
The observability pipeline.

>BUYER’S GUIDE_



02 >BUYER’S GUIDE: "THE OBSERVABILITY PIPELINE"_

When looking for an observability pipeline, there are many things to consider before 
making a decision. Some will argue for open source solutions while others have 
solutions that are heavily tied to their existing vendors. While all solutions have their 
strengths and weaknesses, it’s important to consider the short term and long term 
benefits of each deployment option.

Open source solutions might be low cost in the beginning, but they end up costly in the 
long run as they often require custom development for future integrations. Solutions 
from your existing vendors may not be designed to lower your costs. Instead, their 
goal is often to create vendor lock-in.

Vendor agnostic solutions allow you to control where your data lives, allow you to 
streamline volume to control costs, and shorten the time to derive key insights from 
your data. 

There are some key ideas to consider when looking at an observability pipeline. We’ve 
put them together in a handy checklist. As you research solutions, keep these in mind.

• Protocol support

• Management system

• Supports both cloud and local instances

• Supports many destinations while having flexibility to add new ones

• Designed to reduce data costs

The observability pipeline. 
Should you build your own observability pipeline?

>BUYER’S GUIDE_

Vendor agnostic 

solutions allow you 

to control where your 

data lives, allow you 

to streamline volume 

to control costs, and 

shorten the time to 

derive key insights 

from your data.



03 >BUYER’S GUIDE: "THE OBSERVABILITY PIPELINE"_

It’s said that you can only count on two things in this world: death and taxes. There’s a 
third to add to the list: the increasing volume of IT and security data a company needs 
to analyze and store. 

Many organizations adopt a host of new technologies and become more software-
centric to keep up with business demand. Now more than ever, there’s an expectation 
of businesses to push new software, applications, services, features, and capabilities 
quickly to serve their customers better and keep up with the competition.

While more businesses embrace microservices architectures, some are going  
the container route like Kubernetes, and others are going serverless. Because  
each organization’s approach can vary, cloud-native technologies ultimately  
drive complexity.

In addition to those technologies, companies are still managing traditional systems 
as well. According to 451 Research, 54% of organizations move toward a hybrid IT 
environment that leverages both on-premises systems and off-premises cloud/hosted 
resources in an integrated fashion.

Each component of a complex, dynamic, distributed environment generates a set of 
operations data; data volumes are increasing rapidly. Implementing an observability 
pipeline can help organizations get increased visibility into all of their data.

Before we dive deep into an observability pipeline, we need to define observability.

In this Buyer’s Guide, we’re going to explore alternative build strategies for 
implementing an observability pipeline on top of other popular open-source projects 
like Fluentd, Logstash, or Apache NiFi, and compare that to an out-of-the-box 
approach. As you consider your organization’s needs, consider which course will 
provide a greater return on investment.

54% of organizations  

are moving  

toward a hybrid  

IT environment.



04 >BUYER’S GUIDE: "THE OBSERVABILITY PIPELINE"_

Building your own.

There is much to be said for custom-engineering your own solution to this problem. 
The hope is it will be tightly integrated into your workflow. It will create career 
opportunities for engineers. You might think it’ll be precisely what you need and 
nothing more. Since it’ll be custom-built, there will be no rethinking of your internal 
workflows or policies.

If you’re building your own observability pipeline, you will need several properties: 
protocol support for existing agents, an easily manageable system, and performance. 
Some people consider building their own observability pipeline on top of several open-
source projects like Apache NiFi, Fluentd, or Logstash. Some have been successful at 
this, but for all of them, it’s a costly journey that can involve major architectural shifts 
and building many things on top of the base open-source options.

We’ll dig into some of the challenges below.

Protocol support.

The first and most significant struggle with implementing an observability pipeline 
on your own is protocol support. Most organizations have anywhere from ten 
to hundreds of thousands of deployed agents already. Suppose your agents are 
proprietary, like the Splunk Universal Forwarder. In that case, you’re looking at step 1 
being a significant uplift to replace all your existing agents or, at a minimum, install a 
second agent collecting the same data.

