informal

FORMAL METHODS ASSESSMENT REPORT

Agoric Swingset Kernel and Userspace, Phase 1:
Source Code Inspection and Protocol Modelling

09.11.2021

Initial revision: 08.07.2021

Authors: Andrey Kuprianov

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

Contents

Assessment overview

The project e e e
The Agoric SwingSet Platform L o
Scope of this report
Conducted work L
Timeline L e
Conclusions e e

Assessment Dashboard
Assessment Scope

TLA+ SwingSet Kernel Model

Kernel types o L
Kernel variables and actions
Kernel execution
Kernel tests e
Future model evolution

Findings

IF-AGORIC1-01: Mismatched number of arguments

Involved artifacts
Description o e
Recommendation

IF-AGORIC1-02: Incomplete type-tracking in the kernel

Involved artifacts
Description L e e e e
Recommendation

IF-AGORIC1-03: Undocumented function format change

Involved artifacts e
Description L e e e
Recommendation

IF-AGORIC1-04: Problematic pattern in processQueueMessage

Involved artifacts
Description
Recommendation

IF-AGORIC1-05: Unrestricted number of vat slots per vat

Involved artifacts
Description L L e e
Recommendation:

IF-AGORIC1-06: Unrestricted length of vat slot IDs

Involved artifacts
Description e e e e
Recommendation

| S O Ot Ut

Qo

14

15
15
15
16

17
17
17
17

18
18
18
19

20
20
20
20

21
21
21
22

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

IF-AGORIC1-07: Scattered updates to kernel tables 24
Involved artifacts e e 24
Description L e 24
Recommendation L e e e e e e e 24

IF-AGORIC1-08: Possible cycles in promise resolutions 25
Involved artifacts L e e e e e 25
Description L L e e 25
Recommendation L e e e e e e 25

IF-AGORIC1-09: Possible loss of vat termination events 26
Involved artifacts L e 26
Description L e e 26
Recommendation L e e 26

IF-AGORIC1-10: Inconsistencies in vat bookkeeping 27
Involved artifacts L L e e e e e 27
Description oL e e 27
Recommendation L oL e e e 28

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

Assessment overview

The project

In April 2021, Agoric engaged Informal Systems to conduct a formal methods assessment over the documentation
and the current state of the implementation of Agoric SwingSet Kernel: the core component of the Agoric smart
contracts platform.

The Agoric SwingSet Platform

The Agoric SwingSet is the basis for development with the Agoric SDK, a development kit for writing smart contracts
in a secure, hardened version of JavaScript. Smart contracts built with the Agoric SDK have mediated asynchronous
communication, and messages can only be sent along references according to the rules of the Object Capabilities
model that the SwingSet implements.

The Object Capabilities (OCAP) model is a model for reasoning about communication. An Object-Capability is
a transferrable, unforgeable authorization to use a designated object. The SwingSet machine allows JavaScript
code to communicate according to the model, and executes code in a userspace similar to that offered by a Unix
operating system. The SwingSet kernel component operates analogously to a Unix kernel, and vats correspond to
Unix userspace processes. The kernel provides services for isolation, composition, and communication between vats:
it enforces the OCAP properties.

The figure below shows a diagram of the architecture of the SwingSet kernel and two interacting vats. Each vat is
a unit of synchrony and synchronous communication only occurs inside a single vat. The liveslots layers mediate
access to the outside world from userspace code. Every remote object access is implemented via translation tables in
the liveslots layers and the kernel, which operates by pulling work off from a run queue.

Swingset Machine

VAT A VAT B
sync
A sync
E yne /isync

cee>

FE Liveslots FER HE Liveslots BELH

async

Syscall Dispatch | async

P SR

Swingset Kernel
Object Table Promise Table

Run Queue

LILIL LB AERERL

https://github.com/Agoric/agoric-sdk
https://github.com/endojs/endo/tree/master/packages/ses

©2021 Informal Systems

Scope of this report

Agoric Swingset Kernel and Userspace, Phase 1
The agreed-upon workplan consisted of the following tasks

— a rolling review over the assessment period, starting from commit 23ed67c0
— interactions with vats via the syscall interface;

o Task C.1. Examine the documentation and source code of SwingSet kernel, excluding the liveslots.
e Task M.0. Construct the TLA+ model of the SwingSet kernel, modeling key interactions in the kernel
— lifetime and evolution of kernel objects and promises;
e Task P.1. Perform bounded verification of the TLA+ model focusing on OCAP model requirements

Taking into account the large size of the code base, it was decided that Informal Systems would only perform the

ouued

ApY)
\“q\la

source code and documentation review limited to the scope necessary to construct the TLA+ kernel model. Moreover
due to the inherent complexity of formal protocol modelling, it was decided that the scope of the assessment be
determined by the time span allocated for it with some tasks continuing if necessary during the follow-up phases
and will be conducted in a follow-up phase

Buil

GO\

E.1. JavaScript MBT Plugin
2PW

This report covers Task C.1 and Task M.0 that were conducted May 6 through June 29, 2021 by Andrey Kuprianov
Senior Research Engineer at Informal Systems; Task P.1 turned out to be infeasible due to the timing constraints

29
(eve®
Pasﬂ“"apow
au\)sal

E.2. Swingset Unit Testing Plugin
2PW

E.3. Swingset End-To-End Testing Plugin
3PW
°
34
2.9
[«3-3
=)
ER4
<
%%
Se H H
M.1. Abstract Kernel M.4. Scheduling/Metering
o Model <+ Mode!
3, 2PW 2PW
2 M.3. Liveslots
2 Model <
Z 2PW
-
% M.0. Basic Kernel M.2. Garbage Collectlon
a Model Model
3PW (Phase 1) 2PW
g H
3 .
Legend: 5 C.1. Basic Ker'nel H
) Code Inspection
. Dependency .& 3PW (Phase 1)
)
Refinement via 2
upstream dependency

-~

C.2. Garbage Collection C.3. Liveslots C.4. Scheduling/Metering
Code Inspection Code Inspection Code Inspection
2PW PW 2PW
Conducted work

Starting May 6, Informal Systems conducted an assessment of the existing documentation and the code. Agoric

gave a one-hour presentation with an overview over the protocol and a code walk-through with focus on the scope of
the assessment. Our team started with reviewing SwingSet kernel documentation, to get an overview of the kernel

design principles, and with the review of some critical components of Hardened JavaScript, which are foundational

https://github.com/Agoric/agoric-sdk/tree/23ed67c070a6ea04fb305d469283107b1d3d65f3/packages/SwingSet/src/kernel/

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

to platform security. We then continued with the review of the SwingSet kernel source code; the code inspection was
limited to the scope necessary to construct the TLA+ kernel model. After gaining a general understanding of kernel
protocols and interactions, we continued with the modelling effort, and accurately captured interactions within the
kernel in the TLA+ Swingset kernel model.

