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Part I

Algebra
Vector Spaces
Note that, F is usually either R or C. However, there
are many other esoteric examples of what F could
possibly be.

Definition of Vector Space
A vector space V over the field F is a set of vec-
tors where addition and multiplication by a scalar
are defined such that the following ten fundamental
properties are satisfied:

1. Closure under Addition.

If u,v ∈ V , then u + v ∈ V .

2. Associative Law of Addition.

If u, v, u ∈ V , then (u+ v) +w = u+ (v+w).

3. Commutative Law of Addition.

If u, v ∈ V , then u + v = v + u.

4. Existence of Zero.

There exists an element 0 ∈ V such that, for all
v ∈ V, v + 0 = v.

5. Existence of Negative.

For each v ∈ V there exists an element w ∈ V
(usually written as −v), such that v + w = 0.

6. Closure under Multiplication by a Scalar.

If v ∈ V and λ ∈ F, then λv ∈ V .

7. Associative Law of Multiplication by a
Scalar.

If λ, µ ∈ F and v ∈ V, then λ(µv) = (λµ)v.

8. If v ∈ V and 1 ∈ F is the scalar one, then 1v = v.

9. Scalar Distributive Law.

If λ, µ ∈ F and v ∈ V , then (λ+µ)v = λv+µv.

10. Vector Distributive Law.

If λ ∈ F and u,v ∈ V, then λ(u+ v) = λu+ λv.

For most intents and purposes, rarely do you have to
deal with this (extensive) definition directly.

Roughly, a vector space is just something where we
can multiply things by numbers and the regular laws
of algebra that most people are inherently aware of,
are satisfied.

Examples of Vector Spaces
1. R is a vector space over R or Q.

2. Rn is a vector space over R where n ≥ 2.

3. C is a vector space over C.

4. Cn is a vector space over C where n ≥ 2.

5. The set of polynomials P is a vector space over
any field F.

6. The set of m×n matrices Mmn is a vector space
over any field F.

7. The set F∞ which denote the space of infinite se-
quences that have finitely many elements which
are nonzero is a vector space over any field F
when scalar multiplication as well as addition is
defined coordinate wise.

Subspaces
Proving that something is a vector space takes a lot
of work, so we want to have a notion which allows
us to recognise if something is a vector space without
having to tediously go through all ten axioms.

We ask, “if we already have a known vector space,
what subset can we take from this vector space so
that we have yet another vector space?”. This leads
to the notion of a subspace:

• A subset S of a vector space V is a subspace if:

– S is itself a vector space over the same field
of scalars as V , and

– S is under the same rules of addition and
multiplication by scalars

• If there is at least one vector in V that is not in
S, the subspace S is a proper subspace of V .

Subspace Theorem
A subset S of a vector space V over a field F is a
subspace if and only if:

i) The vector 0 in V also belongs to S that is, 0 ∈ S.

ii) S is closed under vector addition,

If a ∈ S, and b ∈ S, it implies that a + b ∈ S.

iii) S is closed under multiplication by scalars,

If a ∈ S and λ ∈ F, then λa ∈ S.

Examples of Subspaces

1. The set of polynomials of degree 3 or less, P3, is
a subspace of P over F.
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2. Any line or plane which passes through the origin
in Rn is a subspace of Rn over R.

3. The set A ⊆ R3 such that the coordinate entries
of any element of A add up to 0 is a subspace of
R3 over R.

4. The set D of m × n diagonal matrices is a sub-
space of Mm×n over the field R.

Linear Combinations
Let S = {v1, . . . ,vn} ⊆ V . Then a linear combi-
nation of S is a sum of scalar multiples of the form

λ1v1 +· · ·+ λnvn =

n∑
i=1

λivi

with λ1, . . . , λn ∈ F.

• This definition really just says that a linear com-
bination is just adding up a bunch of vectors with
each vector having some scalar multiplied to it.

• It is crucial that S be a finite set.

• Any linear combination is always an element of
V by the Subspace Theorem.

Spans
The span of the set S ⊆ V is the set of all linear
combinations of S. That is,

span(S) = span{v1, . . . ,vn}

=

{
v ∈ V : v =

n∑
i=1

λivi for λi ∈ F

}
.

• The span of a set S is always a subspace of V .
Further, span(S) is the smallest subspace con-
taining S.

• We say that S ⊆ V is called a spanning set for V
if span(S) = V or, equivalently, if every vector
in V can be expressed as a linear combination of
vectors in S.

The subspace of Rm spanned by the columns of an
m× n matrix A is called the column space of A, and
is denoted by col(A). That is, col(A) is the set of all
linear combinations of the columns in the matrix A.

Linear independence
Suppose that S = {v1, . . . ,vn} ⊆ V . The set S is
linearly independent if the only solution to

λ1v1 + · · ·+ λnvn = 0

is,
λ1 = λ2 = · · · = λn = 0.

