

Background 4

Introduction to hardened JavaScript 5
The Specification 5
Components of the hardened JavaScript shim implementation 7

Lockdown 7
Compartment 7
Proxy Trap and ScopeProxyHandler 7
Optimizer 8

Assessment Overview 9

Scope 10
Target Code 10
Assessment Goals 10
Criticality Rating 11

Findings 12
Summary 12
Critical Findings 13
High Severity Findings 13
Medium Severity Findings 13
Low 14

Finding-01: The has hazard 14
Finding-02: Bypass of Compartment global lexicals 16
Finding-03: Compartment leaks its observation of the presence of properties on start
compartment globalThis 17
Finding-04: Scope proxy defense against property descriptor prototype 18
Finding-05: Investigate allowlist in relation to getSubPermit implementation 18

Informational 19
Finding-06: Limit ‘lockdown’ calls 19
Finding-07: Strict mode optimizer for evaluate 19
Finding-08: Allow Map to be named in Module Scope 20
Finding-09: Avoid use of receiver object this in scope handler 20
Finding-10: Avoid use of receiver object this in scope handler 21
Finding-11: Clarify internal terms for culling disallowed intrinsics 21
Finding-12: Use eslint-disable notation consistently 22
Finding-13: Add an up reference to --proto-- in hardened JavaScript permits 22
Finding-14: Simplify makeCompartmentConstructor 23
Finding-15: Add tests for backslash behavior 23
Finding-16: Add Lint to disallow hardened JavaScript polymorphic calls 24
Finding-17: Propose ECMA 262 language invariant for proxy handlers 24
Finding-18: Improve documentation around partial hardening scenarios 25
Finding-19: Rename localObject to globalLexicals in performEval 25

1

Finding-20: makeHardener as an arrow function 26
Finding-21: Add assertions for reflexive subsections of the hardened JavaScript permits
declaration 26
Finding-22: Verify that AsyncFunctionPrototype is both de jure and de facto standard 27
Finding-23: Freeze proxy handlers for scopes 27
Finding-23: Refactor evaluate function for readability 27

Observations on the hardened JavaScript shim 29
Considerations for Consumers of the hardened JavaScript Shim 30

Sanitize the globalThis as much as possible 30
Handle the start compartment carefully 30
Consider tools for reading deeply nested code 31
The “partial hardening hazard” 31

Intent and Recommended Areas of Focus for Future Assessments 32
Non-nested containment 32
Compartment initialization could be interleaved by Component creator 33
Obscure spec pitfalls 33

Observations from the MetaMask Red Team on In-Language Confinement APIs 34

2

Background

Agoric’s hardened JavaScript shim is a library that is designed to provide an object-capability

security model to a modern JavaScript environment, enabling the execution of untrusted code

within the same synchronous environment. In order to do this, first an environment is locked

down to ensure predictable behavior, and second, a Compartment API is provided to confine

untrusted scripts.

JavaScript is considered to be notoriously difficult to secure, but as a highly lexical language

with a long history of object-capability advocates on the TC-39 Committee, it appears to be on

the cusp of achieving in-language security properties that are extremely rare, valuable, and

intuitive to use.

Object-capabilities is a security model that exists as a highly flexible alternative to traditional

access control strategies (e.g. access control lists), wherein a given entity receives no authority

by default, and receives all of its power only by being explicitly passed object references, either

through construction or over the course of activity.

Outside of the web stack, runtime isolation usually manifests itself in technologies like

application-level sandboxes, containerization, and/or full VM segmentation. If the hardened

JavaScript shim can be trusted, and a Compartment API provided, the shim could allow a

similar type of isolation at the JavaScript layer, and result in significant improvements for

security, lightweight extensibility, and speed of safe development for JavaScript applications with

little to no modification to existing code.

In this report, we will describe the results of a limited-time evaluation of the security of the

hardened JavaScript shim. The goal of our review was to evaluate its security properties, and in

particular, its ability to confine malicious code. The primary target of this evaluation was not the

Compartment specification, but the hardened JavaScript shim which was written to emulate its

behavior in modern JavaScript environments.

3

http://habitatchronicles.com/2017/05/what-are-capabilities/
http://habitatchronicles.com/2017/05/what-are-capabilities/

Introduction to hardened JavaScript

The Specification

The Agoric documentation defines hardened JavaScript as a safe deterministic subset of the

strict mode in JavaScript. This means that a number of additional restrictions have been applied

to strict mode JavaScript. One of the major changes hardened JavaScript enforces is on the

standard globals by removing IO objects that could allow for exfiltration of data out of a

hardened JavaScript Compartment. In addition, hardened JavaScript lockdown freezes the

shared intrinsics, so attackers cannot replace their methods or otherwise subvert them. The

hardened JavaScript guide provides a detailed description of the additions, removal and

modifications to the ECMAScript specification.