Over the Keybase channel between Agoric and Informal we shared documents with preliminary findings, which we
discussed during online meetings. In this document, we distilled the central findings into numbered findings, as well
as briefly described the characteristics of the constructed TLA+ kernel model. Moreover, we opened issues for the
findings in the Agoric-SDK repository.

Timeline

e 06.05.2021: Start of assessment

o 06.05.2021: Kickoff meeting with a code walk-through (1 hour)

e 21.05.2021: Meeting Agoric/Informal with discussion of the first set of issues

o 14.06.2021: Meeting Agoric/Informal with discussion of the second set of issues, and the first version of the
TLA+ kernel model

e 29.06.2021: Meeting Agoric/Informal with discussion of the final version of the TLA+ kernel model

e 29.06.2021: End of assessment

e 08.07.2021: Submission of the first draft of this report

e 02.11.2021: Correction suggestions received from Agoric

e 09.11.2021: Submission of the final version of this report

Conclusions

Overall we found the code to be well organized, well documented, and faithful to the specification. Despite the
general high quality of the implementation work, we found several significant issues regarding code quality, data
representation, code organization, and divergence from the specification. These are detailed in the relevant findings.
The main source of issues seems to be the choice of JavaScript as the kernel implementation language with its weak
and dynamic typing. While this choice is convenient in some cases and makes the implementation more concise,
introducing strict type tracking into the kernel seems to be able to bring substantial benefits, and to eliminate many
sources of potential bugs. As the first step in that direction, we have provided within the scope this assessment a
typed TLA+ specification of the core kernel functionality. Already the process of the model construction has helped
to identify some protocol and implementation issues; continuing this thread with model checking and model-based
testing should bring a high level of assurance in the kernel correctness.

We have also identified two resource exhaustion attacks that have not yet been dealt with in the current implementation,
but may be resolved through the upcoming addition of metering to the kernel.

https://github.com/informalsystems/agoric-kernel-models/tree/main/kernel
https://github.com/Agoric/agoric-sdk/issues?q=label%3Aaudit-informal
https://github.com/Agoric/agoric-sdk/issues?q=label%3Aaudit-informal

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

Assessment Dashboard

Target Summary

e Name: Agoric SwingSet Kernel

« Specification & Code Version: commits 23ed67c0 through 5e1024e4
o Type: Specification and Implementation

¢ Platform: JavaScript

Engagement Summary

e Dates: 10.05.2021 — 29.06.2021

e« Method: Manual review & formal protocol modelling
« Employees Engaged: 1

o« Time Spent: 6 person-weeks

Severity Summary

Finding Severity # Findings
High-Severity Issues 0

Medium-Severity Issues 4 05,08, 09, 10
Low-Severity Issues 5 01, 02, 03, 04, 06
Informational-Severity Issues 1 07

Total 10

Finding Severities

o Informational: The issue does not pose an immediate risk (it is subjective in nature). Findings with
informational severity are typically suggestions around best practices or readability.

e Low: The issue is objective in nature, but the security risk is relatively small or does not represent a security
vulnerability.

e Medium: The issue is a security vulnerability that may not be directly exploitable or may require certain
complex conditions in order to be exploited.

e High: The issue is an exploitable security vulnerability.

Category Breakdown

Finding Category # Findings

Protocol 0

Implementation 4 05, 06, 08, 09,

Code Structure 6 01, 02, 03, 04, 07, 10
Total 10

Finding Categories

e Protocol: A flaw or problem in an abstract protocol or algorithm.

o Implementation: A problem with the source code. For example a bug, a divergence from a specification, or a
poor choice of data structure.

e Code structure: A problem that impacts the extent to which the project is maintainable and understandable
by developers in the long term.

e Documentation: A lack of documentation, or insufficient clarity, accuracy, understandability or readability of
existing documentation.

https://github.com/Agoric/agoric-sdk/tree/23ed67c070a6ea04fb305d469283107b1d3d65f3/packages/SwingSet
https://github.com/Agoric/agoric-sdk/tree/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

Assessment Scope

The scope of the assessment has been defined as the Agoric SDK SwingSet kernel, with minimal dependencies
necessary to construct the formal kernel model.

During the assessment, we have inspected the following source repositories:
e endojs/endo/packages/ses:
— commit f7dcf050
o Agoric/agoric-sdk/packages/SwingSet/kernel (a rolling review over the assessment period):

10.05 - 19.05: commit 23ed67c0
— 20.05 - 26.05: commit Ocaebd77
27.05 - 01.06: commit 069201d6
— 02.06 - 06.06: commit 9feeal67
07.06 - 10.06: commit ae2acbH2fc
11.06 - 29.06: commit 5e1024e4

https://github.com/endojs/endo/tree/f7dcf050ef0fd839ab6500b938791740c9bc702b/packages/ses
https://github.com/Agoric/agoric-sdk/tree/23ed67c070a6ea04fb305d469283107b1d3d65f3/packages/SwingSet
https://github.com/Agoric/agoric-sdk/tree/0cae5d770d9cbaac9f016fd9a879ebfa3a5e01b7/packages/SwingSet
https://github.com/Agoric/agoric-sdk/tree/069201d693e8f9ed42eaa99cc998c937ce9e82a5/packages/SwingSet
https://github.com/Agoric/agoric-sdk/tree/9feea16732944e01749feedc7f6fb024af4fc70d/packages/SwingSet
https://github.com/Agoric/agoric-sdk/tree/ae2ac52fc52c164bacb3e60de5049eb01731c5c2/packages/SwingSet
https://github.com/Agoric/agoric-sdk/tree/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

TLA+ SwingSet Kernel Model

One of the main goals of the formal methods assessment was constructing a formal TLA+ model of the SwingSet
kernel that faithfully represents interactions with vats via the syscall interface as well as the lifetime and evolution
of kernel objects and promises.