A set is considered linearly dependent if there ex-
ists another solution, where the scalars are not all
zero.
Properties of Linear Independence

• A linear combination vi ∈ S is unique if and only
if S is a linearly independent set.

• A set S is linearly independent if and only if no
vector in S is in the span of other vectors in S.

• The span of every proper subset of S is a proper
subspace of span(S) if and only if S is a linearly
independent set.

• Suppose that S ⊆ V is a finite linearly indepen-
dent set, and v ∈ V . If v /∈ span(S) then S∩{v}
is a linearly independent set.

• Suppose that S is a spanning set of V and V ′

is any linearly independent set. If |V | = n and
|V ′| = m, it is always the case that n ≥ m.

5



Bases and dimension

A set of vectors B ⊆ V is called a basis for V if:

1. B is a linearly independent set, and

2. span(B) = V .

If |B| = n for a vector space V , then we say that the
dimension of V is n. Denoted as dim(V ) = n.

Properties of Bases

• Suppose that B1 = {u1, . . . ,un} and B2 =
{v1, . . . ,vn} are two bases for the same vector
space V , then m = n.

• Suppose that V is a finite dimensional vector
space.

1. the number of vectors in any spanning set
for V is greater than or equal to the dimen-
sion of V ;

2. the number of vectors in any linearly inde-
pendent set in V is less than or equal to the
dimension of V ;

3. if the number of vectors in a spanning set is
equal to the dimension then the set is also a
linearly independent set and hence a basis
for V ;

4. if the number of vectors in a linearly inde-
pendent set is equal to the dimension then
the set is also a spanning set and hence a
basis for V .

• If S is non-empty and finite, then S contains a
subset which is a basis for span(S).

• If V is any non-zero vector space which can be
spanned by a finite set of vectors, then V has a
basis.

• Every linearly independent subset of a vector
space V , can be extended to a basis for V .

How to reduce a spanning set S of Rm to a
basis in Rm

1. Create a matrix A whose columns are members
of S.

2. Row reduce A until you get a matrix A′, where
A′ is the row-echelon form of A.

3. Create a new set S′ which consists only of the
leading columns in A′.

4. Then, S′ is a basis for span(S).

How to extend a linearly independent set to a
basis in Rm

Suppose that the linearly independent set is S =
{v1, . . . , vn}.

1. Create a matrix A whose columns are members
of S, then followed by the members of the stan-
dard basis for Rm.

2. Row reduce A until you get a matrix A′, where
A′ is the row-echelon form of A.

3. Create a new set S′ which consists only of the
leading columns in A′.

4. S′ is a basis for Rm containing S as a subset.

Coordinate Vectors
Let V be an n-dimensional vector space and let the
ordered set of vectors B = {v1, . . . ,vn} be a basis
for V . If

v = x1v1 + · · ·+ xnvn

then the vector

[v]B = x =

x1

...
xn


is called the coordinate vector of v with respect
to the ordered basis B.

Properties of Coordinate Vectors
If B is an ordered basis for a vector space V over a
field F and u,v ∈ V and λ ∈ F, then

• u = v if and only if [u]B = [v]B , that is, two
vectors are equal if and only if the corresponding
coordinate vectors are equal.

• [u + v]B = [u]B + [v]B , that is, the coordinate
vector of the sum of two vectors is equal to the
sum of the two corresponding coordinate vectors.

• [λu]B = λ[u]B , that is, the coordinate vector of
a scalar multiple of a vector is equal to the same
scalar multiple of the corresponding coordinate
vector.

6



Linear Transformations

Linear Maps
Let V and W be two vector spaces over the same
field F. A function T : V → W is called a linear
map or linear transformation if the following two
conditions are satisfied.

• Addition Condition. T (v+v′) = T (v)+T (v′)
for all v,v′ ∈ V , and

• Scalar Multiplication Condition. T (λv) =
λT (v) for all λ ∈ F and v ∈ V .

Properties of Linear Maps
If T is a linear map with domain V and S is a set
of vectors in V , then the function value of a linear
combination of S is equal to the linear combination
of the function values of S, that is,

T (λ1v1 + · · ·+ λnvn) = λ1T (v1) + · · ·+ λnT (vn).

where S = {v1, ...,vn} and λ1, ..., λn are scalars.

Further, if B = {v1, ...,vn} is a basis for the domain
V then for all v ∈ V we have

T (v) = x1T (v1) + · · ·+ xnT (vn),

where x1, ..., xn are the scalars in the unique linear
combination v = x1v1 + · · · + xnvn of the basis B.

Subspaces associated with linear maps
The kernel of a map
Let T : V → W be a linear map. Then the kernel of

T (written ker(T )) is the set of all values in V that
is sent to 0 when passed through T , i.e.

ker(T ) = {v ∈ V : T (v) = 0}.

The nullity of a linear map T is the dimension of
ker(T ).

Show that a vector v is in the kernel of a linear map
T simply by verifying T (v) = 0.
In particular, 0 ∈ ker(T ) for any linear map T ,
since T (0) = 0.