Here is a summary of the language features available in each of these subsets of JavaScript. In

this diagram, hardened JavaScript is referred to as SES:

4

https://agoric.com/documentation/guides/js-programming/agoric-js-overview.html#introduction
https://agoric.com/documentation/guides/js-programming/ses/ses-guide.html#the-ses-story

Even under strict mode, access to many intrinsics can result in climbing the

prototype/constructor chain to gain access to more powerful prototypes, which can allow

polluting the context of other scripts:

During the lockdown phase, one of the goals of the hardened JS shim is to not only freeze these

intrinsics, but to replace their constructors with frozen dummy versions so that a malicious actor

climbing through the object’s properties cannot escape their compartment:

5

Components of the hardened JavaScript shim implementation

Lockdown

Through an initial lockdown() invocation, the hardened JavaScript environment enumerates

all known global environment intrinsics and ensures they are deeply (recursively) frozen, and

that none of them have .constructor or .prototype chains that can be used to access the

original (mutable) feral objects.

Compartment

Through the so-called “8 magic lines” (which stand in for several more lines of code), the basic

isolation of untrusted JavaScript is claimed:

return FERAL_FUNCTION(`

with (this) {

${optimizer}

return function () {

"use strict";

return eval(arguments[0]);

}

}

`);

The FERAL_FUNCTION is the original Function() constructor, and can be thought of as an

indirect eval, whose scope is the top level of the executing script.

Proxy Trap and ScopeProxyHandler

The with block is used to create a new lexical scope where all property lookups first fall on

this, which is itself a Proxy trap, designed to catch all lexical lookups on the inner scope, and

handle them as specified by the ScopeProxyHandler, which is constructed to pass properties

6

to the Compartment’s endowments and shared frozen intrinsics. The with block is only allowed

in JavaScript “sloppy mode”, which is why use strict is required within it, but not before it.

Optimizer

The optimizer is intended to simply make some frequently accessed variables available without

invoking the more computationally expensive proxy trap.

The strict mode directive is then invoked to provide a variety of environment-level security

guarantees that are needed to prevent trivial violation of the object capability guarantees.

Finally, an invocation of eval() with the Compartment’s intended code to be executed. Note

that this invocation of eval() will bubble up to the proxy trap, which needs access to a feral

EVAL only on this first invocation.

See also: https://youtu.be/mSNxsn0pK74?t=801

7

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode#securing_javascript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode#securing_javascript
https://www.youtube.com/watch?v=mSNxsn0pK74&t=801s

Assessment Overview

The MetaMask and Agoric teams kicked off their Red Team/Blue Team vulnerability assessment

of the shim beginning on July 5, 2021 for a period of 5 days. For the duration of the

engagement, the MetaMask team (with the addition of one member of the Agoric team) took on

the offensive posture of a Red Team, and Agoric’s module maintainers took on the defensive

posture of a Blue Team during this collaborative, cross-organization vulnerability assessment.

Red Team

Aaron Davis, MetaMask

Dan Finlay, MetaMask

Erik Marks, MetaMask

Seth Kaufman, MetaMask

Cal Leung, MetaMask

Ryan Lanese, MetaMask

Mathieu Hofman, Agoric

Blue Team

Mark S. Miller, Agoric

Kris Kowal, Agoric

Dan Connolly, Agoric

Dean Tribble, Agoric

During the first two days of the engagement, Agoric’s module maintainers presented a

walkthrough of the source code and architecture of the module, and highlighted potential areas

of risk where issues were likely to be found. On days 3 and 4 of the assessment, the MetaMask

team reviewed the list of potential attack vectors, and used a Value/Effort framework to guide

review prioritization. The MetaMask team led the analysis of “hot spot” areas using static

analysis and fuzzing tools. The final day of the engagement was reserved for authoring a report

of findings… and sushi.

Throughout the assessment, both teams presented code walkthroughs, observations, and

findings, which are available on YouTube.