Kernel types

The file kernel typedef.tla describes kernel-specific types and typed constants. Here is the excerpt with the most
important kernel types:

(*

@typeAlias:
@typeAlias:

@typeAlias:
@typeAlias:
@typeAlias:
@typeAlias:
@typeAlias:
@typeAlias:

@typeAlias:

@typeAlias:
@typeAlias:
@typeAlias:
@typeAlias:
@typeAlias:

*)

VAT_SLOT = [type: VAT_SLOT_T, id: Int, exported: Bool];
VAT = [oNextId: Int, pNextId: Int, enablePipelining: Bool];

KERNEL_SLOT

[type: KERNEL_SLOT_T, id: Int];

VAT_MESSAGE = [result: KERNEL_SLOT, slots: Set(KERNEL_SLOT)];
MESSAGE = [type: MESSAGE_T, vatID: VAT_ID, enablePipelining: Bool,
kpid: KERNEL_SLOT, target: KERNEL_SLOT, vatMsg: VAT_MESSAGE];

RUN_QUEUE = Seq(MESSAGE);
RESOLUTION = [kpid: KERNEL_SLOT, rejected: Bool, slots: Seq(KERNEL_SLOT) 1;

0BJECT = [owner: VAT_ID];
PROMISE = [state: PROMISE_T, decider: VAT_ID, subscribers: Set(VAT_ID),
queue: RUN_QUEUE, slots: Set(KERNEL_SLOT)];

VAT_TABLE = VAT_ID -> VAT;

VAT_TO_KERNEL = VAT_ID —> VAT_SLOT -> KERNEL_SLOT;
KERNEL_TO_VAT = VAT_ID -> KERNEL_SLOT -> VAT_SLOT;
OBJECT_TABLE = KERNEL_SLOT -> OBJECT;
PROMISE_TABLE = KERMNEL_SLOT -> PROMISE;

Kernel variables and actions

The main model file kernel.tla contains:

o variables (representing the kernel state)

o parameterized actions (which modify the state)

« action preconditions (when are the action parameters considered valid)
o variables that are changed / unchanged by each action

The kernel state in this version of the model is described by the following 13 state variables:

https://github.com/informalsystems/agoric-kernel-models/tree/main/kernel
https://github.com/informalsystems/agoric-kernel-models/tree/main/kernel
https://github.com/informalsystems/agoric-kernel-models/blob/main/kernel/kernel_typedef.tla
https://github.com/informalsystems/agoric-kernel-models/blob/main/kernel/kernel.tla

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

VARIABLES

(stokokes fokok foksoloksiok AWalt soksor fokskokoksstokskoksksok ok skoRokskk ok
Await holds the message scheduled for immediate delivery.

In the code it is sometimes the case that a message from the run queue
is being processed, then forwarded for an asynchronous execution,

and then awaited for the asynchronous call to return.

We model this flow with the help of the ‘await’® wvariable.

@type: MESSAGE;)

await,

{ stokoker ffkclk terminationTrigger sdbckkcrkdckiickiktsickkaickfookdaoktokkok
terminationTrigger may hold a VAT_ID of a Vat to be terminated.
terminationTrigger has a lower priority than await;

i.e. await is processed first if set, and then terminationTrigger.

@type: VAT_ID; =)

terminationTrigger,

{ skt kotk fokdctodelok RUN QUEUe sekieksokokslolobsololokoksoiokokeiokoiolokokokoiokokok
Run queue holds messages scheduled for a delivery in a FIFO order.

It can hold messages of several types: CreateVat, Motify, Send.
Run queue message processing is performed with the lowest priority,
if peither await nor terminationTrigger is set.

@type: RUN_QUEUE; =)

runQueue,

‘e Next identifier for a kernel object

‘s @type: Int;

koNextId,

* Next identifier for a kernel promise

‘s @type: Int;

kpNextId,

“# A table holding kernel objects: KERNEL_SLOT —= OBJECT

* @type: OBJECT_TABLE;

kernelObjects,

\+ A table holding kernel promises: KERNEL_SLOT —= PROMISE

* @type: PROMISE_TABLE;

kernelPromises,

\# Known VATs: VAT_ID —= VAT

“\x @type: VAT_TABLE;

vats,

\# A capability 1list from Vat slots to kernel slots: VAT_ID —> VAT_SLOT -> KERNEL_SLOT

* @type: VAT_TO_KERNEL;

vatToKernel,

* A capability 1list from kernel slots to Vat slots: VAT_ID —> KERNEL_SLOT —-> VAT_SLOT

“* @type: KERNEL_TO_VAT;

kernelToVat,

* Which kernel slots are reachable for a Vat

“* @type: VAT_ID -> Set(KERNEL_SLOT);

vatReachSlots,

“\# Action taken by the model

‘e @type: ACTION;

action,

“# The error is set when some erroneous input comes to the kernel

sk @type: Str;

error

Each parameterized action is modelled after the source code, by reproducing at the abstract level what happens in
the implementation. Here we show only one such parameterized action, CreateVat:

10

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

(Fckrkeckiclolellolkolickeokickiookiokk Create Vat scekkollokckoiokskaokokokskaokooiokokadokook
CreateVat is triggered when a "create-vat" run queue message is processed.
skl ook ockkokickicokckocokckockolcksocoorkoickckoookk okl ok Rk)

* kernel.js processCreatevVat(): https://git.io/InvdR
*% type: (VAT_ID, Bool) => Bool
CreateVatPre(vatID, enablePipelining) ==

UnknownVat (vatID)

CreateVatChanges == =<<vats, vatToKernel, kernelToVat, vatReachSlots>>
CreateVatNotChanges == <<await, terminationTrigger, runQueue, koNextId,
kpNextId, kernelObjects, kernelPromises=>

‘\x kernel.js processCreateVat(): https://git.io/JnvdR
* @type: (VAT_ID, Bool) => Bool;
CreateVat(vatID, enablePipelining) ==
/\ vats' = [k \in DOMAIN vats \union {vatID} |—>
IF k = vatID THEN NEW_VAT(enablePipelining) ELSE vats[k]]
/\ vatToKernel' = [k \in DOMAIN vatToKernel \union {vatID} |->
IF k = vatID THEN EMPTY_VAT_TO_KERNEL_ENTRY ELSE vatToKernel[k]]
/\ kernelToVat' = [k \in DOMAIN kernelToVat \union {vatID} |->
IF k = vatID THEN EMPTY_KERNEL_TO_VAT_ENTRY ELSE kernelToVatl[k]]
/\ vatReachSlots' = [k \in DOMAIN vatReachSlots \union {vatID} |-
IF k = vatID THEN {} ELSE vatReachSlots[k]]

Kernel execution

The file kernel exec.tla defines execution semantics for the kernel:

 constants (representing the model search space)
« initialization of state variables and constants

o externally observable actions

e scheduling of actions

The model concisely describes the whole kernel state (E stands for Exported, I for Imported, V for Vat, K for Kernel,
O for Object, P for Promise; thus e.g. EVO stands for Exported Vat Object):