Theorem. If T : V → W is a linear map,
then ker(T ) is a subspace of the domain V .

For a matrix A:
nullity(A) = maximum number of independent
vectors in the solution space of Ax = 0
= number of parameters in the solution of Ax = 0
obtained by Gaussian elimination
= number of non-leading columns in an equivalent
row-echelon form U for A.

Image
Let T : V → W be a linear map. Then the image of
T is the set of all function values of T , that is, it is
the subset of the codomain W defined by

im(T ) = {w ∈ W : w = T (v) for some v ∈ V }.

The rank of a linear map T is the dimension of im(T ).

For a matrix A:
rank(A) = maximal number of linearly independent

7



columns of A
= number of leading columns in a row-echelon form
U for A.

Rank, nullity and solutions of Ax = b
(Rank-Nullity Theorem for Matrices). For any ma-
trix A,

rank(A) + nullity(A) = number of columns of A.

(Rank-Nullity Theorem). Suppose V and W are fi-
nite dimensional vector spaces and

rank(A) + nullity(A) = dim(V ).

Eigenvalues and Eigenvectors

Definition of eigenvectors and eigenval-
ues

Let T : V → V be a linear map. Then if a scalar λ
and non-zero vector v ∈ V satisfy

T (v) = λv

then λ is an eigenvalue of T and v is an eigenvector
of T for the eigenvalue λ.

Similarly, let A ∈ Cn×n be a square matrix. Then
if a scalar λ ∈ C and non-zero vector v ∈ Cn satisfy

Av = λv

then λ is an eigenvalue of A and v is an eigenvalue of
A for the eigenvalue λ.

Finding eigenvectors and eigenvalues

• λ is an eigenvalue of a square matrix A if and
only if det(A− λI) = 0.

• v is an eigenvector of A with eigenvalue λ if and
only if v ̸= 0 and (A− λI)v = 0.

Eigenspace

For a square matrix A, the eigenspace of the eigen-
value λ is the set

Eλ = ker(A− λI)

i.e. the set of all eigenvectors with eigenvalue λ to-
gether with 0.
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Characteristic polynomial

If A is an n× n matrix and λ ∈ C, then

p(λ) = det(A− λI)

is a complex polynomial of degree n in λ, called the
characteristic polynomial for the matrix A.

• An n×n matrix A has exactly n eigenvalues in C
(counting multiplicities). These eigenvalues are
the zeroes of the characteristic polynomial.

Diagonalisation

If an n× n matrix has n distinct eigenvalues, then it
has n linearly independent eigenvectors, which form
a basis for Cn.

• The converse is not true in general.

A square matrix A is said to be a diagonalisable ma-
trix if there exists an invertible matrix M and diag-
onal matrix D such that

M−1AM = D.

An n× n matrix A is diagonalisable if and only if
it has n linearly independent eigenvectors.

• The diagonal elements of D are the eigenvalues
of A.

• The jth column of M is the eigenvector of A
corresponding to the jth element of the diagonal
of D.

Eigenvalues of symmetric matrices

Suppose that A is an n × n symmetric real matrix.
Then

• The eigenvalues of A are real.

• The eigenvectors can be chosen to form an or-
thonormal basis for Rn.

• Note that having distinct eigenvalues is a suffi-
cient but not necessary condition for a matrix to
be diagonalisable.

Applications

• Let A be an n × n diagonalisable matrix and
k ∈ N. Then

Ak = MDkM−1.

• y(t) = eλtv is a solution of the differential equa-
tion

dy

dt
= Ay

if and only if v is an eigenvector of A for the
eigenvalue λ.
If A is diagonalisable, then the general solution
to the differential equation is of the form

y(t) =

n∑
k=1

αke
λktvk

where vk are linearly independent eigenvectors
with corresponding eigenvalues λk, k = 1, . . . , n.

• Diagonalization can be used to efficiently com-
pute the powers of a matrix A = PDP−1 since
it only involves the powers of a diagonal matrix.
For example, for the matrix A with eigenvalues
λ = 1, 1, 2 we compute:

where
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Probability and Statistics

Probability Definitions

• The set of all possible outcomes of a given ex-
periment is called the sample space.

• An event A is a subset of a sample space.

Suppose S is a sample space, then the probability is
a function P defined on the set of all events such that

1. 0 ≤ P (A) ≤ 1 for all A ⊆ S

2. P (∅) = 0

3. P (S) = 1

4. if A,B are mutually exclusive events then

P (A ∪B) = P (A) + P (B).

Properties

Suppose A,B are events.

• P (Ac) = 1− P (A)

• P (A ∪B) = P (A) + P (B)− P (A ∩B)

• If A ⊆ B, then P (A) ≤ P (B).

Conditional Probability

Let A and B be events such that P (B) ̸= 0. Then
the probability of A given B is

P (A|B) =
P (A ∩B)

P (B)
.