● Session #1: https://www.youtube.com/watch?v=SDWEJ9H2xgw
● Session #2: https://www.youtube.com/watch?v=3ngSBIm8rD0
● Session #3: https://youtu.be/MaJSQHgmGmk
● Session #4: https://youtu.be/HMsQzI6L-70

8

https://csrc.nist.gov/glossary/term/red_team_blue_team_approach
https://www.youtube.com/watch?v=SDWEJ9H2xgw
https://www.youtube.com/watch?v=3ngSBIm8rD0
https://youtu.be/MaJSQHgmGmk
https://youtu.be/HMsQzI6L-70

● Session #5: https://youtu.be/liAjywlIp9A

Scope

Target Code

For this review, all teams involved in this assessment reviewed the following code targets with

the SHA1 hash of f91c84cde6cfe82c085ebe316da939d04ca74aa4.

● https://github.com/endojs/endo/tree/f91c84cde6cfe82c085ebe316da939d04ca74aa4

Assessment Goals

The investigation of this code focused on ensuring, as delineated in the hardened JavaScript

documentation, that Compartment confined code should be confined such that it does not have

any of the following abilities:

● Access to powerful platform capabilities except where endowed, including:

○ network access,

○ disk access,

○ and access to timers.

● Access to observe the runtime environment, including via Spectre type attacks (without

being explicitly granted access to a timer).

● Unauthorized ability to communicate with other compartments

We considered these objectives in the presence of two threat scenarios:

● Threat 1: code in the Compartment can break out.

● Threat 2: creator of a Compartment can break out of a locked down environment,

and mutate its realm.

The following conditions for compromising the security properties of the shim were considered

out of scope:

● Corruption of the start compartment before it is locked down.

9

https://youtu.be/liAjywlIp9A
https://github.com/endojs/endo/tree/f91c84cde6cfe82c085ebe316da939d04ca74aa4

● Running hardened JavaScript in a non-standard host environment that cannot be

locked down.

● Endowing a compartment with an intentional sandbox escape, or side-channel

like a timer.

● Using features of JavaScript runtimes that are outside of the semantics of the

ECMAScript specification, such as Mozilla’s Debugger API.

● Passing the lockdown function and Compartment constructors with options that

are designed to deliberately weaken their security guarantees as a feature for

development.

● Running an infinite loop is acknowledged as a risk of exposing the Compartment

API to untrusted parties, and so exhausting system resources alone will not be

considered a successful breach of the system’s security.

Criticality Rating

Critical High Impact + High Likelihood of Exploitation. A highly exploitable
issue that provides an attacker with full control of the program’s
execution, and violates all security assumptions, e.g. a full
sandbox escape with full privileges.

High Medium Impact + Medium Likelihood of Exploitation. An
exploitable issue that affects core tenants/assumptions of the
program’s security assumptions and guarantees, e.g. a sandbox
escape with partial privileges.

Medium Low Impact + Medium Likelihood of Exploitation. An exploitable
issue that complicates the program’s execution without directly
resulting in a full compromise of integrity of the program, e.g.
tampering with a method’s return value.

Low Low Impact + Low Likelihood of Exploitation. An issue that would
introduce unexpected behavior to the program without directly
resulting in a compromise of security assumptions, e.g. difficult to
exploit information disclosure.

Informational Little to no Impact + Little to no Likelihood of Exploitation. An issue
that does not present a direct exploitable risk to the program’s
execution, e.g. documentation, code style, non-exploitable in real
world usage findings.

10

Findings

Summary

This report details the results of an intensive analysis of the hardened JavaScript shim

implementation. During this engagement, the MetaMask Red Team was asked to assess the

implementation, and to look for implementation bugs that could lead to the compromise of the

stated security guarantees.

Ultimately, the Red Team found the shim to be written with extraordinary care and expertise.

Some of our biggest concerns were related to maintainability or ensuring correctness in the face

of a changing specification. It seems clear that the shim’s lockdown alone provides significant

improvement to the safety of written JavaScript, and the Compartment API brings a compelling

interface for safe confinement of code. To the best of our abilities, we did not find any escapes

from this confinement, and are optimistic about its long term potential, but even more so as a

possible language feature.

We are happy to have found some improvements and recommendations, and our intention was

to contribute to securing the underlying platform. Over the course of this engagement, we

gained a deeper appreciation of the depth of mastery of JavaScript at play at Agoric, as well as

the subtle complexity of the language as it has evolved over its decades of non-breaking

evolution. Due to the number of global APIs and their often inconsistent and unusual mutability,

JavaScript as shipped by browsers today is hard to reason about safely. With hardened

JavaScript confinement, users have access to a version of the language with an interface that

enables safer, more reliable behavior.