\# An initial kernel state with some default contents in tables
DefaultInit ==
InitDefaultsExcept([
koNextId |—= 3,
kpNextId |—= 3,
kernelObjects |-> KO(1) :> NEW_OBJECT("a") @@ KO(2) :> NEW_OBJECT("b"),
kernelPromises |—> KP(1) :> NEW_PROMISE("a") @@ KP(2) :> NEW_PROMISE("b"},
vats |-> "a" :> NEW_VAT(FALSE) @@ "b" :> NEW_VAT(FALSE),
vatToKernel |- "a" (EVO(1) :> KO(1) @@ IVP(1l) :> KP(2)) @@
"b" :> (EVO(1) :> KO(2) @@ IVP(1) :> KP(1)),
kernelToVat |- "a" :> (KO(1) :> EVO(1l) @@ KP(2) :> IVP(1)) @@
"b" > (KO(2) :> EVO(1l) @@ KP(1) :> IVP(1)),
vatReachSlots |-> "a" :> { KO(1), KP(2)} @ "b" :> { KO(2), KP(1)}

1)

W

This file also defines the externally observable actions and steps based on the parameterized actions from kernel.tla
Actions are defined as follows:

e Do not change unchanged variables (this allows to search over all possible inputs)
e Save the action being executed in the “action” variable

11

https://github.com/informalsystems/agoric-kernel-models/blob/main/kernel/kernel_exec.tla

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

o If the action precondition is satisfied, perform an update
¢ Otherwise do not perform an update, but set the “error” variable instead

Steps differ from actions in that they quantify existentially on action parameters, using model constants

CreateVatAction(vatID, enablePipelining) ==
UNCHANGED CreateVatNotChanges /\
action' = [type |-= "CreateVat", vatID |-= vatID,
enablePipelining |-> enablePipelining] /\
IF CreateVatPre(vatID, enablePipelining) THEN
/\ CreateVat(vatID, enablePipelining)
/\ error' = NULL

ELSE
/\ UNCHANGED CreateVatChanges
/\ error' = "CreateVat"
CreateVatStep ==

UNCHANGED <<await, terminationTrigger== /\

\E vatID \in VAT_IDS:

\E enablePipelining \in {TRUE, FALSE}:
CreateVatAction(vatID, enablePipelining)

The execution semantics is defined in terms of prioritized processing of enabled steps:

\# Kernel scheduling happens in the priority order:
* — awaited step
\# — termination step
\% - any other step
DefaultNext ==
IF await /= NoMessage THEN
AwaitStep
ELSE IF terminationTrigger /= NULL_VAT_ID THEN
TerminationStep
ELSE
\/ ProcessQueueMessageStep
\/ CreateVatStep
\/ ExportStep
\/ ImportStep
\/ SendStep
\/ SubscribeStep
\/ ResolveStep
\/ ExitStep

Kernel tests

Finally, the file kernel test.tla defines unit tests for the kernel model; those tests serve as simple soundness checks
for the model, ensuring e.g. that all variables are updated correctly on all logical branches. Below are a couple of
tests for the CreateVat action which make sure that the creation of (un)known vat is processed soundly.

12

https://github.com/informalsystems/agoric-kernel-models/blob/main/kernel/kernel_test.tla

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

TestCreateUnknownVatCInit == CInit
TestCreateUnknownVatBefore ==

InitDefaultsExcept([

vats |- [id \in {"a", "b"} |— NEW_VAT(FALSE)]

1
TestCreateUnknownVatAction == CreateVatAction("c", TRUE)
TestCreateUnknownVatAssert ==

SN\ "e" \in DOMAIN vats

/N "c" \in DOMAIN vatToKernel

SN\ "c" \in DOMAIN kernelToVat

TestCreateKnownVatCInit == CInit
TestCreateKnownVatBefore ==

InitDefaultsExcept([

vats |- [id \in {"a", "b"} |- NEW_VAT(FALSE)]

1)
TestCreateKnownVatAction == CreateVatAction("a", TRUE)
TestCreateKnownVatAssert ==

/\ error = "CreateVat"

Future model evolution

The current version of the SwingSet kernel model accurately represents the interactions between kernel and vats,
and the life cycle of kernel objects and promises. Unfortunately, the precise model is too heavy in terms of the state
space for the invariants to be efficiently model checked. We can identify the following future steps:

o Formulate OCAP model properties (such as “connectivity begets connectivity”) as model invariants;
¢ Construct specialized, abstracted versions of the main kernel model for:
— OCAP invariants;
— Kernel garbage collection protocol and its invariants;
— Kernel scheduling/metering and its invariants;
¢ Prove refinement relations between the main model and its abstracted variants;
¢ Perform bounded verification of the above invariants on the abstracted variants of the kernel model;
e Construct and execute model-based tests, thus providing security assurance via checking implementation
conformance to the formal specification.

13

https://lamport.azurewebsites.net/tla/hiding-and-refinement.pdf

©2021 Informal Systems

Findings

Agoric Swingset Kernel and Userspace, Phase 1

ID Title Severity Category Issue
IF-AGORIC1-01 Mismatched number of arguments Low Structure sdk#3172
IF-AGORIC1-02 Incomplete kernel type-tracking Low Structure sdk#3173
IF-AGORIC1-03 Undocumented function format change Low Structure sdk#3174
IF-AGORIC1-04 Problematic pattern in processQueueMessage Low Structure
[F-AGORIC1-05 Unrestricted number of slots per vat Medium Impl. sdk#3243
IF-AGORIC1-06 Unrestricted length of vat slot IDs Low Impl. sdk#3242
IF-AGORIC1-07 Scattered updates to kernel tables Info Structure sdk#3312
IF-AGORIC1-08 Possible cycles in promise resolutions Medium Impl. sdk#3313
IF-AGORIC1-09 Possible loss of vat termination events Medium Impl. sdk#3315
IF-AGORIC1-10 Inconsistencies in vat bookkeeping Medium Structure sdk#3316

Finding Severities

o Informational: The issue does not pose an immediate risk (it is subjective in nature).

informational severity are typically suggestions around best practices or readability.

Findings with

Low: The issue is objective in nature, but the security risk is relatively small or does not represent a security
vulnerability.

Medium: The issue is a security vulnerability that may not be directly exploitable or may require certain
complex conditions in order to be exploited.

High: The issue is an exploitable security vulnerability.

Finding Categories

Protocol: A flaw or problem in an abstract protocol or algorithm.

Implementation: A problem with the source code. For example a bug, a divergence from a specification, or a
poor choice of data structure.