If event A always occurs with exactly one of
B1, . . . , Bk, then we have,
Total probability rule

P (A) =

k∑
i=1

P (A|Bi)P (Bi)

and Bayes rule

P (Bj |A) =
P (A|Bj)P (Bj)∑k
i=1 P (A|Bi)P (Bi)

.

Independence
Events A and B are mutually independent if

P (A ∩B) = P (A)P (B).

• A and B are mutually independent if and only if
P (A|B) = P (A).

Random Variables
A random variable on a sample space S is a real-
valued function X : S → R.
A discrete random variable is one whose values are
countable. A probability distribution for a dis-
crete random variable X with values {xk : k ∈ Z} is
a set of numbers {pk : k ∈ Z} such that

P (X = xk) = pk ≥ 0 and
∞∑

k=−∞

pk = 1.

The cumulative distribution function for a dis-
crete random variable is the function FX(x) : R → R

FX(x) = P (X ≤ x) =
∑

k:xk≤x

pk, x ∈ R.

• FX is a non-decreasing function.

• If a ≤ b then P (a < X ≤ b) = FX(b)− FX(a).

•

lim
x→−∞

FX(x) = 0 and lim
x→−∞

FX(x) = 1.

10



Expected value
The mean or expected value of a discrete random
variable X is

E(X) =
∑

xkpk.

• Expected value is linear, i.e. suppose a, b are
constants and X,Y random variables, then

E(aX + bY ) = aE(X) + bE(Y ).

Note this is true even if X and Y are not inde-
pendent.

• If Y = g(X), then

E(Y ) =
∑

g(xk)pk.

Variance and Standard Deviation
The variance of a random variable X is

Var(X) = E((X − E(X))2) = E(X2)− E(X)2

The standard deviation of X is

σX =
√
Var(X).

Part II

Calculus

Functions of Several Variables

Sketching simple surfaces in R3

Definition: A contour or level curve of a function F :
R2 → R is a curve in R2 corresponding to an equation
of the form F (x, y) = C, where C is a constant.

Partial Differentiation

Definition: Suppose that F is a function of two vari-
ables x and y. The partial derivatives of F with re-
spect to x and y are defined by

Fx(x, y) = lim
h→∞

F (x+ h, y)− F (x, y)

h

and

Fy(x, y) = lim
h→∞

F (x, y + h)− F (x, y)

h

wherever these limits exist.

The mixed derivative theorem: Suppose that
F is a function of two variables. If F and all its first
and second order partial derivatives are continuous
then

∂2F

∂x∂y
=

∂2F

∂y∂x

Tangent planes to surfaces

Theorem: Suppose that F is a function of two vari-
ables and (x0, y0, z0) is a point that lies on the surface
z = F (x, y). If the surface has a tangent plane at the
point (x0, y0, z0), then the tangent plane is given by
the equation

z = z0 + Fx(x0, y0)(x− x0) + Fy(x0, y0)(y − y0)

and a normal vector to the surface at (x0, y0, z0) is
given by Fx(x0, y0)

Fy(x0, y0)
−1

 .
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The total differential approximation
Formula for total differential approximation.

∆F ≈ ∂F

∂x
∆x+

∂F

∂y
∆y.

Chain rules
Theorem: Suppose that F is a function of two vari-
ables and that x and y are both functions of one vari-
able. Define the function ϕ by ϕ(t) = F (x(t), y(t))
and the point (x0, y0) by (x0, y0) = (x(t0), y(t0)). If
x and y are both differentiable at t0 and the partial
derivatives of F exist and are continuous at (x0, y0),
then ϕ is differentiable at t0 and

ϕ′(t0) = D1F (x0, y0)x′(t0) +D2F (x0, y0)y′(t0).

Functions of more than two variables
The partial derivatives of F are defined by

Fx(x, y, z) = lim
h→∞

F (x+ h, y, z)− F (x, y, z)

h

Fy(x, y, z) = lim
h→∞

F (x, y + h, z)− F (x, y, z)

h

Fz(x, y, z) = lim
h→∞

F (x, y, z + h)− F (x, y, z)

h

The total differentiation approximation ∆F is given
by

∆F ≈ ∂F

∂x
∆x+

∂F

∂y
∆y +

∂F

∂z
∆z.

Integration Techniques

Trigonometric integrals
The first class of trigonometric integrals considered
consist of integrals of the form∫

cosm x sinn xdx,

where m and n are non-negative integers. There are
essentially two cases: (i) either m or n (or both) are
odd; or (ii) both m and n are even.

Case (i). Suppose that m is odd. Then we use the
substitution u = sin x along with the identity

sin2 x+ cos2 x = 1

to evaluate the integral.

Case (ii). The case where both m and n are even
requires an entirely different approach. This time we
use the identities

cos2 x =
1 + cos 2x

2
and sin2 x =

1− cos 2x

2

to change integral into a sum of integrals of the form∫
cosk 2xdx.