Thanks to the language features and safety properties that Mark Miller and other JavaScript

advocates have advanced at TC-39 over the last decade, it is looking hopeful that if safe

JavaScript is not here yet, it may be soon. The language features that have made the shim

possible did not come for free, but required diligent continuous work at the language committee

level, both to advocate for new forms of safety and confinement (like strict mode and the Proxy),

as well as a strong defense against the all-too enticing language feature that might introduce

widespread security compromises.

11

With more value being entrusted to the web than ever, we look forward to the union of security

and simplicity that comes from a language environment like hardened JavaScript.

Critical Issues

No Critical findings were surfaced in the scope of this assessment.

High Severity Issues

No High findings were surfaced in the scope of this assessment.

Medium Severity Issues

No Medium findings were surfaced in the scope of this assessment.

12

Low Severity Issues

Finding-01: The has hazard

Criticality Low

Classification Code Change

Github Issue https://github.com/endojs/endo/pull/820,
https://github.com/endojs/endo/pull/898

An undocumented hazard was identified in the scope proxy handler code where an

innocuous looking refactor to hardened JavaScript could lead to the exposure of the unsafe/feral

eval in child compartments, however this is not exploitable in the current implementation. The

has hazard (as we nicknamed it) stems from interactions between the “8 magic lines”, and the

current attempt of the shim to replicate ReferenceErrors when the code evaluates an

unknown identifier.

When code is evaluated through the “8 magic lines”, eval is looked up on the scope

proxy, first triggering the has trap, then the get trap. This lookup is done while the “unsafe eval

guard” is down to allow the “8 magic lines” to access the feral eval, with the get trap in charge

of locking the guard back up immediately.

To attempt faithful ReferenceError emulation, the has trap checks if a property exists

on the global object, the lexical object or if it is eval to satisfy the logic of the “8 magic lines.” At

the time of discovery, it was not clear whether the property check on the global object could

trigger user code if the global object’s prototype was substituted for a proxy. Also noteworthy,

the shim has a known limitation that allows scope proxy objects to leak to user code under

certain circumstances. This has hazard did not introduce a vulnerability thanks to multiple

existing behaviors of the shim: the “8 magic lines,” while designed to allow the internal

evaluate to be reused across evaluations, did not do so, and the has trap uses a disjoint “or”

(||) that checks for eval before looking up the global object.

The first behavior of not reusing existing internal evaluators meant that even if code

could be interspersed in the has trap, it wouldn’t be able to access the unguarded feral eval

since it couldn’t obtain a leaked reference to the fresh scope proxy that was just created for this

13

https://github.com/endojs/endo/pull/820
https://github.com/endojs/endo/pull/898

new evaluation. However reusing evaluators is an optimization that is planned, so it cannot be

relied upon solely as a mitigation.

The second behavior prevents user code from being interspersed through a global

object prototype proxy while the guard is down, and it is now understood this must always be

guaranteed as we cannot prevent such global object modifications. For other reasons (e.g. start

compartment globalThis property existence leak), we are also planning on always returning

true in the has trap, which would further prevent this issue.

With the changes to the shim described above, the following code would be sufficient to access

the original unsafe eval:

const c = new Compartment({});

const unsafeEval = c.evaluate(`

let unsafeEval;

let inHas = false;

globalThis.__proto__ = new Proxy({}, {

has: function (...args) {

if (args[1] === "eval") {

if (!inHas) {

inHas = true;

unsafeEval = eval;

inHas = false;

globalThis.eval = unsafeEval;

}

return true;

}

return Reflect.has(...args);

},

});

const safeEval = globalThis.eval;

delete globalThis.eval;

safeEval("");

unsafeEval;

`);

globalThis.Date = unsafeEval("Date");

console.log(Date.now());

14

Finding-02: Bypass of Compartment global lexicals

Criticality Low

Classification Code Change

Github Issue https://github.com/endojs/endo/issues/876

The Compartment shim has an option for providing global lexical values, which are available in

the lexical scope of the compartment, but are not assigned to the Compartment’s

globalThis.

If code within a Compartment uses an evaluator (either the Function constructor or eval),

its evaluation will be evaluated without hitting the global lexical configuration, and passing

directly to the globalThis. This was previously used by Agoric’s metering transform to expose

the metering function as a global lexical. This issue would have allowed a bypass of that

transform.

This is not an escape from the Compartment, but a violation of the security properties that

would be expected from the global lexical configuration.

