
The incident manager’s nightmare.
>WHITE PAPER_

02 >WHITE PAPER: "THE INCIDENT MANAGER’S NIGHTMARE"_

You notice some weird alerts in your environment and start to investigate them.
As you’re digging into the myriad of log and monitoring data, you realize that what
you’re looking at is a telltale sign of data exfiltration — you’ve had a breach.

You follow the trail and eventually realize that the breach started before the earliest
retention date of your log data. You have no way of forensically proving when the
breach started, or even the true scope of the breach. Adding to your distress are the
growing number of data privacy laws that are requiring breach notification — as of
this writing, the EU’s General Data Privacy Regulation (GDPR) requires notifications to
potential victims of breaches within 72 hours of the discovery of the breach.

While most companies want to retain data longer, the cost of retention is the major
factor driving retention decisions. The real constraint is that many companies use
indexed log management systems as their “system of record” for log information, even
though there is a significant premium on those systems, because the tools don’t have
efficient mechanisms for archiving and re-ingesting data. This makes them extremely
expensive for retention (for more info on the cost of log management, see our
Why Log Systems Require So Much Infrastructure blog post). At Cribl, we believe that
there is a better way to do retention AND investigation — making it possible to retain
far more data than you do now, while being able to make use of any of it, for less
money than you are spending today.

First, a little history.

In 2004, when Splunk first rolled out their product, the cloud as we know it really didn’t
exist yet. Back then, everything was either storage local to a server or SAN storage, and
archive storage was using SATA disks instead of Fibre or SCSI disks. Those were really
the only options for retention, so it made sense that the go-to strategy was to retain all
data within the log analysis system.

As data volumes grew, customers started using the “frozen bucket” model. This
allowed them to export data from their environment, which helped to improve
performance on live data, but didn’t solve the retention problem. If you needed to pull
frozen data from archives, you needed to “thaw” entire files and make them available
to the system. While this wasn’t particularly difficult, it was very time consuming, and
didn’t provide the capability to limit the data you were pulling in — it was everything in
the “frozen” file, or nothing.

The incident manager’s nightmare.
>WHITE PAPER_

Optimizing for fast

search carries

significant costs

which grow linearly with

retention time.

https://cribl.io/blog/why-log-systems-require-so-much-infrastructure/

0303 >WHITE PAPER: "THE INCIDENT MANAGER’S NIGHTMARE"_

In 2006, AWS made the Simple Storage Service (S3) available, and initial pricing was
about $0.15/GB per month. But because it was object storage, most of the industry
didn’t directly support it, so most who used it were either running custom programs, or
just using it as an archive destination to copy data to. As of 2020, S3 pricing has come
down to $0.023/GB per month, and more and more software vendors have integrated
the technology into their products. AWS has also expanded the service to include much
cheaper archive options, like Glacier ($0.004/GB per month) or Glacier Deep Archive
($0.00099/GB per month), all still accessible via the S3 API. Other cloud providers
have similar offerings, and the competition has helped drive cost down on all of them.
Archiving data at scale has never been less expensive.

Cheap storage has reduced the cost of retention, but it hasn’t relieved the pain of
using that data. In fact, now, instead of having archives on moderately fast SATA drives
that were local to the log infrastructure, the archives were now only available via the
internet (or a dedicated line). This slows down the “thawing” process even more, as you
have to copy it locally first, then decompress it, before it is available for analysis.

Expanding retention.

According to a 2023 study by IBM, the average time from the occurrence of a security
breach to detection is 204 days, with an additional 73 days to contain a breach.
 If your retention policy keeps 12 months of data around, as long as your detection
stays near the average, you can readily get at data going back to the beginning of
the breach. Yet beyond averages, we also hear a number of stories like the Marriott
breach (which took 4 years to detect) or the Dominion National breach (which took 9
years to detect). So it’s clear that the retention of data critical for investigations is an
important part of any security incident response plan.

With many companies retaining logs for just 12 to 18 months, any long-running breach
will be next to impossible to work back to the beginning of the breach via logs. For the
purposes of this paper, we will use a fictitious company, Sprockets, Inc. to illustrate
different approaches to solving the problem.

Our company generates about 1TB of logs per day, in instances using gp2 Elastic Block
Store (EBS) volumes. The monthly recurring cost (MRC) is roughly $3,000 for each
month of retention. The same data, stored in Glacier Deep Archive, has an MRC of
about $30.