We then repeat the methods of Case (i) or Case (ii)
until each integral in the sum is easy to compute.

Sums to products
The next class of trigonometric integrals consists of
integrals of the form∫

cosmx sinnxdx,

∫
cosmx cosnxdx or

∫
sinmx sinnxdx

To evaluate the integrals we need the following
trigonometric identities.

Theorem: Suppose that A and B are real num-
bers. Then

sinA cosB =
1

2
(sin(A+B) + sin(A−B))

cosA cosB =
1

2
(cos(A−B) + cos(A+B))

sinA sinB =
1

2
(cos(A−B)− cos(A+B)).
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Reduction Formulae

A reduction formula is a formula connecting terms
within a sequence of integrals {In}∞n=1. For instance,
for the integral

In =

∫
xnexdx,

we may have the recurrence relation

In = xnex − nIn−1.

The primary technique in these question is to use in-
tegration by parts. We begin with one of the integrals
(often In) and work out a choice of u and dv that will
reduce In to an integral involving In−1.

For instance, in this example, we would want to set
u = xn and dv = xndx so that in the term

∫
udv =

uv −
∫
vdu, the power of x decreases to n − 1. This

example would yield∫
xnexdx = xnex −

∫
nxn−1exdx

= xnex − n

∫
xn−1exdx

= xnex − nIn−1.

Trigonometric and hyperbolic substitu-
tions

Many integrals can be evaluated by finding the right
substitution, but unfortunately there is no general
systematic way to do this. Integrals involving square
roots of quadratics often yield to trigonometric or
hyperbolic substitutions.

The following table indicates which substitution
can be tried for integrals containing an expression
of the form

√
±x2 ± a2.

Expression
in integral

Trigonometric
substitution

Hyperbolic
substitution√

a2 − x2 x = a sin θ x = a tanh θ√
a2 + x2 x = a tan θ x = a sinh θ√
x2 − a2 x = a sec θ x = a cosh θ

Whether or not a trigonometric substitution is
more efficient than a hyperbolic substitution depends
on the particular integral. In general, trigonometric
substitutions are favoured because once integration is
completed in the variable θ, it is easier to restate the
result in terms of x.

Integrating rational functions
In this subsection we give an overview of the approach
to integrating rational functions. The basic proce-
dure is summarised below.

1. If the rational function is improper, then use
polynomial division to write f as the sum of a
polynomial and a proper rational function. Since
the polynomial is easy to integrate, we need only
focus on integrating a proper rational function.

2. It can be shown using algebra that every proper
rational function f can be written as a unique
sum of functions of the form

A

(x− a)k
and

Bx+ C

(x2 + bx+ c)k

where the quadratic x2 + bx + c is irreducible.
This sum is called the partial fractions decom-
position of f .

3. Now we only need to integrate functions of the
form as shown above. By completing the square,
using a substitution or performing simple alge-
braic manipulation, these can be integrated by
the standard formulae∫

xkdx =
xk+1

k + 1
+ C, k ̸= −1

∫
g′(x)

g(x)
dx = ln |g(x)|+ C∫

dx

a2 + x2
=

1

a
arctan

x

a
+ C.
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Ordinary Differential Equations

An introduction
Definition: An ordinary differential equation is ex-
pressed in terms of exactly one independent variable
and one (or more) of the derivatives of a function
of this variable. The order of an ordinary differential
equation is the order of the highest derivative present.

Definition: A solution to an nth order ordinary
differential equation is a function which is n-times
differentiable and satisfies the given equation.

Initial value problems
Definition: An initial value problem is an nth order
ODE together with a set of values of the solution and
its first (n − 1) derivatives at some fixed point x0.
These values are called the initial conditions of the
initial value problem. For instance, an example of a
4th degree initial value problem is

y′′′′ = 3x2 + 4xy,

with

y(1) = 5, y′(1) = 3, y′′(1) = −2, y′′′(1) = 4.

Separable ODEs
A separable ODE is a differential equation where the
two variables involved (x and y) can be separated so
that all the ys are on one side of the equation and all
xs are on the other.

First order linear ODEs
A first order linear ODE can be written in the stan-
dard form

dy

dx
+ f(x)y = g(x).

where f and g are given functions of a single variable
x. The ODE is called linear since there are no non-
linear terms (such as y2, sin y or

√
y′) involving y

or its derivative y′. A method for solving first order
linear ODEs is summarised in the steps below.

1. Write the ODE in the standard form.

2. Calculate e
∫
f(x)dx (ignoring the constant of in-

tegration). We denote this by h(x) and call it
the integrating factor.

3. Multiply the standard form by the integrating
factor h(x) to obtain

h(x)
dy

dx
+ h(x)f(x)y = g(x)h(x).

By using the product rule for differentiation, the
left-hand side can now be rewritten so that

d

dx
(h(x)y) = g(x)h(x).