Code structure: A problem that impacts the extent to which the project is maintainable and understandable
by developers in the long term.

Documentation: A lack of documentation, or insufficient clarity, accuracy, understandability or readability of
existing documentation.

In the effort to improve the usefulness of this report, we do not include here descriptions for issues in the Documentation
category; all issues can be found in the Agoric-SDK repository.

14

https://github.com/Agoric/agoric-sdk/issues/3172
https://github.com/Agoric/agoric-sdk/issues/3173
https://github.com/Agoric/agoric-sdk/issues/3174
https://github.com/Agoric/agoric-sdk/issues/3243
https://github.com/Agoric/agoric-sdk/issues/3242
https://github.com/Agoric/agoric-sdk/issues/3312
https://github.com/Agoric/agoric-sdk/issues/3313
https://github.com/Agoric/agoric-sdk/issues/3315
https://github.com/Agoric/agoric-sdk/issues/3316
https://github.com/Agoric/agoric-sdk/issues?q=label%3Aaudit-informal

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

IF-AGORIC1-01: Mismatched number of arguments

Category Code Structure
Severity Low
Issue agoric-sdk#3172

Involved artifacts

o agoric-sdk/packages/SwingSet /src/kernel/kernel.js

Description

In multiple places in kernel. js function resolveToError is called with 2 arguments instead of 3. At the same time,
in 2 places it is actually called with 3 arguments. Here is the function:

function resolveToError(kpid, errorData, expectedDecider) {
doResolve (expectedDecider, [[kpid, true, errorDatal]l);

}

It calls doResolve:

function doResolve(vatID, resolutions) {

if (vatID) {
insistVatID(vatID);

}

for (const resolution of resolutions) {
const [kpid, rejected, datal = resolution;
insistKernelType('promise', kpid);
insistCapData(data) ;
const p = kernelKeeper.getResolveablePromise (kpid, vatID);
const { subscribers, queue } = p;

let idx = 0;

for (const dataSlot of data.) {
kernelKeeper.incrementRefCount (dataSlot, “resolve|s${idx});
idx += 1;

}

kernelKeeper.resolveKernelPromise (kpid, rejected, data);
notifySubscribersAndQueue (kpid, vatID, subscribers, queue);
const tag = rejected 7 'rejected' : 'fulfilled';
if (p. === 'logAlways' || (rejected && p. === 'logFailure')) {
console.log(
“${kpid}.policy ${p. }: ${tag} ${JSON.stringify(data)}",
)3
} else if (rejected && p. === 'panic') {
panic (" ${kpid}.policy panic: ${tag} ${JSON.stringify(data)l});
}
}
}

This function in turn passes the (possibly undefined) vatID to getResolveablePromise and notifySubscribersAndQueue

15

https://github.com/Agoric/agoric-sdk/issues/3172
https://github.com/Agoric/agoric-sdk/blob/23ed67c070a6ea04fb305d469283107b1d3d65f3/packages/SwingSet/src/kernel/kernel.js
https://github.com/Agoric/agoric-sdk/blob/23ed67c070a6ea04fb305d469283107b1d3d65f3/packages/SwingSet/src/kernel/kernel.js#L310-L312
https://github.com/Agoric/agoric-sdk/blob/23ed67c070a6ea04fb305d469283107b1d3d65f3/packages/SwingSet/src/kernel/kernel.js#L282-L308

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

function getResolveablePromise(kpid, expectedDecider) {
insistKernelType('promise', kpid);
if (expectedDecider) {
insistVatID(expectedDecider) ;

}
const p = getKernelPromise(kpid);
assert(p. === 'unresolved', X ${kpid} was already resolved’);
if (expectedDecider) {
assert(
®o === expectedDecider,
X ${kpid} is decided by ${p. }, not ${expectedDecider}",
¥
} else {
assert(!p. , X" ${kpid} is decided by ${p. }, not the kernel’);
}
return p;
}

This function seems to expect that expectedDecider may be undefined. On the other hand,

function notifySubscribersAndQueue(kpid, resolvingVatID, subscribers, queue) {
insistKernelType('promise', kpid);
for (const vatID of subscribers) {
if (vatID !== resolvingVatID) {
notify(vatID, kpid);
}

+
// omitted for brevity

}
doesn’t seem to care about resolvingVatID being possibly undefined.

The issue was uncovered by renaming kernel.js to kernel.ts and running tsc; see IFFAGORIC-06 for more
details.

src/kernel/kernel.ts:405:7 - error TS2554: Expected 3 arguments, but got 2.

405 resolveToError(msg.result, VAT_TERMINATION_ERROR);

src/kernel/kernel .ts:339:44
339 function resolveToError(kpid, errorData, expectedDecider) {

An argument for 'expectedDecider' was not provided.

Recommendation
While the current code may work fine with the mismatching argument lists, this may lead to errors in the future, as

it introduces implicit assumptions down the whole call chain. We recommend refactoring all relevant functions into
two variants: one with the VatID argument present, and another, without it.

16

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

IF-AGORIC1-02: Incomplete type-tracking in the kernel

Category Code Structure
Severity Low
Issue agoric-sdk#3173

Involved artifacts

o agoric-sdk/packages/SwingSet /src/kernel/

Description

The SwingSet kernel is written in JavaScript, and thus uses weak and dynamic typing. While some typing information
is tracked in the comments, this tracking is very incomplete. This may lead to a lot of subtle and undetectable bugs,
that would be easy to detect and prevent if a language with strict typing is used. Luckily, there is an easy JavaScript
-> TypeScript migration path, that brings a lot of benefits early. Even a very quick experiment with renaming all
SwingSet . js files into .ts files, and running the TypeScript compiler, allowed to find these issues (among others):

> yarn tsc

src/kernel/initializeKernel.ts(23,24): error TS2554: Expected 2 arguments, but got 1.
src/kernel/initializeKernel.ts(120,60): error TS2554: Expected 1 arguments, but got 2.
src/kernel/kernel.ts(334,9): error TS2554: Expected 2 arguments, but got 1.
src/kernel/kernel.ts(405,7): error TS2554: Expected 3 arguments, but got 2.
src/kernel/kernel.ts(440,9): error TS2554: Expected 3 arguments, but got 2.
src/kernel/kernel.ts(456,17): error TS2554: Expected 3 arguments, but got 2.
src/kernel/kernel.ts(462,17): error TS2554: Expected 3 arguments, but got 2.
src/kernel/kernel.ts(477,13): error TS2554: Expected 3 arguments, but got 2.
src/kernel/liveslots.ts(534,7): error TS2322: Type '(value: any) => void' is not assignable to type '()
src/kernel/liveslots.ts(536,7): error TS2322: Type '(value: any) => void' is not assignable to type '() =
src/kernel/liveslots.ts(756,17): error TS2554: Expected 7 arguments, but got 1.
src/kernel/state/kernelKeeper.ts(279,18): error TS2554: Expected 1 arguments, but got O.
src/kernel/state/kernelKeeper.ts(301,15): error TS2345: Argument of type '(text: string, reviver?: (this: .
Types of parameters 'reviver' and 'index' are incompatible.