Sprockets has a budget that allows them 12 months of retention at the EBS price,
spending $36,000/month or $432,000/year. The Deep Archive approach would cost
them only $360/month or $4,320/year, freeing up a lot of budget to expand retention
(5 years of retention = $21,600/year, 10 years of retention = $43,200/year), and/or
invest in other things.

Investigating a breach, the “old” way.

Within our fictitious company, a security tool detects an anomaly and alerts the on-call
security engineer. The engineer starts digging through logs and realizes that there has
been a breach, which looks to involve three servers, a firewall pair, and a switch pair.
After more digging, she realizes that it started some time earlier than the earliest data
in the logging system. The engineer has to ask the logging team to thaw earlier data,
which has been archived in AWS S3. Because they need to retrieve all of the data for
a given time window at once, the engineer requests only a month, waits for it to be
present, checks it, and if the beginning of the incident is not there, has to repeat the
process until the data needed is present.

Storing data in

object storage could be

as little as 1% of the

cost of storing

it online in an indexing

engine.

https://www.ibm.com/downloads/cas/E3G5JMBP

0404 >WHITE PAPER: "THE INCIDENT MANAGER’S NIGHTMARE"_

Since each one of those requests is a handoff to another team member, the process
slows to a crawl.

[Indexing] has

been stretched to be

a one-size-fits-all

solution for all log

data problems.

A
U

TO
M

A
TE

D
 T

A
SK

S

SECURITY TOOLS
DETECT AN
ANOMALY

SE
CU

RI
TY

 T
EA

M

ENGINEER NOTIFIED
OF ANOMALY
AND BEGINS

INVESTIGATION

ENGINEER LOOKS
FOR POTENTIAL
BREACH START

DATE

DID BREACH START
BEFORE EARLIEST

“LIVE” DATA?

ENGINEER
CONTINUES

INVESTIGATION

ENGINEER
REQUESTS
LOGGING

MANAGEMENT
TEAM TO THAWING

MOST RECENT
MONTHS FROZEN

DATA

LO
G

G
IN

G
 T

EA
M

LOGGING
ENGINEER

SERVICES REQUEST

FROZEN BUCKETS
DOWNLOADED

FROZEN DATA
THAWED

THAWED DATA
MADE AVAILABLE

NO

YES

As you can see, moving your retention to “cheap storage” saves you a lot of money, but
it alone does not solve the problem of getting that data back when you need it. The
traditional route of pulling back the “frozen” files whole, thawing them, and attaching
them to your log system would be too slow to be able to get meaningful data quickly.
With many of the data privacy laws now in place and expected, the window for breach
disclosure is becoming increasingly tight.

Since Sprockets does business in the EU, they need to notify anyone potentially
impacted of a breach within the mandated GDPR 72-hour window. No company wants
to put out a breach notification without at least an idea of when the breach started
and how many customers were exposed. So it’s important to have an approach that
speeds up data collection and allows you to filter data before pulling it across the
wire. This approach minimizes data travel/decompress/ingestion time, which also will
minimize the amount of storage and ingestion licensing you’ll need to accommodate
the data.

This is where Cribl Stream comes in. Placing a Cribl Stream deployment between your
logging sources and your log analytics system allows you to archive all of the data to a
cheap storage mechanism for retention. This frees you up to reduce what’s going into
your logging system to just what you really need day to day – via filtering unnecessary
events, sampling repeating events, and cleaning up messy data. This, in turn, puts less
stress on your logging system, improving performance (smaller haystacks = needles
are easier to find). Stream 2.2 introduced Data Collection to the product, which enables
a flexible and efficient way to retrieve data from the archive, filtering it based on the
partitioning scheme of the data (more on this later).

0505 >WHITE PAPER: "THE INCIDENT MANAGER’S NIGHTMARE"_

NO

Investigating a breach, the Stream way.

Let’s revisit our fictitious company, Sprockets. With 1TB/day of data, they’re able to
install and use the free version of Stream and move their retention to cheap storage.
With all the money they’re saving, they can change their retention policy to keep log
data around for 10 years.

Four years in, they discover evidence of a breach via analysis of firewall logs. Needing
to work backward to find when the breach started, the security team can now easily
run a data collection job to pull only logs from the last year. But instead of having
to download *all* of the data for the last year, about 365TB of data, with Stream’s
filtering capability, they can limit it to just firewall logs, which we’ll estimate at about
15% of their total log volume (54.75TB).