The Compartment API as proposed to TC-39 does not appear to have a feature for exposing

global lexicals (as opposed to values on the global object), and so this issue does not apply to

the Compartment spec.

15

https://github.com/endojs/endo/issues/876

Finding-03: Compartment leaks its observation of the presence of
properties on start compartment globalThis

Criticality Low

Classification Code Change

Github Issue https://github.com/endojs/endo/pull/820

Due to a combination of seeking to allow a Compartment to fully virtualize a host

environment and the behavior of the Proxy API, the hardened JavaScript shim was forced to

make a tough decision between behavior that most resembles a normal host environment, and

behavior that maximally obscures information about the host environment. We found the shim to

be leaking information about the host environment.

The issue occurs when the guest code performs a typeof foo instead of a direct foo

access for a non-defined variable. In strict mode, typeof would return undefined and foo

would throw a ReferenceError.

Emulating this behavior in a Compartment through the shim is not possible. If the proxy

trap for has returns false, then typeof foo gets undefined, and a lexical use of that

identifier would cause a ReferenceError, as a normal program would expect. However, if we

return false for a value that exists on the start compartment’s global scope, it would expose the

variable as it exists on the start compartment’s globalThis.

To mitigate this information leak, it is probably worth violating platform consistency for

the sake of minimizing the guest's ability to probe the host environment, by returning true from

the has trap for all variables that exist on the start compartment’s globalThis. This mitigation

would operate the same way, but it would result in a loss of ReferenceError in the

environment. For the Compartment specification, it is likely worth specifying the more

virtualized behavior, where a ReferenceError should be thrown for variables that are not in a

compartment’s scope (which cannot be emulated with a shim today).

16

https://github.com/endojs/endo/pull/820

Finding-04: Scope proxy defense against property descriptor prototype

Criticality Low

Classification Code Change

Github Issue https://github.com/endojs/endo/pull/834

An improvement was made to the scope handler to protect against prototype pollution of the

value property on Object.prototype before lockdown.

Finding-05: Investigate allowlist in relation to getSubPermit

implementation

Criticality Low

Classification Test Development

Github Issue https://github.com/endojs/endo/issues/835

An improvement was proposed for test development to validate the getSubPermit function in

allowlist.

17

https://github.com/endojs/endo/pull/834
https://github.com/endojs/endo/issues/835

Informational

Finding-06: Limit lockdown calls

Criticality Informational

Classification Code Change

Github Issue https://github.com/endojs/endo/issues/814

An improvement was made to restrict the calling of lockdown to only happen once, to simplify

lockdown behavior.

Finding-07: Strict mode optimizer for evaluate

Criticality Informational

Classification Code Change

Github Issue https://github.com/endojs/endo/issues/816

To reduce attack surface, this improvement enforces strict mode on the optimizer instead of

utilizing sloppy mode.

18

https://github.com/endojs/endo/issues/814
https://github.com/endojs/endo/issues/816

Finding-08: Allow Map to be named in Module Scope

Criticality Informational

Classification Code Change

Github Issue https://github.com/endojs/endo/issues/823

An improvement was made to all Map to be named in module scope during the hardened

JavaScript module initializer.

Finding-09: Avoid use of receiver object this in scope handler

Criticality Informational

Classification Code Change

Github Issue https://github.com/endojs/endo/pull/829

An improvement was made to increase the integrity of intrinsics after compartment initialization

and before lockdown in the start compartment.

19

https://github.com/endojs/endo/issues/823
https://github.com/endojs/endo/pull/829

Finding-10: Avoid use of receiver object this in scope handler

Criticality Informational

Classification Code Change

Github Issue https://github.com/endojs/endo/pull/833

An improvement was made to use a controller object with explicit named methods instead of the

this on the scope proxy handler object which create clear actions rather than an abstraction of

functionality, which may cause confusion or collide other Proxy objects in the namespace.

Finding-11: Clarify internal terms for culling disallowed intrinsics

Criticality Informational

Classification Code Change

Github Issue https://github.com/endojs/endo/pull/836

A naming refactor was applied to the allowed intrinsics file function names to use the terms

visit and allowed. Minor logic changes were made to the visitPrototype function to

conform to the terms.

Finding-12: Use eslint-disable notation consistently

20

https://github.com/endojs/endo/pull/833
https://github.com/endojs/endo/pull/836

Criticality Informational

Classification Configuration Change

Github Issue https://github.com/endojs/endo/pull/837

An update was made to use eslint-disable notation consistently throughout the code base.

