apr 13 13:15 2 -> 'pipe:[20267]'
lrwx------. 1 vm vm 64 Apr 13 13:15 3 -> 'socket:[44361]'
lrwx------. 1 vm vm 64 Apr 13 13:15 4 -> 'socket:[44363]'

The file descriptors for a vat showing 3 and 4 are sockets back to the Agoric Kernel

An attacker-controlled vat can use the Linux system call pidfd_getfd to duplicate important

descriptors from the kernel or other vats into their own process. With access to these private

data streams, the malicious vat can spoof messages from the kernel to the other vats, or

from the other vats to the kernel.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 21

Note that pidfd_getfd is only supported since Linux 5.6 and requires the process to pass a

PTRACE_MODE_ATTACH_REALCREDS check, which is the same check required for attaching a

debugger to a process. By default, on many distributions this security check will pass for a

process targeting another process owned by the same user. As the kernel and vat processes

all run as the same user, no special permissions changes were needed when writing a proof

of concept.

XSNAP_DBG: Sending 3110(Malicious-vat) a query:
["deliver",["message","o+0",{"method":"stealpipes","args":{"body":"[{\"@qclass\":\"slot\",\
"iface\":\"Alleged: root\",\"index\":0}]","slots":["o-50"]},"result":"p-60"}]]
Writing to stolen pipes
Executing /home/vm/agoric-kernel-2022/compromized_vat/handler/fdstealer
Stealing fd 4 from 3121(target-vat)
injecting a spoofed vatstoreSet from the target vat
fdstealer done

/* ... Later when a message is delivered to the target vat ... */

XSNAP_DBG: Sending 3121(target-vat) a query:
["deliver",["message","o+0",{"method":"ping","args":{"body":"[]","slots":[]},"result":"p-
60"}]]
XSNAP_DBG: 3121(target-vat) sent
?["syscall",["vatstoreSet","PrivateStoreKey","MaliciousData"]]

Output from an instrumented kernel and vat while target vat is made to send a

malicious syscall

A malicious vat with access to these data streams can issue syscalls from other vats or deliver

messages to the other vats without requiring a valid reference to the target objects.

Recommendation(s)

The Agoric team was already aware of a need for further isolation of the vats, and they have

plans to isolate the vats with “secure computing” (seccomp) or a similar mechanism. If

properly implemented this could successfully be used to prevent an attacker-controlled vat

from using the operating system to undermine the kernel.

Configuration of the system with a Linux Security Module (LSM) such as Security-Enhanced

Linux (SELinux) or AppArmor could also be used to limit the actions the vats can perform.

Fixes for this issue should not simply suppress the pidfd_getfd mechanism, but rather seek

to isolate the vat from doing any unnecessary interaction with the host operating system.

References

CWE-653: Improper Isolation or Compartmentalization:

https://cwe.mitre.org/data/definitions/653.html

Seccomp BPF documentation:

https://www.kernel.org/doc/html/v4.19/userspace-api/seccomp_filter.html

https://cwe.mitre.org/data/definitions/653.html
https://www.kernel.org/doc/html/v4.19/userspace-api/seccomp_filter.html

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 22

Issue in Agoric’s repository discussing vat isolation:

https://github.com/Agoric/agoric-sdk/issues/2386

https://github.com/Agoric/agoric-sdk/issues/2386

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 23

Exceeding LMDB Map Size Limit Causes Kernel Crash

Severity: Medium

Finding Overview

The Lightning Memory-Mapped Database (LMDB) map size is not monitored when pushing

vatstore values to persistent storage. As a result, the kernel crashes when committing values

to the vatstore without causing a kernel panic.