4. Integrate both sides and then rearrange for y to
solve the ODE. Don’t forget the constant of in-
tegration!

Exact ODEs

Definition: An ordinary differential equation of the
form

F (x, y) +G(x, y)
dy

dx
= 0

is called exact if
∂F

∂y
=

∂G

∂x
.

Solving ODEs by using a change of vari-
able (MATH1241 ONLY)

We can use substitutions such as y(x) = xv(x) and
z(x) = 1

y(x) to solve ODEs. The aim in these kinds
of questions is to express everything in terms of the
new, introduced function of x, for example v(x) in
the first case.

Special case: y(x) = xv(x)

We use this case when we have an ODE in the form

dy

dx
= g

(y
x

)
.

In this case, we have that

dy

dx
= x

dv

dx
+ v,

so that

x
dv

dx
+ v = g(v),

that is,

dv

dx
=

g(v)− v

x
,

which is a separable equation that can be solved using
standard techniques.
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Second order linear ODEs with con-
stant coefficients

Definition: A second order linear ODE with con-
stant coefficients is said to be homogeneous if it is of
the form

d2y

dx2
+ a

dy

dx
+ by = 0,

where a and b are real numbers.

Definition: The characteristic equation of the sec-
ond order linear ODE

d2y

dx2
+ a

dy

dx
+ by = 0,

is given by
λ2 + aλ+ b = 0.

Solving second order homogeneous ODEs

Case (i): The characteristic equation has two distinct
real roots λ1 and λ2. Hence the general solution is
given by

y = Aeλ1x +Beλ2x

where A and B are real numbers.

Case (ii): The characteristic equation has a repeat
real real root λ1. Hence the general solution is given
by

y = Aeλ1x +Bxeλ1x

where A and B are real numbers.

Case (iii): The characteristic equation has two dis-
tinct complex roots α + βi and α − βi, where α and
β are real numbers and β ̸= 0. Hence the general
solution in this case is given by

y = eαx(A cosβx+B sinβx)

where A and B are real numbers.

Solving second order non-homogeneous ODEs

1. Find the solution yH to the corresponding homo-
geneous equation (by first identifying the roots
of the characteristic equation).

2. Find a particular solution yP to the second order
ODE by guessing the form of the solution and
solving for the undetermined coefficients.

3. The general solution y is then given by y = yH +
yP .

Given a function f , the following table indicates
which guess for yP will always yield a particular so-
lution for the non-homogeneous ODE.

f(x) Guess for yP
P (x) (nth-degree
polynomial)

Q(x) (nth-degree polyno-
mial)

P (x)esx Q(x)esx

P (x) cos (sx) Q1(x) cos (sx) +
Q2(x) sin (sx)

P (x) sin (sx) Q1(x) cos (sx) +
Q2(x) sin (sx)

P (x)esx cos (tx) or
P (x)esx sin (tx)

Q1(x)e
sx cos (tx) +

Q2(x)e
sx sin (tx)

Essentially this table indicates that a particular so-
lution yP will have the form indicated on the right
hand side of the table, with the coefficients of the
polynomial being undetermined. Where the degree
of the polynomial P (x) on the left hand side is n, the
degree of the polynomials Qi(x) on the right hand
side are n.

Note that if any term of the guess for yP is a solu-
tion to the homogeneous ODE, then we must multiply
the guess for yP by x to obtain the general solution.
If any term of the new guess is still a solution to the
homogeneous ODE, then we multiply by x again.
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Taylor Series

Taylor polynomials

Suppose that f is n-times differentiable at a. Then
the Taylor polynomial pn of degree n for f about a
is given by pn(x) = f(a) + f ′(a)x + f ′′(a)

2! x2 + · · · +
f(n)(a)

n! xn. We also call pn the nth Taylor polynomial
for f about a.

Taylor’s Theorem

Suppose that f has n + 1 continuous derivatives on
an open interval I containing a. Then for each x in
I,

f(x) = pn(x) +Rn+1(x),

where pn is the nth Taylor polynomial about a and
the remainder Rn+1(x) is given by

Rn+1(x) =
1

n!

∫ x

a

f (n+1)(t)(x− t)n dt.

Lagrange formula for the remainder

Suppose that f has n + 1 continuous derivatives on
an open interval I containing a. Then for each x in
I,

f(x) = pn(x) +Rn+1(x),

where pn is the nth Taylor polynomial about a and
the remainder Rn+1(x) is given by

Rn+1(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1,

for some real number c between a and x.

Classifying stationary points

Suppose that f is n times differentiable at a and that
f(a) = 0. If

f ′′(a) = f ′′′(a) = ... = f (k1)(a) = 0,

but f (k)(a) ̸= 0, where k ≤ n, then

1. a is a local minimum point if k is even and
f (k)(a) > 0;

2. a is a local maximum point if k is even and
f (k)(a) < 0;

3. a is an horizontal point of inflexion if k is odd.

Sequences

A sequence is a real-valued function defined on a sub-
set of the natural numbers. Sequences are usually de-
noted by {an} where the number an is called the nth
term of the sequence.