Finding-13: Add an up reference to --proto-- in hardened JavaScript

permits

Criticality Informational

Classification Documentation Change

Github Issue https://github.com/endojs/endo/pull/838

A documentation update was made to reference the difference between [[Proto]] and --proto--.

21

https://github.com/endojs/endo/pull/837
https://github.com/endojs/endo/pull/838

Finding-14: Simplify makeCompartmentConstructor

Criticality Informational

Classification Code Change

Github Issue https://github.com/endojs/endo/issues/815

An improvement was proposed to only have a single makeCompartmentConstructor.

Finding-15: Add tests for backslash behavior

Criticality Informational

Classification Test Development

Github Issue https://github.com/endojs/endo/pull/817

A test case was created to evaluate if the platform mishandles the backslash & unicode in the

evaluate function.

22

https://github.com/endojs/endo/issues/815
https://github.com/endojs/endo/pull/817

Finding-16: Add Lint to disallow hardened JavaScript polymorphic calls

Criticality Informational

Classification Test Development

Github Issue https://github.com/endojs/endo/issues/818

A lint rule was introduced for the hardened JavaScript repository to guide the use of exports of

common.js globals that are possibly poisoned.

Finding-17: Propose ECMA 262 language invariant for proxy handlers

Criticality Informational

Classification Third Party to Resolve

Github Issue https://github.com/endojs/endo/issues/819

This is a proposal to ECMA 262 language to maintain the integrity of the get invariant for proxy

handlers.

23

https://github.com/endojs/endo/issues/818
https://github.com/endojs/endo/issues/819

Finding-18: Improve documentation around partial hardening scenarios

Criticality Informational

Classification Documentation Change

Github Issue https://github.com/endojs/endo/issues/825

This is a proposal to add more documentation on the safe use of harden to avoid partially

hardened objects.

Finding-19: Rename localObject to globalLexicals in performEval

Criticality Informational

Classification Code Change

Github Issue https://github.com/endojs/endo/issues/840

An improvement was proposed to rename the localObject to globalLexicals to help

readability in performEval.

24

https://github.com/endojs/endo/issues/825
https://github.com/endojs/endo/issues/840

Finding-20: makeHardener as an arrow function

Criticality Informational

Classification Code Change

Github Issue https://github.com/endojs/endo/issues/841

An improvement was proposed to makeHardener an arrow function.

Finding-21: Add assertions for reflexive subsections of the hardened
JavaScript permits declaration

Criticality Informational

Classification Documentation Change

Github Issue https://github.com/endojs/endo/issues/842

A documentation improvement was proposed to document and add assertions for reflexive

subsections in the whitelist.js.

25

https://github.com/endojs/endo/issues/841
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://github.com/endojs/endo/issues/842

Finding-22: Verify that AsyncFunctionPrototype is both de jure and de

facto standard

Criticality Informational

Classification Documentation Change

Github Issue https://github.com/endojs/endo/issues/843

An improvement was proposed to verify and add a comment in whitelist.js for the

AsyncFunctionPrototype specification versus current implementation.

Finding-23: Freeze proxy handlers for scopes

Criticality Informational

Classification Code Change

Github Issue https://github.com/endojs/endo/pull/846

An improvement was proposed to use create instead of __proto__ to freeze the proxy

handlers.

26

https://github.com/endojs/endo/issues/843
https://github.com/endojs/endo/pull/846

Finding-23: Refactor evaluate function for readability

Criticality Informational

Classification Code Change

Github Issue https://github.com/endojs/endo/issues/907

An improvement was proposed to improve readable organization of a security-critical function.

27

https://github.com/endojs/endo/issues/907

Observations on the hardened JavaScript shim

During this assessment of the hardened JavaScript shim, the Red Team noted:

1. Performance could be somewhat improved by creating a shared evaluator for all

compartments. This change has additional benefits related to avoiding the has hazard

(Finding-01) above.

2. The maintainers might consider adding a second with statement around the main with

that only has an “always fail proxy”. This could provide one additional fail-safe in the

case that anything that we have not accounted for allows escaping the inner context. It is

unclear what the performance implications of this change would be.

3. Consider adjusting the optimizer for code that does not need all globals cached, like

short-lived compartments. This is a possible performance improvement, not a security

one. This also may not be as useful when using shared evaluators.