Type 'number' is not assignable to type '(this: any, key: string, value: any) => any'.
src/kernel/vatManager/manager-local.ts(73,48): error TS2554: Expected 1 arguments, but got 2.
src/kernel/vatManager/manager-local.ts(99,48): error TS2554: Expected 1 arguments, but got 2.
src/kernel/vatTranslator.ts(155,51): error TS2554: Expected 2 arguments, but got 1.
src/worker-protocol.ts(31,28): error TS2345: Argument of type 'Buffer' is not assignable to parameter of t

[
vV V

This only surfaces the problem; adding type annotations would definitely uncover more issues. The real problem with
JavaScript is that it is too liberal, and allows modifications to the code locally, without considering the far-reaching
effects of those changes. As a result, the programmer is forced to manually do the job of a type checker, which can
be in fact easily automated to prevent serious bugs.

Recommendation

Consider switching the SwingSet kernel to TypeScript or another strictly-typed language, or tracking the type
information automatically by other means.

17

https://github.com/Agoric/agoric-sdk/issues/3173
https://github.com/Agoric/agoric-sdk/blob/23ed67c070a6ea04fb305d469283107b1d3d65f3/packages/SwingSet/src/kernel/
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

IF-AGORIC1-03: Undocumented function format change

Category Code Structure
Severity Low
Issue agoric-sdk#3174

Involved artifacts

« agoric-sdk/packages/SwingSet /src/parseVatSlots.js

Description

Function parseVatSlot is documented to parse a string and return the object with this signature:

VAL

* Parse a wvat slot reference string into a vat slot object:

* A

* type: STRING, // 'object', 'device', 'promise'

* allocatedByVat: BOOL, // true=>allocated by vat, false=>by the kernel
* id: Nat

* F

*/

At the same time, the function actually accepts the extended format { type, allocatedByVat, virtual, id,
subid } with id and subid separated by /:

const delim = idSuffix.index0f('/');
let id;
let subid;
let virtual = false;
if (delim > 0) {
assert(type === 'object' && allocatedByVat, X invalid vatSlot ${s});
virtual = true;
id = Nat(BigInt(idSuffix.substr(0, delim)));
subid = Nat(BigInt(idSuffix.slice(delim + 1)));
} else {
id = Nat(BigInt(idSuffix));
}

return { type, allocatedByVat, virtual, id, subid };

Moreover, the non-extended format seems to be used everywhere in the documentation as well.
This may pose multiple problems:

e User of that function or of the documentation will be unaware of the extended format. E.g., they may
implement their own parsing for the non-extended format, for example, and then the input data in the extended
format will crash them.

e Vat slots seem to play one of the central roles in the whole system, as they are part of CapData structure.
Allowing two incompatible formats for that may be a source of non-determinism.

18

https://github.com/Agoric/agoric-sdk/issues/3174
https://github.com/Agoric/agoric-sdk/blob/23ed67c070a6ea04fb305d469283107b1d3d65f3/packages/SwingSet/src/parseVatSlots.js
https://github.com/Agoric/agoric-sdk/blob/23ed67c070a6ea04fb305d469283107b1d3d65f3/packages/SwingSet/src/parseVatSlots.js#L22-L76

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

It should be noted that this issue would be caught easily by migrating the code base to TypeScript or tracking the
type information by other means; see issue IF-AGORIC-06.

Recommendation

e Update the documentation to reflect the extended format.
o Inspect all call sites of parseVatSlot function to ensure that the extended format doesn’t pose problems.

19

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

IF-AGORIC1-04: Problematic pattern in processQueueMes-
sage

Category Code Structure
Severity Low

Involved artifacts

o agoric-sdk/packages/SwingSet /src/kernel /kernel.js

Description
The function processQueueMessage() has an implicit assumption that it is called with a message struct that is not
undefined. This does indeed hold in both places where it is invoked:

e in step()

if (!kernelKeeper.isRunQueueEmpty()) {
await processQueueMessage (kernelKeeper.getNextMsg()) ;

e in run() there is a similar fragment with the while loop.

While this is OK with the current codebase, the implicit assumption may become problematic later, i.e. if in
some place processQueueMessage (kernelKeeper.getNextMsg()) happens without a preceding check for queue
emptiness; the processQueueMessage() will throw an exception then, and the whole kernel will probably get
terminated. Besides, the above pattern seems to be quite inefficient, because the whole run queue is first fetched and
parsed from the storage in kernelKeeper.isRunQueueEmpty (), only to check its length; and later again fetched
and parsed in kernelKeeper.getNextMsg().

Recommendation
¢ Document the assumption that processQueueMessage accepts only a defined message, or check if it is indeed
defined.
o Refactor the above fragments along the following lines:

let msg = kernelKeeper.getNextMsg() ;
if (msg !== undefined) {
await processQueueMessage (msg) ;

20

https://github.com/Agoric/agoric-sdk/blob/069201d693e8f9ed42eaa99cc998c937ce9e82a5/packages/SwingSet/src/kernel/kernel.js
https://github.com/Agoric/agoric-sdk/blob/069201d693e8f9ed42eaa99cc998c937ce9e82a5/packages/SwingSet/src/kernel/kernel.js#L581
https://github.com/Agoric/agoric-sdk/blob/069201d693e8f9ed42eaa99cc998c937ce9e82a5/packages/SwingSet/src/kernel/kernel.js#L967-L968
https://github.com/Agoric/agoric-sdk/blob/069201d693e8f9ed42eaa99cc998c937ce9e82a5/packages/SwingSet/src/kernel/kernel.js#L986-L988

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

IF-AGORIC1-05: Unrestricted number of vat slots per vat

Category Implementation
Severity Medium
Issue agoric-sdk#3243

Involved artifacts

o agoric-sdk/packages/SwingSet /src/kernel/

Description

Notice: As agreed with Agoric, we performed the analysis under the assumption of possible bugs in the liveslots
implementation. In that case, userspace vat code together with the liveslots layer operate as a whole against the
kernel, which is the necessary condition for triggering this issue. Correctly functioning liveslots implementation
should prevent this issue from being exploitable. We will perform assessment of liveslots correctness in the subsequent
phases of our analysis.