Finding Detail

The maximum size of the LMDB database is defined in swingStore.js:

export const DEFAULT_LMDB_MAP_SIZE = 2 * 1024 * 1024 * 1024;

LMDB size set to 2GB in swingStore.js

The following proof of concept was created to test if code running in a vat may exceed this

defined limit:

import { E } from '@endo/eventual-send';
import { Far } from '@endo/marshal';

export function buildRootObject(vats) {
 return Far('root', {
 bootstrap(vats) {
 let maxcalls = 200;
 for (let i = 0; i < maxcalls; i++) {
 E(vats.bob).doStuff(String(i));
 }
 }
 });
}

Relevant section in bootstrap.js

import { Far } from '@endo/marshal';

export function buildRootObject(vatPowers) {
 let c1 = VatData.makeScalarBigMapStore('myData');
 let chunk = 10 * 1024 * 1024; //10MB chunks

 return Far('root', {
 doStuff(name) {
 console.log(`=> writing entry: ${name}, total bytes: ${parseInt(name)*chunk}`);
 c1.init(name, 'B'.repeat(chunk))
 }
 });
}

Relevant section in fvat-bob.js

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 24

When executing this test, the LMDB map size is eventually exceeded causing the kernel to

crash without causing a kernel panic.

=> writing entry: 100, total bytes: 1048576000
=> writing entry: 101, total bytes: 1059061760
kernel failure in crank 528: Error: MDB_MAP_FULL: Environment mapsize limit reached
(Error#1)
Error#1: MDB_MAP_FULL: Environment mapsize limit reached

 at Txn.putString (<anonymous>)
 at Object.set (packages/swing-store/src/swingStore.js:244:9)
 at Object.commitCrank (.../swingset-vat/src/kernel/state/storageWrapper.js:182:15)
 at processDeliveryMessage (.../swingset-vat/src/kernel/kernel.js:1073:54)
 at async Object.step (.../swingset-vat/src/kernel/kernel.js:1455:7)
 at async runBlock (packages/swingset-runner/src/main.js:605:25)
 at async runBatch (packages/swingset-runner/src/main.js:673:15)
 at async commandRun (packages/swingset-runner/src/main.js:693:32)
 at async main (packages/swingset-runner/src/main.js:452:7)

LMDB map size exceeded error

Recommendation(s)

Monitor the current database usage and terminate any vat wishing to exceed the limits of the

current LMDB size or cause a kernel panic.

References

CWE-400: Uncontrolled Resource Consumption:

https://cwe.mitre.org/data/definitions/400.html

LMDB Error:

https://github.com/LMDB/lmdb/blob/4b6154340c27d03592b8824646a3bc4eb7ab61f5/librar

ies/liblmdb/mdb.c#L1694

https://cwe.mitre.org/data/definitions/400.html
https://github.com/LMDB/lmdb/blob/4b6154340c27d03592b8824646a3bc4eb7ab61f5/libraries/liblmdb/mdb.c#L1694
https://github.com/LMDB/lmdb/blob/4b6154340c27d03592b8824646a3bc4eb7ab61f5/libraries/liblmdb/mdb.c#L1694

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 25

Unvalidated vatstore Key Length Causes Kernel Crash

Severity: Medium

Finding Overview

The key size set when initializing a vatstore value is not validated against the maximum

allowable key size for the underlying LMDB persistent storage. As a result, the kernel crashes

when committing values to the vatstore without causing a kernel panic.

Finding Detail

Creating a key with string length value greater than 242 bytes causes the kernel to crash

from userspace. The following example demonstrates the issue.

export function buildRootObject(_vatPowers) {
 let c1;

 return Far('root', {
 doStuff(name) {
 console.log('=> Bob: doing Stuff! ---');

 c1 = VatData.makeScalarBigMapStore('myData');
 c1.init('A'.repeat(243), 'B'.repeat(32));
 }
 });
 }