A
U

TO
M

A
TE

D
 T

A
SK

S

SECURITY TOOLS
DETECT AN ANOMALY

SE
CU

RI
TY

 T
EA

M

ENGINEER REQUESTS
LOGGING

MANAGEMENT
TEAM TO THAWING

MOST RECENT
MONTHS FROZEN

DATA

ENGINEER NOTIFIED
OF ANOMALY
AND BEGINS

INVESTIGATION

ENGINEER LOOKS
FOR POTENTIAL
BREACH START

DATE

DID BREACH START
BEFORE EARLIEST

“LIVE” DATA?

ENGINEER
CONTINUES

INVESTIGATION

They can reduce that even more, based on the situation. For example, if they only
need to see logs for traffic that left the network, and the partitioning scheme includes
IP addresses or zone names, they could filter for just traffic between trusted and
untrusted zones – which we’ll estimate as being less than 30% of all traffic events, or
16.5TB. With a few simple filters, we’ve now narrowed the “replay” of that data down to
about 0.5% of the total.

Moreover, using Stream 2.2’s collection discovery, preview, and jobs allows us to model
all of this before actually retrieving any data – ensuring that full collection jobs retrieve
just the data that’s needed. As the investigation progresses, the scope of the breach
becomes clearer, and additional logs need to be pulled back in. No problem there,
since they can just fire off another data collection job for the additional data whenever
they discover the need to.

Administrators can

adopt a discerning

data management

strategy using data

storage techniques

which are fit for

purpose.

0606 >WHITE PAPER: "THE INCIDENT MANAGER’S NIGHTMARE"_

Important decisions to make.

Partitioning scheme.

The most important decision to make when setting up your retention store is the
partitioning scheme for the archive. A partitioning scheme, in the case of either
file systems or an S3 bucket, is really just a directory plan. Well, S3 doesn’t actually
have directories, but the key scheme there mimics a directory structure, so for our
purposes, it works. With Cribl Stream, a “Partitioning Expression” field in both the S3
and Filesystem destinations facilitates this by allowing you to include specified fields in
the outgoing data.

For example, say I have firewall log data that I want to write to the archive, and when I
write the archive, I have a number of fields parsed out of that data:

FIELD PURPOSE

sourcetype The type of data being written

src_ip IP address of the source of the traffic

src_zone Firewall zone that the traffic came from

dest_ip IP address of the destination of the traffic

dest_zone Firewall zone for the destination

We’ll want to include date information in the partitioning scheme, and we want to
make it so the filter expression can significantly narrow down the files to include. For
example, if we use the following partitioning expression:

`${C.Time.strftime(_time,

‘%Y/%m/%d/%H’)}/${sourcetype}/${src_zone}/${src_ip}/${dest_zone}/${dest_ip}`

The data we see in the S3 bucket will look like this:

2020/07/01/18/pan:traffic/trusted/10.0.4.85/trusted/172.16.3.182/CriblOut-DqlA77.1.json

2020/07/01/18/pan:traffic/trusted/10.0.1.213/trusted/10.0.2.127/CriblOut-RcYp4E.1.json

2020/07/01/18/pan:traffic/trusted/172.16.3.199/trusted/10.0.2.166/CriblOut-mSVTFX.1.json

2020/07/01/18/pan:traffic/trusted/10.0.1.222/trusted/192.168.5.35/CriblOut-u5qA4B.1.json

2020/07/01/18/pan:traffic/trusted/192.168.5.121/trusted/10.0.4.78/CriblOut-5EHiUd.1.json

2020/07/01/18/pan:traffic/trusted/192.168.1.23/trusted/10.0.3.152/CriblOut-kh7gjv.1.json

2020/07/01/18/pan:traffic/trusted/10.0.2.81/trusted/10.0.1.49/CriblOut-DgiKYh.1.json

2020/07/01/18/pan:traffic/trusted/192.168.10.53/untrusted/129.144.62.179/CriblOut-R9T0LJ.1.json

2020/07/01/18/pan:traffic/trusted/192.168.10.53/untrusted/52.88.186.130/CriblOut-zH0bsm.1.json

In the file list above, all of the files contain events that came in on July 1, 2020, in
the 6pm hour. They are all of sourcetype “pan:traffic,” they are all originating in the
“trusted” Source Zone, then further organized by Source IP, Destination Zone (trusted/
untrusted), and Destination IP. A partitioning scheme like this allows us to filter in a
number of ways:

• Time range between date x and date y

• Source or destination zone

• Source or destination IP address

Or any combination of the above. Since we can use helper functions in our collection
path, we can use C.Net.cidrMatch() against the IP address fields to filter on data that
comes from or goes to specific network blocks.