4. One recurring theme during this vulnerability assessment was the challenge of

understanding the shim, as it’s both very complex and split among many files. Since

comprehension is an important component of defensive maintenance, some extra care

towards making the code more accessible to third parties could be helpful. An example

of this, could be providing an expanded code walkthrough in documentation or a sample

project.

5. A refactor of the permit code would make it easier to understand.

6. There are benefits to applying a polymorphic call exception to the linter. The shim uses

the global object and functions on it liberally, and since it is not frozen, those global

functions may have been changed. During setup, it would be a good practice to make a

local copy of any functions that will be used during the course of operation. This is a

spec fidelity issue, not a vulnerability, since any changes to these objects before

lockdown is out of scope. This could especially create trouble when using vetted shims

to add additional global objects or functions before lockdown.

28

Considerations for Consumers of the hardened JavaScript Shim

Sanitize the globalThis as much as possible

One way to mitigate the potential damage of successful sandbox escapes would be to

remove properties on the start compartment globalThis, as a way to limit global authority

generally. Unfortunately, the globalThis has some sensitive properties that can not be

removed, like document and location. This may be a place where a standards proposal

could provide a method of locking down the global environment further. Since this is likely overly

destructive to add to the lockdown() function, we leave this as a possible recommendation to

Compartment consumers. This can look like making a local copy of any globally-available APIs

needed, and then removing them from the shared globalThis before invoking any third party

code, including importing a third party module.

Handle the start compartment carefully

The start compartment after lockdown keeps its original powerful endowments, but is

supposed to be left only with “safe” native evaluators (e.g. eval, Function and

Compartment). Technically, if the program removed all original endowments from the start

compartment after lockdown, it should be no more powerful than any child compartment without

these endowments. However, the “tamed”/“safe” eval and Function constructor have little

restrictions compared with the feral kinds or for that matter any further code executing directly in

the start compartment. For example, they all have direct access to the start globalThis

object.

Because there is no way to inject global lexicals or modify the module loader of the start

compartment (lack of instance access), the only difference of the “safe” evaluators in the start

compartment is that all code executed through them should be in strict mode. We found that

host code in the start compartment could accidentally alter the environment such that they could

reveal the feral eval to themselves. This was caused by the shim itself executing in the start

compartment and relying on a dynamic lookup of WeakSet as a free variable in scope after

lockdown. If the global WeakSet were accidentally replaced, invocations of add would be

interleaved with shim code while the feral eval was unguarded. This is a re-entrancy hazard.

Since this issue didn't confer any more access to start compartment code than it already had,

there is no vulnerability, but it was noteworthy to illuminate how exposed the shim is to start

29

compartment code, and informed the decision to lint against any dynamic usage of start

compartment's globals after lockdown.

Consider tools for reading deeply nested code

During the assessment, it was strongly recommended to browse the source code with a

modern JavaScript IDE such as Visual Studio Code. In terms of navigation, the IDE’s ability to

jump around to definitions is helpful to reason with the code’s structure. The hardened

JavaScript shim is a well developed, complex codebase which requires modern tooling to

successfully navigate.

The partial hardening hazard

The harden function traverses and freezes objects in place. If the function throws

during traversal of the object graph, that object graph will be partially hardened. Partially

hardened objects can become attack vectors, e.g. if they are shared between mutually

suspicious compartments. This hazard can be avoided through defensive programming, in

particular by following the principle of “harden early and often, and dispose of partially hardened

objects even sooner”.

If creating an isHardened() function, since a caught error could cause an object to be

partially finalized as hardened when in a hardened state that should be impossible, consider

throwing another error on that test. We know that an out of memory error is one case that might

be able to cause this, and a developer would only be prone to this problem if they ignored that

error. This issue appears in Github as endo#825

30

https://github.com/endojs/endo/pull/829
https://github.com/endojs/endo/pull/829
https://github.com/endojs/endo/issues/825

Intent and Recommended Areas of Focus for Future Assessments

Part of the MetaMask team’s interest in the hardened JavaScript approach is that it provides an
interface that simplifies the process of writing safer, more secure code. This API increases the
likelihood that some executed code is unable to cause unintended consequences. While the
implementation focuses on usability, its approach builds on several lesser-used language
features, some of which have some surprising behaviors.

During the collaborative codebase review phase of the engagement, the MetaMask team noted
a list of areas of the shim that are critical to ensuring the security of the implementation. We
ruled out categories of concern when possible, and the rest of the time focused on the most
hypothetically-dangerous mistakes that we could imagine.