Code running in a vat to generate large key value

Running this code causes triggers the following LMDB error and resulting kernel crash.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 26

node bin/runner --verbose --usexs --init run demo/vatStoreKeyLength
[SNIPPED]
=> Bob: doing Stuff! ---
syscall[v2].vatstoreSet(vc.2.|nextOrdinal,1)
syscall[v2].vatstoreSet(vc.2.|entryCount,0)
syscall[v2].vatstoreSet(vc.2.|schemata,{"body":"[{\"@qclass\":\"tagged\",\"tag\":\"match:sc
alar\",\"payload\":{\"@qclass\":\"undefined\"}}]","slots":[]})
syscall[v2].vatstoreSet(vc.2.|label,myData)
syscall[v2].vatstoreGet(vc.2.sAAA
AAA
AAA
)
syscall[v2].vatstoreSet(vc.2.sAAA
AAA
AAA
,{"body":"\"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\"","slots":[]})
syscall[v2].vatstoreGet(vc.2.|entryCount)
syscall[v2].vatstoreSet(vc.2.|entryCount,1)
syscall[v2].resolve[0](p-60/kp41, false) = {"@qclass":"undefined"} []/[]
Delete mapping v2.c.kp41<=>v2.c.p-60
syscall[v2].vatstoreSet(idCounters,{"exportID":10,"collectionID":3,"promiseID":5})
kernel failure in crank 34: Error: MDB_BAD_VALSIZE: Unsupported size of key/DB name/data,
or wrong DUPFIXED size (Error#1)
Error#1: MDB_BAD_VALSIZE: Unsupported size of key/DB name/data, or wrong DUPFIXED size

 at Object.set (packages/swing-store/src/swingStore.js:244:9)
 at Object.commitCrank (.../swingset-vat/src/kernel/state/storageWrapper.js:182:15)
 at processDeliveryMessage (.../swingset-vat/src/kernel/kernel.js:1073:54)
 at async Object.step (.../swingset-vat/src/kernel/kernel.js:1455:7)
 at async runBlock (packages/swingset-runner/src/main.js:605:25)
 at async runBatch (packages/swingset-runner/src/main.js:673:15)
 at async commandRun (packages/swingset-runner/src/main.js:693:32)
 at async main (packages/swingset-runner/src/main.js:452:7)

LMDB error and kernel crash

No kernel panic or vat termination was noted in the above error output. The LMDB key length

limit appears to be 248 bytes total including header bytes of the form vc.2.s consuming 6

bytes, this allows for a maximum key size of 242 before causing the error.

Atredis also validated that any messages destined to other vats to be executed on future

cranks are not executed.

Recommendation(s)

The key length for all vatstore values should be validated to ensure the length does not

exceed what is allowed by LMDB. This condition could result in vat termination, or a kernel

panic as opposed to an uncaught kernel error.

References

CWE-20: Improper Input Validation:

https://cwe.mitre.org/data/definitions/20.html

https://cwe.mitre.org/data/definitions/20.html

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 27

LMDB Error:

https://github.com/LMDB/lmdb/blob/4b6154340c27d03592b8824646a3bc4eb7ab61f5/librar

ies/liblmdb/mdb.c#L1705

https://github.com/LMDB/lmdb/blob/4b6154340c27d03592b8824646a3bc4eb7ab61f5/libraries/liblmdb/mdb.c#L1705
https://github.com/LMDB/lmdb/blob/4b6154340c27d03592b8824646a3bc4eb7ab61f5/libraries/liblmdb/mdb.c#L1705

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 28

Log Injection via Standard Output

Severity: Low

Finding Overview

A vat has access to the same stdout and stderr files that the kernel uses. An attacker-

controlled vat can use this to spoof log messages, bypassing the intended console path. This

vulnerability could let an attacker produce confusing or misleading log files.

Finding Detail

Usermode code running in an xsnap-worker vat will have its calls to console.log redirected

through the kernel, using a special console query message.