Suppose your agents are already open source agents like Elasticsearch’s Beats or 
Fluentd. In that case, you can probably implement Apache Kafka as an interim receiver 
to pre-preprocess before sending it onto Elastic. However, you’re now adding a new 
stateful distributed system to your pipeline, which still does not solve the end-to-end 
use case. To solve the real problem, including transforming and processing the data, 
your pipeline isn’t going to be simple. It’s going to include multiple processing steps, 
with additional processing software like Fluentd pulling data off of topics and a second 
copy on a different topic.

Programming your pipeline.

The second major challenge we see with building an observability pipeline on top of 
a generic stream processing engine is how much work is left to the administrator. 
Systems like Apache NiFi are very flexible. You can use them to transport even binary 
data from the edge. You can use them as a passthrough, routing arbitrary bytes 
from one Kafka topic to another. From the Apache NiFi documentation, “Apache 
NiFi is a dataflow system based on the concepts of flow-based programming.” NiFi 
is a graphical environment, but most generic stream processing engines provide a 
programming environment to their end-users. Programming a stream processing 
engine requires end-users to work at a much lower level. Extreme flexibility comes at 
the cost of requiring the system’s user to reimplement many things that are done out 
of the box in logging systems.

In logging systems like Splunk, Elasticsearch, etc., there is a fair amount of work 
handled for you by combining the shipper and the storage tier, like a Splunk Forwarder 
or Elasticsearch Beats, and Elasticsearch or a Splunk Indexer. The shipper picks up a 
byte stream off of disk, and it may do lightweight parsing on the endpoint to break that 
byte stream up into events, or it may ship raw bytes off and do event breaking at the 
centralized tier. 



05 >BUYER’S GUIDE: "THE OBSERVABILITY PIPELINE"_

Either way, from the user’s perspective, an event’s concept is the base unit of work. If 
you’re trying to put something like Apache NiFi in the middle of your ingestion pipeline, 
it is incumbent upon the developer to do things like event breaking. This situation is 
possible, but it adds a lot of work. To build your own observability pipeline on NiFi or 
a similar system, you will need developers to implement event breaking for you, which 
can put a strain on your team’s resources.

Building your own management.
When thinking of implementing a system, most projects and products tend to focus 
on the day one problem: “how does the user get this up and running?” However, over 
the lifetime of the solution, day two questions like the following are left to the system’s 
implementer:

• How does the user make changes safely and reliably? 

• How does the user know if the system is performing correctly? 

• How does the user troubleshoot this system?

Log processing tools like Fluentd and Logstash are okay on day 1. Downloading them 
on your laptop, throwing some data through, and building an initial configuration is 
pretty easy to do, but is it scalable and long-lasting?

Managing configurations and configuration changes require a significant investment 
on top of your base systems like Fluentd or Logstash. Organizations building their  
own observability pipelines successfully have created their own unit testing 
frameworks for configurations and intense code and configuration review processes. 
These processes weren’t invented for no reason. Before implementing these 
processes, minor configuration errors would regularly break production. This process 
also involves implementing your own continuous deployment pipeline to roll changes 
safely to production.

On top of CI/CD, which needs to be built, monitoring comes next. Suppose data is 
coming in delayed or the system slows down for any reason. In that case, metrics need 
to be available to determine which system is causing back pressure or which particular 
set of configurations might be the culprit. One wrong regular expression can destroy 
the performance of a data processing system. Building up rich monitoring dashboards 
are a considerable part of the day 2 cost of building your own system.

Lastly, when data is not being is not being processed how the end-users are expecting,,  
the operators of the system need to be able to reproduce data processing so they  
can validate why a given configuration produces a given output. There is no 
environment like production. Attempting to take a configuration and an environment 
where the given conditions reproduce the problem can be hugely time-consuming. 
Tools like Fluentd and Logstash provide little introspection, data capture, or 
troubleshooting capabilities.