Describing the limiting behaviour of sequences

Suppose that {an} is a sequence.

• If an approaches some finite number L,
we say that the sequence {an} is con-
vergent and write liman→∞an = L

• If the sequence {an} is not convergent, we say
that {an} is divergent.

Divergent sequences can be further classified accord-
ing to the list below.

• If an → ∞ as n → ∞ (that is, an grows without
bound) then we say that the sequence diverges
to infinity.

• If an → −∞ as n → ∞ then we say that the
sequence diverges to negative infinity.

• If {an} has no limit as n → ∞ but remains
bounded then we say that {an} is boundedly di-
vergent.

• If {an} exhibits none of the above behaviour then
we say that {an} is unboundedly divergent.

Techniques for calculating limits of sequences

Many of the rules and techniques given in MATH1131
for calculating limits of functions including stan-
dard arithmetic operations and the pinching
theorem also apply for limits of sequences.

The following table compares the growth of various
sequences as n → ∞.
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an growth rate as n → ∞
1 constant: does not grow

lnn grows slowly
nk, where k > 0 growth rate is faster for larger k
cn, where c > 1 growth rate is faster for larger c

n! grows rapidly
nn grows very rapidly

If {an}∞n=0 is a bounded monotonic sequence of real
numbers then it converges to some real number L.

Infinite series
Suppose that {ak}∞k=0 is a sequence of real numbers.
For each natural number n, let sn denote the nth
partial sum given by

sn = a0 + a1 + a2 + · · ·+ an =

n∑
k=0

ak.

If the sequence {sn}∞k=0 of partial sums converges to a
number L then we say that the infinite series

∑n
k=0 ak

converges to L and we write
∞∑
k=0

ak = L.

In this case we also say that the series is summable.
If the sequence {sn}∞k=0 of partial sums diverges then
we say that the infinite series

∑n
k=0 ak diverges.

Tests for series convergence
The kth term divergence test

If ak ̸→ 0 as k → ∞ then
∑∞

k=0 ak diverges.

The kth term divergence test is equivalent to
the following theorem.

If
∑∞

k=10 ak converges then ak → 0 as k → ∞.

Note that this theorem cannot be used to show that
a series converges; it is more akin to a diagnostic test
to show when a series does not converge.

The integral test

Suppose that
∑∞

k=1 ak is an infinite series with posi-
tive terms.
Suppose f(x) is a positive integrable function de-
creasing on [1,∞) such that for each positive integer
where k, f(k) = ak.

1. If
∫∞
1

f(x) dx converges then so does
∑∞

k=1 ak.

2. If
∫∞
1

f(x) dx diverges then so does
∑∞

k=1 ak.

Convergence and divergence of p-series

The series
∞∑
k=1

1

kp

converges if p > 1 and diverges if p ≤ 1. This group
of series can be used as an appropriate benchmark,
combined with other tests, to show that more com-
plicated series converge.

The comparison test

Suppose that {ak}∞k=1 and {b1}∞k=0 are two positive
sequences such that ak ≤ bk for every k = 1, 2, ....

1. If
∑∞

k=1 bk converges then
∑∞

k=1 ak also con-
verges.

2. If
∑∞

k=1 ak diverges then
∑∞

k=1 bk also diverges.

The limit form of the comparison test

Suppose an, bn are sequences with positive terms and
suppose limn→∞

an

bn
is finite and not zero. Then∑∞

n=1 an converges if and only if
∑∞

n=1 bn converges.

The ratio test

Suppose that
∑

an is an infinite series with positive
terms and that

lim
k→∞

ak+1

ak
= r.

1. If r < 1 then
∑∞

n=1 an converges.

2. If r > 1 then
∑∞

n=1 an diverges.

No conclusion can be drawn from the case r = 1. In
this case the ratio test would not be appropriate.

Leibniz’ test for alternating series

Suppose that {ak}∞k=0 is a sequence of real numbers
satisfying the following properties:

1. ak ≥ 0;

2. ak ≥ ak+1 for all k (that is, the sequence is non-
increasing); and

3. limk→∞ ak = 0

Then the alternating series
∑∞

k=0(−1)kak converges.

Corollary: If the value of the convergent series∑∞
k=0(−1)kak. is L and the nth partial sum of the

same series is sn, then

|snL| ≤ an+1

for every natural number n.

17



Absolute and conditional convergence

A series
∑∞

k=0 ak is said to be absolutely convergent
if the series

∑∞
k=0 |ak| is convergent.

A series is conditionally convergent if it converges
but does not converge absolutely.

Taylor series

Suppose that a function f has derivatives of all orders
at a. Then the series

f(a) + f ′(a)x+
f ′′(a)

2!
x2 +

f (3)(a)

3!
x3 + . . . ,

which may also be written as

∞∑
k=0

f (k)(a)

k!
(x− a)k

is called the Taylor series for f about a. In the case
when a = 0, the series is also called the Maclaurin
series for f .