We can often save 50% or

more in the total cost

of a solution

for logging, both

for observability

and security.

0707 >WHITE PAPER: "THE INCIDENT MANAGER’S NIGHTMARE"_

When to archive.

When archiving is the first step in the route table, it usually means that the event is
archived as it came in (after any conditioning pipelines or event breaker rules are
applied). This can mean that the attributes that we might want in a partitioning scheme
have not been parsed out of the event.

However, we can choose to do full processing prior to archival, to get any parsing,
cleanup, and enrichment into the archived data (making all of those attributes
available in the partitioning scheme). We can also end up somewhere in between those
two extremes.

Most likely, this decision will need to weigh any corporate policies against operational
needs. Many companies start out with a position that logs at rest need to be
unmodified, but that’s not a very realistic request. (Logs ingested into an analytics
system are modified regardless – the individual events may be unchanged, but they’re
not necessarily still in their original file structure or path structure.) What is more
realistic is that any changes to the data be auditable, which would mean that the
parsed or enriched data is legitimate. Because Stream output includes references to
pipelines that have modified data, it is auditable.

Data locality.

Another important decision is with regard to data locality, and this largely becomes a
financial decision. For example, if we are storing your archive data in AWS S3, but our
Stream and/or logging analytics environment is on-premise, we may incur data egress
costs, and may need to increase internet or direct-connect bandwidth to accommodate
the traffic, so you might choose a local storage target to mitigate these issues instead.

Target analytics system.

While it may be simplest to deliver investigation data to your existing analytics
environment, it might actually make the investigation easier to deliver the data to a
“fresh” environment. This could be done by manually creating a new instance of the
analytics system, or by provisioning a cloud instance on the fly. With an environment
stripped of data not needed by the investigation, the engineer will likely have
better performance, and will not have any other data “in the way.” Stream’s routing
capabilities facilitate sending your data to multiple destinations, making this simple
to achieve.

08

ABOUT CRIBL
Cribl, the Data Engine for IT and Security, empowers organizations to transform their data strategy. Customers use Cribl’s vendor-agnostic solutions to
analyze, collect, process, and route all IT and security data from any source or in any destination, delivering the choice, control, and flexibility required
to adapt to their ever-changing needs. Cribl’s product suite, which is used by Fortune 1000 companies globally, is purpose-built for IT and Security,
including Cribl Stream, the industry’s leading observability pipeline, Cribl Edge, an intelligent vendor-neutral agent, and Cribl Search, the industry’s
first search-in-place solution. Founded in 2018, Cribl is a remote-first workforce with an office in San Francisco, CA.

Learn more: www.cribl.io | Try now: Cribl sandboxes | Join us: Slack community | Follow us: LinkedIn and Twitter

©2024 Cribl, Inc. All Rights Reserved. ‘Cribl’ and the Cribl Flow Mark are trademarks of Cribl, Inc. in the United States and/or other countries. All
third-party trademarks are the property of their respective owners.

WP-0013-EN-2-0424

>WHITE PAPER: "THE INCIDENT MANAGER’S NIGHTMARE"_

Getting there…
Combining archiving to cheap storage with data collection, you can extend your
retention of data and streamline your security investigation workflow, all while actually
reducing your log analysis costs. To see how, we suggest that you go through one or
more of our following sandbox courses:

• Stream fundamentals.

• Data collection.

• Affordable log storage.

Then, download Stream, and use it for free up to 1TB/day. We also suggest that you
join our Cribl Community Slack workspace, to see what other people are doing with
Stream and get community support for the product.

https://cribl.io/
https://www.cribl.io/community
https://www.linkedin.com/company/cribl
https://twitter.com/cribl_io
https://sandbox.cribl.io/course/fundamentals
https://sandbox.cribl.io/course/data-collection
https://sandbox.cribl.io/course/uf-to-s3
https://cribl.io/download/
https://cribl.io/community/