The Red Team found no immediate concerns or immediately actionable steps beyond the
issues presented as findings in this report. In the event that we were asked to reassess this
code for vulnerabilities, we would start with the targets listed below.

● The evaluate function, including any of the transforms it performs, like re-inserting
comments into trusted scope.

● Exploring ways of acquiring the scope handler from within a Compartment. While this
was possible using Firefox debug tools, the use of developer tools was out-of-scope for
this assessment, and no other approach was found.

● Experimenting with the ScopeProxy (which is reifiable), to try to get its feral eval
function from it.

● Explore the implications of the Compartment constructor and evaluator tripping get and
have traps on the object it’s given, and whether or not a confined script could craft a
Proxy to allow re-entrancy and access to feral values.

In addition to this list, we recommend evaluating the areas outlined below.

Non-nested containment

When creating a fully virtualized Linux virtual machine within another fully virtualized

virtual machine, a sandbox escape from the second machine should only land you into its

creator and not any higher. However in hardened JavaScript, Compartments created by

Compartments are “siblings”, both children managed equally by the hardened JavaScript

system. Since Compartments running untrusted code can create and configure their own child

Compartments, The Compartment must be secure against bad constructor parameters and

configuration. If there was a way to create a Compartment configured to disable sandboxing, an

31

attacker could use this to access the start compartment. It may be possible and desirable to

implement the shim such that the Compartment implementation is re-defined in the context of

the parent compartment, preventing an escape from leading directly to the start compartment.

Compartment initialization could be interleaved by Component creator

The compartment initialization logic in the shim is particularly sensitive as it leverages

the powerful eval. If an attacker was able to interleave malicious code at the right point during

initialization, it may be able to access eval and break out to the start compartment. While this

was not an active vulnerability at time of review, introducing this vulnerability only required a

small code change. This attack was possible after a small change was introduced to the

scopeProxyHandler implementation.

const c = new Compartment()

c.globalThis.__proto__ = new Proxy({}, { has (_, key) { debugger } })

Obscure spec pitfalls

Many of the security features of hardened JavaScript depend on core JavaScript

functionality, and the ECMAScript specification is so large that even the most capable experts

cannot know the spec in its entirety. A fundamental change to JavaScript itself could introduce

attack surface or vulnerabilities into hardened JavaScript as uncommon or poorly understood

facets of the specification could break assumptions that the security guarantees of hardened JS

rely on.

An example of this is present in the hardened JS shim as it relies on the with

statement. The with statement is augmented by a Symbol.unscopables property, which is

relatively obscure as it only augments the somewhat deprecated with statement. This could

allow a breakage from the containment if it was not handled. In this case, JS does handle it. But

in the with statement section of the specification, there are no clear references to the

Symbol.unscopables property and its effect on the with statement behavior. Other

undocumented behaviors similar to this are likely exist in the specification, and significant

changes to the spec that impact behaviors like this could introduce risk or vulnerability into

hardened JavaScript.

32

Observations from the MetaMask Red Team on In-Language

Confinement APIs

As representatives from the MetaMask cryptocurrency wallet, we have found the potential

benefits of an in-language confinement API to be at least two-fold:

● As a tool for confining dependencies that we import to have less ambient authority, which

can lead to vulnerabilities such as we’ve seen manifest in real-world attacks such as the

event-stream incident. We have built a build-system tool that uses the hardened

JavaScript compartment as an added isolation barrier for our dependencies in a tool we

call LavaMoat.

● Since cryptocurrency is also a fast-moving industry, the pressure to experiment with new

features is dangerously relentless. With runtime confinement, we can also experiment

with ways for users to try adding new features to their own wallets while hopefully

preserving the principle of least authority to those new scripts. This would minimize the

possible damage from programmer error as well as the user risk from installing a

malicious extension. We have pursued the concept of a crypto-wallet plugin system in a

project we call Snaps.

These two motivations have different security demands, but benefit from the same guarantees.

While a LavaMoat failure leaves a project in the same state as a normal JavaScript package

with many dependencies, potentially leading to a false sense of security, it relies on the same

confinement properties that a plugin system would demand.

A plugin system ideally allows a user to issue only the exact authority a script needs to execute,

but if anything less than that guarantee is given, then those permissions’ descriptions

themselves should be weakened with a disclaimer to the user reflecting any uncertainty in the

underlying platform by the host developers.

33

https://github.com/LavaMoat/lavamoat
https://medium.com/metamask/introducing-the-next-evolution-of-the-web3-wallet-4abdf801a4ee