The kernel allocates a lot of storage in kvStore for each unknown vat slot ID that it encounters in a syscall. E.g. the
function translateSend:

const target = mapVatSlotToKernelSlot(targetSlot) ;

const arglist = legibilizeMessageArgs(args).join(', ');

// prettier-ignore

kdebug (" syscall[${vatID}] .send(${targetSlot}/${target}) . ${method} (${arglist})) ;
const kernelSlots = args. .map(slot => mapVatSlotToKernelSlot(slot));

The code above calls mapVatSlotToKernelSlot, which, in turn, calls addKernelPromise:

function addKernelPromise(policy) {

const kpidNum = Nat(BigInt(getRequired('kp.nextID')));

kvStore.set ('kp.nextID', ~${kpidNum + 1n});

const kpid = makeKernelSlot('promise', kpidNum);

kvStore.set (" ${kpid}.state”, 'unresolved');

kvStore.set (" ${kpid}.subscribers™, '');

kvStore.set (" ${kpid}.queue.nextID™, ~07);

kvStore.set (" ${kpid}.refCount™, “07);

kvStore.set (" ${kpid}.decider , '');

if (policy && policy !== 'ignore') {
kvStore.set (" ${kpid}.policy™, policy);

}

// queue is empty, so no state[kp$lNN.queuve.$NN] keys yet

incStat('kernelPromises');

incStat ('kpUnresolved') ;

return kpid;

This allocates a lot of kernel storage as a result of a single mentioning of a vat slot in a call from a vat to the kernel.
Moreover, the number of vat slots in the arguments of a syscall is unrestricted. This makes it possible to fill the
kernel storage with promises, and their respective data.

21

https://github.com/Agoric/agoric-sdk/issues/3243
https://github.com/Agoric/agoric-sdk/blob/9feea16732944e01749feedc7f6fb024af4fc70d/packages/SwingSet/src/kernel/
https://github.com/Agoric/agoric-sdk/blob/9feea16732944e01749feedc7f6fb024af4fc70d/packages/SwingSet/src/kernel/vatTranslator.js#L111
https://github.com/Agoric/agoric-sdk/blob/9feea16732944e01749feedc7f6fb024af4fc70d/packages/SwingSet/src/kernel/state/vatKeeper.js#L137
https://github.com/Agoric/agoric-sdk/blob/9feea16732944e01749feedc7f6fb024af4fc70d/packages/SwingSet/src/kernel/state/kernelKeeper.js#L261

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

Recommendation:

Restrict the number of vat slots per vat.

22

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

IF-AGORIC1-06: Unrestricted length of vat slot IDs

Category Implementation
Severity Low
Issue agoric-sdk#3242

Involved artifacts

o agoric-sdk/packages/SwingSet /src/kernel /parseVatSlots.js

Description

Notice: As agreed with Agoric, we performed the analysis under the assumption of possible bugs in the liveslots
implementation. In that case, userspace vat code together with the liveslots layer operate as a whole against the
kernel, which is the necessary condition for triggering this issue. Correctly functioning liveslots implementation
should prevent this issue from being exploitable. We will perform assessment of liveslots correctness in the subsequent
phases of our analysis.

Currently the kernel accepts vat llot IDs as Biglnts. E.g., in the function parseVatSlot:

if (delim > 0) {
assert(type === 'object' && allocatedByVat, X invalid vatSlot ${s}");
virtual = true;
id = Nat(BigInt(idSuffix.substr(0, delim)));
subid = Nat(BigInt(idSuffix.slice(delim + 1)));
} else {
id = Nat(BigInt(idSuffix));

As Biglnts don’t have any limit, it should be possible to kill the kernel with a single syscall, by passing a very-very
large number, that would eat all the memory when trying to convert from a string representation into Biglnt
representation.

Recommendation

Restrict the size of vat slot IDs to some sufficiently large number, e.g. to 32 bits. As an easier to enforce measure,
the string representation of the number could be restricted to e.g. 10 characters.

23

https://github.com/Agoric/agoric-sdk/issues/3242
https://github.com/Agoric/agoric-sdk/blob/9feea16732944e01749feedc7f6fb024af4fc70d/packages/SwingSet/src/kernel/parseVatSlots.js
https://github.com/Agoric/agoric-sdk/blob/9feea16732944e01749feedc7f6fb024af4fc70d/packages/SwingSet/src/parseVatSlots.js#L36

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

IF-AGORIC1-07: Scattered updates to kernel tables

Category Code Structure
Severity Informational
Issue agoric-sdk#3312

Involved artifacts

o agoric-sdk/packages/SwingSet /src/kernel/

Description

The changes to the kernel storage are scattered in a multitude of unexpected places throughout the codebase.

For example, the following chain of calls exist: vatSyscallToKernelSyscall -> translateResolve -> deleteCListEntries-
ForKernelSlots -> mapKernelSlotToVatSlot.

In the above chain, a translation phase from vat to kernel, involves both deletion (in deleteCListEntriesForKernelSlots)
and creation (in mapKernelSlotToVatSlot) of entries in the kernel tables.

Recommendation

Clearly separate state updates from other kinds of logic; also document the functions that (by transitivity) do state
modifications.

24

https://github.com/Agoric/agoric-sdk/issues/3312
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/vatTranslator.js#L281
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/vatTranslator.js#L254
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/state/vatKeeper.js#L314
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/state/vatKeeper.js#L314
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/state/vatKeeper.js#L223
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/state/vatKeeper.js#L314
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/state/vatKeeper.js#L223

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

IF-AGORIC1-08: Possible cycles in promise resolutions

Category Implementation
Severity Medium
Issue agoric-sdk#3313

Involved artifacts

o agoric-sdk/packages/SwingSet /src/kernel/kernel.js

Description

In the code of deliverToTarget in kernel. js, the function contains an await of an asynchronous call to itself:

async function deliverToTarget(target, msg) {
insistMessage (msg) ;
const { type } = parseKernelSlot(target) ;
if (type === 'object') {
const vatID = kernelKeeper.ownerOfKernelObject(target) ;
if (vatID) {
await deliverToVat(vatID, target, msg);
} else {
resolveToError (msg. , VAT_TERMINATION_ERROR) ;
}
} else if (type === 'promise') {
const kp = kernelKeeper.getKernelPromise(target) ;
if (kp. === 'redirected') {
// await deliverToTarget (kp.redirectTarget, msg); // probably correct
// TODO unimplemented
throw new Error('not implemented yet');
} else if (kp. === 'fulfilled') {
const presence = extractPresencelfPresent (kp.)
if (presence) {
await deliverToTarget(presence, msg);

}

If a promise can be resolved to be self-fulfilled (i.e. resolved to a data that contains a slot pointing to itself), then
this will cause infinite recursion in the kernel in deliverToTarget. In a less critical case the promise may be not
self-fulfilled, but a cycle may exist in a promise resolution graph.