Performance.

When moving data at multi-terabyte and multi-petabyte daily volumes, a 20% 
improvement in processing speed can impact the tens to hundreds of thousands 
of dollars a year in infrastructure costs. Fluentd and Logstash have had long-
known performance challenges. Generic systems like Apache NiFi are not designed 
for petabyte/day scale, and building your own system can be very costly from an 
infrastructure perspective at scale.



06 >BUYER’S GUIDE: "THE OBSERVABILITY PIPELINE"_

An alternative: The out-of-the-box solution.

As outlined above, building your own observability pipeline comes with some 
challenges, including insufficient protocol support, increased workload for the 
administrator, difficulty troubleshooting and managing the configuration(s), and rising 
infrastructure costs. An out-of-the-box observability solution can help relieve these 
stressors. An out-of-the-box solution like Cribl Stream is enterprise-ready with turn-key 
deployment and easy manageability.

An observability pipeline can provide configuration validation within the product, 
complete with built-in distributed management and monitoring. These solutions also 
typically offer rich data capture capabilities to help teams troubleshoot data flow in 
production, relieving protocol support pain points.

With a tool like Stream, a developer skill set isn’t required to work with IT and security 
data, which eases administrator workload and allows you to troubleshoot and manage 
your configuration(s) simply and straightforwardly. Tools should work for you out of 
the box. New updates should just happen.

A security feature to consider when choosing an out-of-the-box solution vs building 
your own is built-in role based access control (RBAC). Using RBAC, you can manage 
teams’ access to data, so they can only receive what they need to do their job. RBAC 
helps protect sensitive data and can also streamline how different categories of data 
are allocated. In short, it ensures that only

Additionally, an out-of-the-box observability pipeline can help significantly cut 
infrastructure costs while increasing performance. A good observability pipeline 
should  give you the ability to choose your business’s best data management strategy. 
Depending on your business goals, that can mean implementing several tactics, 
including but not limited to:

• Sending data that benefits from needle in a haystack search performance to an 
indexed analytics system.

• Routing metrics data to a time-series database for fast dashboarding and initial 
investigations.

• Placing raw data in cheap storage like S3 for optimized retrieval of subsets of that 
raw data.

Leveraging an out-of-the-box observability pipeline like Stream makes it easy for 
teams to choose their data management strategy, implement it quickly, and reduce 
infrastructure costs. Using your observability tool, you can decide which data you need 
to send to an analytics tool to analyze now, which logs can be aggregated into metrics, 
which data should be stored and analyzed later if required, and which elements of 
data should be dropped altogether. The combination of cheap storage and increased 
performance presents a significant return on investment. 

In the Parse test case, Stream outperforms LogStash by a factor of 8.75x, in the 
parse and forward by about 6.5x, and in the full test case by about 6.5x. In the Parse 
test case, Stream outperforms Fluentd by about 26%, in the parse and forward by a 
factor of 4.3x, and in a full test case by about 6.7x.

Leveraging an out-of-

the-box observability 

pipeline like Cribl 

Stream makes it easy 

for teams to choose 

their data management 

strategy, implement 

it quickly, and reduce 

infrastructure costs.



07 >BUYER’S GUIDE: "THE OBSERVABILITY PIPELINE"_

Vendor lock-In: avoid at all costs.

With an out-of-the-box solution like LogStream, a vendor is working to lower your data 
costs while easing access burden. Existing vendor solutions are designed to keep you 
locked into their platform, where a dedicated observability pipeline vendor is working 
to give you the most flexible access with the most soruces and destinations.

Key questions to ask yourself before choosing a vendor or solution type is do you 
want to future-proof your ingestion pipeline and be able to deliver data anywhere? Do 
you want to be able to deliver data even to potentially competitor products with your 
existing logging system?