?["console","log","My debug message"]

An example console query sent to the kernel from a vat

By redirecting this output through the kernel, the system has to ability ignore certain

messages, restrict, and redirect vat output, and prefix all messages with the vat's identifier.

case 'liveSlotsConsole':
case 'console': {
 const [level, ...rest] = args;
 // Choose the right console.
 const myConsole =
 (type === 'liveSlotsConsole' && liveSlotsConsole) || vatConsole;
 if (typeof level === 'string' && level in myConsole) {
 myConsole[level](...rest);
 } else {
 console.error(`bad ${type} level`, level);
 }
 return ['ok'];
}
case 'testLog':
 testLog(...args);
 return ['OK'];

Code within manager-subprocess-xsnap.js that handles the console command

Unfortunately, the process that contains the untrusted code itself has access to the same

standard output and standard error files that the kernel uses. When the process is spawned

it is given access to these files.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 29

const xsnapOpts = {
 os: osType(),
 spawn,
 stdout: 'inherit',
 stderr: 'inherit',
 debug: !!env.XSNAP_DEBUG,
 };

The options in controller.js share the host's stdout and stderr

If an untrusted vat is compromised by an attacker, the attacker can now use the standard file

streams to output messages that are not properly sorted and prefixed as they would be by

the console command. This could lead to malicious messages in the log that obfuscate or

confuse the true actions of the system.

Recommendation(s)

The stdout and stderr should not be passed to the vats. Instead, these files could be ignored,

or they could be pipes that allow the kernel to properly filter and process the vats output.

References

CWE-117: Improper Output Neutralization for Logs:

https://cwe.mitre.org/data/definitions/117.html

https://cwe.mitre.org/data/definitions/117.html

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 30

Crash When Sending to Device

Severity: Info

Finding Overview

When validating the arguments of a send syscall the kernel does not check that the target is

a valid type. If a vat does a send to a device the kernel will fail an assert and crash when

routing the message. This error could possibly be better handled during the validation of the

arguments.

Finding Detail

When the Agoric kernel translates a send syscall, the target reference is translated to a kernel

reference, but the type of this reference is not verified. When the syscall is dispatched, the

kernel will assert that the target references a promise or an object. This assert will fail when

the target references a device and will throw an uncaught error that will crash the kernel.

function routeSendEvent(message) {
 const { target, msg } = message;
 const { type } = parseKernelSlot(target);
 assert(
 ['object', 'promise'].includes(type),
 X`unable to send() to slot.type ${type}`,
);
 /*...*/
 }

The assert in routeSendEvent that asserts the target is an object or a promise

This crash may not be able to be caused from userspace, as imported devices are treated

differently from imported objects. As such this is an informational finding, and not currently

a security vulnerability.

kernel failure in crank 36: Error: unable to send() to slot.type (a string) (Error#1)
Error#1: unable to send() to slot.type device

 at routeSendEvent (.../swingset-vat/src/kernel/kernel.js:756:5)
 at deliverRunQueueEvent (.../swingset-vat/src/kernel/kernel.js:894:21)
 at processDeliveryMessage (.../swingset-vat/src/kernel/kernel.js:956:26)
 at tryProcessDeliveryMessage (.../swingset-vat/src/kernel/kernel.js:1091:12)
 at startProcessingNextMessageIfAny (.../swingset-vat/src/kernel/kernel.js:1440:25)
 at Object.step (.../swingset-vat/src/kernel/kernel.js:1453:31)
 at Object.step (packages/SwingSet/src/controller/controller.js:371:21)
 at runBlock (packages/swingset-runner/src/main.js:605:42)
 at async runBatch (packages/swingset-runner/src/main.js:673:15)
 at async commandRun (packages/swingset-runner/src/main.js:693:32)
 at async main (packages/swingset-runner/src/main.js:452:7)

Error message when failing the assert

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 31

Recommendation(s)

The translation of send syscalls from vats should require that the target is of the correct type

before adding the message to the queue.

References

CWE-20: Improper Input Validation:

https://cwe.mitre.org/data/definitions/20.html

https://cwe.mitre.org/data/definitions/20.html

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 32

Appendix I: Assessment Methodology

Atredis Partners draws on our extensive experience in penetration testing,

reverse engineering, hardware/software exploitation, and embedded

systems design to tailor each assessment to the specific targets, attacker

profile, and threat scenarios relevant to our client’s business drivers and

agreed upon rules of engagement.