Recommendation

Carefully inspect the code to catch all cases of intra-vat and inter-vat cycles in promises; also take an effort to prove
that the protocol excludes the possibility of cycles. As an intermediate protective measure, maybe break the above
recursive code by introducing a real asynchrony (e.g. putting into a queue), such that cycles have a chance to be
detected without immediate consequences.

25

https://github.com/Agoric/agoric-sdk/issues/3313
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/kernel.js
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/kernel.js#L433
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/kernel.js#L452

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

IF-AGORIC1-09: Possible loss of vat termination events

Category Implementation
Severity Medium
Issue agoric-sdk#3315

Involved artifacts

o agoric-sdk/packages/SwingSet /src/kernel/kernel.js

Description

The function set TerminationTrigger is as follows:

function setTerminationTrigger(vatID, shouldAbortCrank, shouldReject, info) {
if (shouldAbortCrank) {
assert(shouldReject) ;
}
if (!terminationTrigger || shouldAbortCrank) {
terminationTrigger = { vatID, shouldAbortCrank, shouldReject, info };
}
}

It can be seen that if terminationTrigger is set already, then the second call to that function will not have any
effect, i.e. the second termination event will get lost; this seems like a dangerous scenario.

We have not checked all possible sequences of events that may lead to the problem, in particular because this involves
the liveslots code, which are outside of the scope of the assessment. One potential problematic sequence is when
a vat requests to exit, which calls setTerminationTrigger(vatID, false, !!isFailure, info), in particular
setting the shouldAbortCrank to false; then a letter call to setTerminationTrigger with shouldAbortCrank set
to true will get ignored.

While this probably doesn’t constitute an error with the current code base, it may become a source of a bug at later
stages, when more calls to setTerminationTrigger are added.

Recommendation

Modify the code of setTerminationTrigger to check whether the termination trigger has been set already, to compare
vat ids and other parameters, and to take the appropriate action upon second function invocation.

26

https://github.com/Agoric/agoric-sdk/issues/3315
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/kernel.js
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/kernel.js#L352
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/kernelSyscall.js#L42
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/kernel.js#L352

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

IF-AGORIC1-10: Inconsistencies in vat bookkeeping

Category Code Structure
Severity Medium
Issue agoric-sdk#3316

Involved artifacts

o agoric-sdk/packages/SwingSet /src/kernel/

Description

The conditions under which a vat is considered alive/present are numerous and spread across multiple
files/datastructures/functions. Here are a few examples:

¢ in function terminateVat, the vat being alive is checked via a call kernelKeeper.vatIsAlive(vatID):

function vatIsAlive(vatID) {
insistVatID(vatID);
return kvStore.has(${vatID}.o.nextID) ;
}

e In kernelKeeper. js the VATS state is kept in ephemeral.vatKeepers; consider e.g. the function evictVat-
Keeper does this:

function evictVatKeeper(vatID) {
insistVatID(vatID);
ephemeral. .delete(vatID);

e in vat-warehouse. js the state is kept both via kernelKeeper and in ephemeral.vats; consider e.g. the
function evict

async function evict(vatID, makeSnapshot = false) {
assert (!makeSnapshot, 'not implemented');
assert (lookup(vatID));

const info = ephemeral. .get(vatID);
if (!info) return undefined;
ephemeral. .delete(vatID);

xlate.delete(vatID);
kernelKeeper.closeVatTranscript(vatID);
kernelKeeper.evictVatKeeper (vatID) ;

// console.log('evict: shutting down', vatID);
return info. .shutdown() ;

Thus, there are at least three storage places for VATs: kvStore, ephemeral.vatKeepers from kernelKeeper. js,
and ephemeral.vats from vat-warehouse. js. This creates a danger of having inconsistent state views or updates.
E.g. the function deliverAndLogToVat contains the fragment below, where the vat existence is checked via one API,
and the vatKeeper is then extracted via another API:

27

https://github.com/Agoric/agoric-sdk/issues/3316
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/kernel.js#L325
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/state/kernelKeeper.js#L802
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/state/kernelKeeper.js#L802
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/vatManager/vat-warehouse.js#L149
https://github.com/Agoric/agoric-sdk/blob/5e1024e44622f26e16870ce1f03c25e8a4ee6afa/packages/SwingSet/src/kernel/kernel.js#L361

©2021 Informal Systems Agoric Swingset Kernel and Userspace, Phase 1

assert (vatWarehouse.lookup(vatID)) ;
const vatKeeper = kernelKeeper.provideVatKeeper(vatID);

Recommendation

Hide vat bookkeeping behind a single API that is used consistently at all places throughout the codebase.

28

	Assessment overview
	The project
	The Agoric SwingSet Platform
	Scope of this report
	Conducted work
	Timeline
	Conclusions

	Assessment Dashboard
	Assessment Scope
	TLA+ SwingSet Kernel Model
	Kernel types
	Kernel variables and actions
	Kernel execution
	Kernel tests
	Future model evolution

	Findings
	IF-AGORIC1-01: Mismatched number of arguments
	Involved artifacts
	Description
	Recommendation

	IF-AGORIC1-02: Incomplete type-tracking in the kernel
	Involved artifacts
	Description
	Recommendation

	IF-AGORIC1-03: Undocumented function format change
	Involved artifacts
	Description
	Recommendation

	IF-AGORIC1-04: Problematic pattern in processQueueMessage
	Involved artifacts
	Description
	Recommendation

	IF-AGORIC1-05: Unrestricted number of vat slots per vat
	Involved artifacts
	Description
	Recommendation:

	IF-AGORIC1-06: Unrestricted length of vat slot IDs
	Involved artifacts
	Description
	Recommendation

	IF-AGORIC1-07: Scattered updates to kernel tables
	Involved artifacts
	Description
	Recommendation

	IF-AGORIC1-08: Possible cycles in promise resolutions
	Involved artifacts
	Description
	Recommendation

	IF-AGORIC1-09: Possible loss of vat termination events
	Involved artifacts
	Description
	Recommendation

	IF-AGORIC1-10: Inconsistencies in vat bookkeeping
	Involved artifacts
	Description
	Recommendation