When you choose to use a “feature” of your existing logging system as an observability 
pipeline, you’ll be locked into that vendor for everything in the future and whatever 
price increases come with that. It’s likely that the compute infrastructure costs of your 
existing vendor will cost more than an out-of-the-box solution.



8

ABOUT CRIBL
Cribl, the Data Engine for IT and Security, empowers organizations to transform their data strategy. Customers use Cribl’s vendor-agnostic solutions to 
analyze, collect, process, and route all IT and security data from any source or in any destination, delivering the choice, control, and flexibility required 
to adapt to their ever-changing needs. Cribl’s product suite, which is used by Fortune 1000 companies globally, is purpose-built for IT and Security, 
including Cribl Stream, the industry’s leading observability pipeline, Cribl Edge, an intelligent vendor-neutral agent, and Cribl Search, the industry’s  
first search-in-place solution. Founded in 2018, Cribl is a remote-first workforce with an office in San Francisco, CA.

Learn more: www.cribl.io | Try now: Cribl sandboxes | Join us: Slack community | Follow us: LinkedIn and Twitter

©2024 Cribl, Inc. All Rights Reserved. ‘Cribl’ and the Cribl Flow Mark are trademarks of Cribl, Inc. in the United States and/or other countries. All  
third-party trademarks are the property of their respective owners. 

BGDE-0001-EN-2-0524

>BUYER’S GUIDE: "THE OBSERVABILITY PIPELINE"_

Final thoughts.

An observability pipeline is a concept that is solving key problems that 
organizations face today. We have seen some successful custom-built 
implementations. More often, though, solving a business problem requires a full 
out-of-box solution. Most existing custom solutions require a lot of integration and 
building effort on the part of their users to really address all of their challenges. 
Custom solutions will require continual investment as well. The upfront fee is only 
building the foundation. As new destinations are needed, new investment will have 
to be made. If your budget doesn’t allow for those new investments, you now have a 
product that is expensive, doesn’t meet your needs, and that you are locked into using.

Organizations that are going down the path of building their own solution should 
prepare for a considerable investment of time, talent, and money. Most organizations 
are investing in 2-5 resources from 3-12 months, depending on the needs of their 
requirements. A build option starts at around $100,000 and up to $1 million or more 
for the first year. In addition to the initial build, a continual investment of a scrum of 
1-3 developers to write transformation code puts the sustained maintenance in the 
hundreds of thousands a year. 

Building a solution can satisfy your requirements in the short term, but is the 
investment into undifferentiated infrastructure and processes worth it? Not only 
can an out-of-the-box observability solution like Stream meet your organization’s 
needs, but it can also scale with you, giving your team the freedom to decide what the 
organization’s data management strategy looks like moving forward. An out-of-the-
box solution is prepared for your organization’s needs today, but also growing to meet 
tomorrow’s needs.

As you weigh building your own observability pipeline on top of an open-source 
project, it’s crucial to consider many factors, including protocol support for existing 
agents, an easily manageable system, and performance. While building your 
own pipeline can often meet your organization’s exact needs now, they may do it 
inefficiently, straining your team’s resources and increasing costs. On the other hand, 
an out-of-the-box observability solution like Stream requires an investment but can 
result in better performance, reduced infrastructure costs, and the ability to shift 
your data management approach as your business challenges evolve. Cribl’s Stream, 
with its out-of-the-box approach, provides a scalable solution with an impressive and 
immediate return on investment.

Final points.
• Do you want to future-proof your ingestion pipeline and be able to deliver  

data anywhere? 

• Would you like to affordably retain years of data while lowering your costs?

It’s crucial to 

consider many factors 

when building an 

observability 

pipeline, including 

protocol support for 

existing agents, an 

easily manageable 

system, and 

performance.

https://cribl.io/
https://www.cribl.io/community
https://www.linkedin.com/company/cribl
https://twitter.com/cribl_io