Where applicable, we also draw on and reference specific industry best

practices, regulations, and principles of sound systems and software design

to help our clients improve their products while simultaneously making

them more stable and secure.

Our team takes guidance from industry-wide standards and practices such as the National Institute of

Standards and Technology’s (NIST) Special Publications, the Open Web Application Security Project

(OWASP), and the Center for Internet Security (CIS).

Throughout the engagement, we communicate findings as they are identified and validated, and

schedule ongoing engagement meetings and touchpoints, keeping our process open and transparent

and working closely with our clients to focus testing efforts where they provide the most value.

In most engagements, our primary focus is on creating purpose-built test suites and toolchains to

evaluate the target, but we do utilize off-the-shelf tools where applicable as well, both for general patch

audit and best practice validation as well as to ensure a comprehensive and consistent baseline is

obtained.

Research and Profiling Phase

Our research-driven approach to testing begins with a detailed examination of the target, where we

model the behavior of the application, network, and software components in their default state. We map

out hosts and network services, patch levels, and application versions. We frequently use a number of

private and public data sources to collect Open Source Intelligence about the target, and collaborate

with client personnel to further inform our testing objectives.

For network and web application assessments, we perform network and host discovery as well as map

out all available application interfaces and inputs. For hardware assessments, we study the design and

implementation, down to a circuit-debugging level. In reviewing source code or compiled application

code, we map out application flow and call trees and develop a solid working understand of how the

application behaves, thus helping focus our validation and testing efforts on areas where vulnerabilities

might have the highest impact to the application’s security or integrity.

Analysis and Instrumentation Phase

Once we have developed a thorough understanding of the target, we use a number of specialized and

custom-developed tools to perform vulnerability discovery as well as binary, protocol, and runtime

analysis, frequently creating engagement-specific software tools which we share with our clients at the

close of any engagement.

We identify and implement means to monitor and instrument the behavior of the target, utilizing

debugging, decompilation and runtime analysis, as well as making use of memory and filesystem

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 33

forensics analysis to create a comprehensive attack modeling testbed. Where they exist, we also use

common off-the-shelf, open-source and any extant vendor-proprietary tools to aid in testing and

evaluation.

Validation and Attack Phase

Using our understanding of the target, our team creates a series of highly-specific attack and fault

injection test cases and scenarios. Our selection of test cases and testing viewpoints are based on our

understanding of which approaches are most relevant to the target and will gain results in the most

efficient manner, and built in collaboration with our client during the engagement.

Once our test cases are validated and specific attacks are confirmed, we create proof-of-concept artifacts

and pursue confirmed attacks to identify extent of potential damage, risk to the environment, and

reliability of each attack scenario. We also gather all the necessary data to confirm vulnerabilities

identified and work to identify and document specific root causes and all relevant instances in software,

hardware, or firmware where a given issue exists.

Education and Evidentiary Phase

At the conclusion of active testing, our team gathers all raw data, relevant custom toolchains, and

applicable testing artifacts, parses and normalizes these results, and presents an initial findings brief to

our clients, so that remediation can begin while a more formal document is created. Additionally, our

team shares confirmed high-risk findings throughout the engagement so that our clients may begin to

address any critical issues as soon as they are identified.

After the outbrief and initial findings review, we develop a detailed research deliverable report that

provides not only our findings and recommendations but also an open and transparent narrative about

our testing process, observations and specific challenges in developing attacks against our targets, from

the real world perspective of a skilled, motivated attacker.

Automation and Off-The-Shelf Tools

Where applicable or useful, our team does utilize licensed and open-source software to aid us throughout

the evaluation process. These tools and their output are considered secondary to manual human

analysis, but nonetheless provide a valuable secondary source of data, after careful validation and

reduction of false positives.

For runtime analysis and debugging, we rely extensively on Hopper, IDA Pro and Hex-Rays, as well as

platform-specific runtime debuggers, and develop fuzzing, memory analysis, and other testing tools

primarily in Ruby and Python.