The following formulae hold whenever x lies in the
given interval.

1

1− x
= 1 + x+ x2 + x3 + x4 + . . . x ∈ (−1, 1)

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ . . . x ∈ R

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ . . . x ∈ R

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ . . . x ∈ R

sinhx = x+
x3

3!
+

x5

5!
+

x7

7!
+ . . . x ∈ R

coshx = 1 +
x2

2
+

x4

4
+

x6

6
+ . . . x ∈ R

ln (1 + x) = x− x2

2!
+

x3

3!
− x4

4!
+ . . . x ∈ (−1, 1]

tan−1 x = x− x3

3
+

x5

5
− x7

7
+ . . . x ∈ [−1, 1]

Moreover, if x lies outside the given interval, then the
corresponding Maclaurin series diverges.

Power series

Suppose that {ak}∞k=0 is a sequence of real numbers
and that a ∈ R. A series of the form

∞∑
k=0

akx
k

is called a power series in powers of x. A series of
the form

∞∑
k=0

ak(x− a)k

is called a power series in powers of x− a.

Radius of convergence

If a power series in powers of x − a converges at
all points in some interval (a − R, a + R), then the
number R is called the radius of convergence for the
power series.

The interval (a − R, a + R) is called the open
interval of convergence for the power series.

If the power series converges for all real x, we
say that the radius of convergence is infinite.

Suppose that {ak}∞k=0 is a sequence of real numbers
such that limk→∞ | ak

ak+1
| = R for some real number

R. Then the power series in powers of x− a

• converges absolutely whenever |x− a| < R, and

• diverges whenever |x− a| > R.

One can deduce the convergence at each endpoint by
substituting the endpoint into the power series.

Manipulation of power series

Suppose that a power series
∑∞

k=0 akx
k converges in

the interval (−R,R), where R is its radius of conver-
gence. Then one can define a function f : (−R,R) →
R given by the formula

f(x) =

∞∑
k=0

akx
k whenever |x| < R.

Thus the value of f at each point x is a convergent
sum of real numbers.

It turns out that if we know this function f such
that

f(x) =

∞∑
k=0

akx
k whenever |x| < R,
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then differentiation and integration work term-by-
term. That is,

f ′(x) =

∞∑
k=0

kakx
k−1 whenever |x| < R,

and∫
f(x)dx =

∞∑
k=0

akx
k+1

k + 1
+ C whenever |x| < R.

Averages, Arc Length, Speed
and Surface Area

The average value of a function

The average value f̄ of an integrable function f on a
closed interval [a, b] is defined by the formula

f̄ =
1

b− a

∫ b

a

f(x) dx.

The mean value theorem for integrals. Suppose
that f is continuous on [a, b]. Then there is a number
c in (a, b) such that∫ b

a

f(t) dt = f(c)(b− a).

The arc length of a curve

Arc length for a parametrised curve

If C is described parametrically by

C = {(x(t), y(t)) ∈ R2 : a ≤ t ≤ b},

then its arc length ℓ is given by

ℓ =

∫ b

a

√
[x′(t)]2 + [y′(t)]2 dx

Arc length for the graph of a function

If C is the graph

y = f(x), x ∈ [a, b],

of a function f on [a, b] then its arc length ℓ is given
by

ℓ =

∫ b

a

√
1 + [f ′(x)]2 dx
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Arc length for a polar curve

If C is described using polar coordinates by

r = f(θ), θ0 ≤ θ ≤ θ1,

then its arc length ℓ is given by

ℓ =

∫ θ1

θ0

√
r2 +

(
dr

dθ

)2

dθ

Visualisation of the arc length of a function

We can trace out the arc length of a function by join-
ing nearby points on the curve and calculating the
sum of the line segments. The arc length is essen-
tially the limit as the distance between the points
approaches 0.

The speed of a moving particle

The speed v(t) of a particle P at time t is given by

v(t) =
√
[x′(t)]2 + [y′(t)]2,

where the functions x and y give the position
(x(t), y(t)) of P at time t.

Surface area

Surface area for a parametrised curve

If C is described parametrically by

C = {(x(t), y(t)) ∈ R2 : a ≤ t ≤ b},

then the area A of the surface of revolution of the
graph about the x-axis is given by

A =

∫ b

a

2πy(t)
√

[x(t)]2 + [y(t)]2 dx

Surface area for the graph of a function

If C is the graph

y = f(x), x ∈ [a, b],

of a function f : [a, b] → R, then the area A of the
surface of revolution about the x-axis is given by

A =

∫ b

a

2πf(x)
√
1 + [f ′(x)]2 dx.

Surface area for a polar curve

If C is described using polar coordinates by

r = f(θ), θ0 ≤ θ ≤ θ1,

then the area A of the surface of revolution about the
x-axis is given by

A =

∫ θ1

θ0

2πr sin θ

√
r2 +

(
dr

dθ

)2

dθ
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