In source auditing, we typically work in Visual Studio, Xcode and Eclipse IDE, as well as other markup

tools. For automated source code analysis we will typically use the most appropriate toolchain for the

target, unless client preference dictates another tool.

Network discovery and exploitation make use of Nessus, Metasploit, and other open-source scanning

tools, again deferring to client preference where applicable. Web application runtime analysis relies

extensively on the Burp Suite, Fuzzer and Scanner, as well as purpose-built automation tools built in

Go, Ruby and Python.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 34

Engagement Deliverables

Atredis Partners deliverables include a detailed overview of testing steps and testing dates, as well as

our understanding of the specific risk profile developed from performing the objectives of the given

engagement.

In the engagement summary we focus on “big picture” recommendations and a high-level overview of

shared attributes of vulnerabilities identified and organizational-level recommendations that might

address these findings.

In the findings section of the document, we provide detailed information about vulnerabilities identified,

provide relevant steps and proof-of-concept code to replicate these findings, and our recommended

approach to remediate the issues, developing these recommendations collaboratively with our clients

before finalization of the document.

Our team typically makes use of both DREAD and NIST CVE for risk scoring and naming, but as part of

our charter as a client-driven and collaborative consultancy, we can vary our scoring model to a given

client’s preferred risk model, and in many cases will create our findings using the client’s internal findings

templates, if requested.

Sample deliverables can be provided upon request, but due to the highly specific and confidential nature

of Atredis Partners’ work, these deliverables will be heavily sanitized, and give only a very general sense

of the document structure.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 35

Appendix II: Engagement Team Biographies

Shawn Moyer, Founding Partner and CEO

Shawn Moyer scopes, plans, and coordinates security research and consulting projects for the Atredis

Partners team, including reverse engineering, binary analysis, advanced penetration testing, and private

vulnerability research. As CEO, Shawn works with the Atredis leadership team to build and grow the

Atredis culture, making Atredis Partners a home for some of the best minds in information security, and

ensuring Atredis continues to deliver research and consulting services that exceed our client’s

expectations.

Experience

Shawn brings over 25 years of experience in information security, with an extensive background in

penetration testing, advanced security research including extensive work in mobile and Smart Grid

security, as well as advanced threat modeling and embedded reverse engineering.

Shawn has served as a team lead and consultant in enterprise security for numerous large initiatives in

the financial sector and the federal government, including IBM Internet Security Systems’ X-Force,

MasterCard, a large Federal agency, and Wells Fargo Securities, all focusing on emerging network and

application attacks and defenses.

In 2010, Shawn created Accuvant Labs’ Applied Research practice, delivering advanced research-driven

consulting to numerous clients on mobile platforms, critical infrastructure, medical devices and countless

other targets, growing the practice 1800% in its first year.

Prior to Accuvant, Shawn helped develop FishNet Security’s penetration testing team as a principal

security consultant, growing red team offerings and advanced penetration testing services, while being

twice selected as a consulting MVP.

Key Accomplishments

Shawn has written on emerging threats and other topics for Information Security Magazine and ZDNet,

and his research has been featured in the Washington Post, BusinessWeek, NPR and the New York

Times. Shawn is a twelve-time speaker at the Black Hat Briefings and has been an invited speaker at

other notable security conferences around the world.

Shawn is likely best known for delivering the first public research on social network security, pointing

out much of the threat landscape still exists on social network platforms today. Shawn also co-authored

an analysis of the state of the art in web browser exploit mitigation, creating the first in-depth

comparison of browser security models along with Dr. Charlie Miller, Chris Valasek, Ryan Smith, Joshua

Drake, and Paul Mehta.

Shawn studied Computer and Network Information Systems at Missouri University and the University of

Louisiana at Lafayette, holds numerous information security certifications, and has been a frequent

presenter at national and international security industry conferences.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 36

Loren Browman, Senior Research Consultant

Loren Browman has over 10 years of experience in both consulting and federal law enforcement

environments. His experiences range from deep security research in federal government to product and

application testing for Fortune 500 corporations. Loren is a recognized subject matter expert (SME) in

securing IoT products and advanced hardware testing methodology. Areas of expertise include reverse

engineering of hardware, firmware, and communication protocols.

Experience

Loren has conducted numerous large scale product security assessments including challenging black

box security assessments and secure design reviews.

Prior to joining Atredis, Loren was an operations supervisor and security researcher for the Royal

Canadian Mounted Police (RCMP). This role included providing technical expertise to support police

investigations and leading security research efforts in order to circumvent security mechanisms and

develop deployable capabilities.

Key Accomplishments

Loren has developed numerous tools for accelerating research on a wide range of products. This includes

the development of a fuzzing suite for automotive Electronic Control Units over CAN bus vehicle

networks, this led to the discovery of multiple hidden services and exploits. More recently, Loren

published nrfsec, a tool for automating firmware recovery vulnerability on secured nrf51 System on

Chips.

Loren has studied Electrical and Computer Engineering at the British Columbia Institute of Technology

and has attended various specialized training sessions including the Arm IoT Exploit Laboratory, Power

Analysis and Glitching and is an Offensive Security Certified Professional (OSCP).

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 37

Jordan Whitehead, Senior Research Consultant

Jordan Whitehead specializes in vulnerability research and binary exploitation. Jordan is able to quickly

dive into large systems and find key weaknesses as a result of his significant experience in operating

system internals.

Experience

During Jordan’s Computer Engineering degree schooling, he created and instructed collegiate courses

and clubs on computer security. After college he worked as a CNO developer for ManTech International,

developing tools and capabilities that involved deep exploration into modern operating systems for

exploitable weaknesses. While in that position, Jordan also continued to help create and instruct a

number of formal reverse engineering and exploitation courses. These courses detailed the system

internals for Windows, Linux, and Android. He has worked with research teams developing custom

virtualization and emulation tooling that enabled researchers to better assess otherwise unreachable

systems.

Key Accomplishments

Jordan has helped publish papers at top academic conferences on computer security, including Usenix

Security Symposium. He has also developed open-source tools related to vulnerability research and

secure software. These include peer-reviewed tools that have helped provide useable security and trust

on Linux and Windows platforms.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 38

Sara Bettes, Client Operations Associate

Sara Bettes assists the creation and completion of projects at Atredis Partners, ranging from the full

pre-sales process to project design and management, to final delivery and follow-up. Her goals are to

ensure all projects are executed in a way that reaches the goals of the client and assists the consultants

at every turn.

Experience

Prior to joining Atredis Partners, Sara led a team that planned international sporting competitions,

Olympic and national team qualifying events, as well as supported the mission of multiple non-profits.

Her experience includes Live Sports Commentating, Staffing Management, Safety Plan Creation, Event

Development, Public Relations, and Marketing efforts.

Key Accomplishments

Sara earned a bachelor’s degree in Mass Communications with an emphasis in Broadcast and Public

Relations from Oklahoma City University.

Atredis Partners – Agoric Kernel API Assessment

Atredis Partners ⚫ Confidential Page 39

Appendix III: About Atredis Partners

Atredis Partners was created in 2013 by a team of security industry veterans who wanted to prioritize

offering quality and client needs over the pressure to grow rapidly at the expense of delivery and

execution. We wanted to build something better, for the long haul.

In six years, Atredis Partners has doubled in size annually, and has been named three times to the Saint

Louis Business Journal’s “Fifty Fastest Growing Companies” and “Ten Fastest Growing Tech Companies”.

Consecutively for the past three years, Atredis Partners has been listed on the Inc. 5,000 list of fastest

growing private companies in the United States.

The Atredis team is made up of some of the greatest minds in Information Security research and

penetration testing, and we’ve built our business on a reputation for delivering deeper, more advanced

assessments than any other firm in our industry.

Atredis Partners team members have presented research over forty times at the BlackHat Briefings

conference in Europe, Japan, and the United States, as well as many other notable security conferences,

including RSA, ShmooCon, DerbyCon, BSides, and PacSec/CanSec. Most of our team hold one or more

advanced degrees in Computer Science or engineering, as well as many other industry certifications and

designations. Atredis team members have authored several books, including The Android Hacker’s

Handbook, The iOS Hacker’s Handbook, Wicked Cool Shell Scripts, Gray Hat C#, and Black Hat Go.

While our client base is by definition confidential and we often operate under strict nondisclosure

agreements, Atredis Partners has delivered notable public security research on improving the security

at Google, Microsoft, The Linux Foundation, Motorola, Samsung and HTC products, and were the first

security research firm to be named in Qualcomm’s Product Security Hall of Fame. We’ve received four

research grants from the Defense Advanced Research Project Agency (DARPA), participated in research

for the CNCF (Cloud Native Computing Foundation) to advance the security of Kubernetes, worked with

OSTIF (The Open Source Technology Improvement Fund) and The Linux Foundation on the Core

Infrastructure Initiative to improve the security and safety of the Linux Kernel, and have identified

entirely new classes of vulnerabilities in hardware, software, and the infrastructure of the World Wide

Web.

In 2015, we expanded our services portfolio to include a wide range of advanced risk and security

program management consulting, expanding our services reach to extend from the technical trenches

into the boardroom. The Atredis Risk and Advisory team has extensive experience building mature

security programs, performing risk and readiness assessments, and serving as trusted partners to our

clients to ensure the right people are making informed decisions about risk and risk management.  

	Engagement Overview
	Assessment Components and Objectives

	Engagement Tasks
	Runtime Analysis
	Source Code Analysis
	Configuration and Architecture Review

	Executive Summary
	Key Conclusions
	Platform Overview
	Kernel Security Boundary
	Instrumentation & Analysis
	Syscall Summaries
	send
	subscribe
	resolve
	exit
	dropImports, retireImports, retireExports
	vatstoreGet, vatstoreSet, vatstoreDelete
	vatstoreGetAfter
	callNow

	Delivery Summaries
	message
	notify
	dropExports, retireExports, retireImports
	startVat
	stopVat
	bringOutYourDead

	Other Communication Mechanisms

	Findings Summary

	Findings and Recommendations
	Findings Summary
	Findings Detail
	Vats Lack Isolation
	Finding Overview
	Finding Detail
	Recommendation(s)
	References

	Exceeding LMDB Map Size Limit Causes Kernel Crash
	Finding Overview
	Finding Detail
	The maximum size of the LMDB database is defined in swingStore.js:
	Recommendation(s)
	Monitor the current database usage and terminate any vat wishing to exceed the limits of the current LMDB size or cause a kernel panic.
	References

	Unvalidated vatstore Key Length Causes Kernel Crash
	Finding Overview
	Finding Detail
	Recommendation(s)
	References

	Log Injection via Standard Output
	Finding Overview
	A vat has access to the same stdout and stderr files that the kernel uses. An attacker-controlled vat can use this to spoof log messages, bypassing the intended console path. This vulnerability could let an attacker produce confusing or misleading log...
	Finding Detail
	Recommendation(s)
	References

	Crash When Sending to Device
	Finding Overview
	Finding Detail
	Recommendation(s)
	References

	Appendix I: Assessment Methodology
	Research and Profiling Phase
	Analysis and Instrumentation Phase
	Validation and Attack Phase
	Education and Evidentiary Phase
	Automation and Off-The-Shelf Tools
	Engagement Deliverables

	Appendix II: Engagement Team Biographies
	Shawn Moyer, Founding Partner and CEO
	Experience
	Key Accomplishments

	Loren Browman, Senior Research Consultant
	Experience
	Key Accomplishments

	Loren Browman, Senior Research Consultant
	Experience
	Key Accomplishments

	Loren Browman, Senior Research Consultant
	Experience
	Key Accomplishments

	Loren Browman, Senior Research Consultant
	Experience
	Key Accomplishments

