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Question 1

Let a > 1 be a positive integer. Compute∑a2−1
n=1

√
a+

√
n∑a2−1

n=1

√
a−

√
n
.

Write your answer to 3 decimal points.

Answer: 1 +
√
2 ≈ 2.414.

Proof. Define An =
√
a+

√
n and Bn =

√
a−

√
n. Then we observe that

(An −Bn)
2 =

(√
a+

√
n−

√
a−

√
n

)2

= a+
√
n− 2

√
a+

√
n

√
a−

√
n+ (a−

√
n)

= 2
(
a−

√
a2 − n

)
.

Therefore, we see that

An = Bn +
√
2

√
a−

√
a2 − n

and so
a2−1∑
n=1

An =
a2−1∑
n=1

Bn +
√
2
a2−1∑
n=1

√
a−

√
a2 − n.

But it is easy to see that

a2−1∑
n=1

√
a−

√
a2 − n =

a2−1∑
n=1

√
a−

√
n =

a2−1∑
n=1

Bn.



Therefore,
a2−1∑
n=1

An = (1 +
√
2)

a2−1∑
n=1

Bn =⇒
∑a2−1

n=1 An∑a2−1
n=1 Bn

= 1 +
√
2,

as required.

Question 2

We say that a sequence an is ’good’ if an is a sequence of 100 consecutive integers and
contains 25 or more primes. Determine the number of good sequences.

Answer: 6.

Question 3

The sum of n positive integers is 19. What is the maximum possible product of these n
numbers?

Answer: 972.

Proof. The goal here is to partition 19 and compute the product of the parts, and return the
maximal product of such parts. To begin, for any n ∈ N, let x1 + · · ·+ xn be a partition of
19 into n parts. We prove the first claim.

Claim. For any 1 ≤ k ≤ n where xk > 4, then xk ≤ 3(xk − 3).

Proof. For simplicity and without loss of generality, we may assume that x1 ≤ x2 ≤ · · · ≤
xn−1 ≤ xn.

We proceed by induction. If xk = 5, then

xk = 5 ≤ 6 = 3(xk − 3).

Suppose that xk ≤ 3(xk − 3). Then define

xk+1 = α + xk

for some α ≥ 0. And so, we obtain

3(xk+1 − 3) ≥ 3(α + xk − 3) = 3α + 3(xk − 3) ≥ 3α + xk ≥ xk+1.

This proves the inductive step.

Thus, by replacing x1+ · · ·+xn with 3+ (x1 − 3)+x2+ · · ·+xn will yield a bigger product.
It, therefore, follows that the product-maximising partitions have parts no greater than 4.
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However, 4 = 2× 2, so we can just replace each 4 by two 2’s. In other words, any product-
maximising partition has parts strictly smaller than 4. Finally, if a partition contains only
2’s and 3’s, then observe that

2× 2× 2 = 8 < 9 = 3× 3.

In other words, our goal now is to extract as many 3’s as we can and then all of the 2’s will
fill up the remaining spaces. Writing 19 = 3q + r, we observe that q = 5 and r = 4. Thus,
we should write 19 as the following partition

19 = (3 + 3 + 3 + 3 + 3) + (2 + 2) .

The product of such a partition is

P = 35 × 22 = 972.

Question 4

Given a, b and c are complex numbers, if a+ b+ c = 4, a2+ b2+ c2 = 20 and 1
a
+ 1

b
+ 1

c
= −1

8
,

find a5 + b5 + c5.

Answer: 6.

Question 5

Find all integers x, y and z such that x+ y + z = x3 + y3 + z3 = 3.

Answer: 8.
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Question 6

Compute

lim
n→∞

cosn

(√
2

n

)
to 3 decimal points.

Answer: 0.368 ≈ 1
e
.

Question 7

Consider the cubic equation x3 − kx + (k + 11) = 0. Find all integer values of k for which
the equation has at least 1 positive integer solution for x.

Answer: k = 19, 25, 34, 59, 184.

Question 8

Find the least integer n > 1 for which the sum of squares of consecutive integers from 1 to
n is also a square number.

Answer: 24.

Question 9

Let {x} denote the fractional part of x. A fractional part is defined as

{x} =

{
x− ⌊x⌋, x ≥ 0

x− ⌈x⌉, x < 0

Compute ∫ 1

0

{
1

x
− 1

1− x

}
dx.

Answer: 1/2.

Proof. Let I be the integral we’re after.

We first observe that, if x is not an integer, then {x}+ {−x} = 1. Let y = 1− x. Then we
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have that

I =

∫ 1

0

{
1

x
− 1

1− x

}
dx =

∫ 1

0

{
1

1− y
− 1

y

}
dy

=

∫ 1

0

{
−
(
1

y
− 1

1− y

)}
dy

= 1−
∫ 1

0

{
1

y
− 1

1− y

}
dy

= 1− I.

Therefore, I = 1/2.

Question 10

Let

J =
∞∑
n=1

(−1)n+1

n+ 1
.

Compute the value of J to 3 decimal points.

Answer: 1− ln 2 ≈ 0.307.

We provide two proofs of this.

Proof 1. Recall the Taylor series of ln(1 + x); namely,

ln(1 + x) =
∞∑
n=0

(−1)nxn+1

n+ 1
.

Then

− ln(1 + x) =
∞∑
n=0

(−x)n+1

n+ 1

and so, substituting x = 1, we have

− ln 2 =
∞∑
n=0

(−1)n+1

n+ 1
= −1 +

∞∑
n=1

(−1)n+1

n+ 1
.

In other words,
∞∑
n=1

(−1)n+1

n+ 1
= 1− ln 2.
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Proof 2. Observe that
(−1)n+1

n+ 1
=

∫ 1

0

(−1)n+1xn dx. Therefore,

J =
∞∑
n=1

(−1)n+1

n+ 1
=

∞∑
n=1

∫ 1

0

(−1)n+1xn dx =

∫ 1

0

∞∑
n=1

(−1)n+1xn dx.

We now have a geometric series in disguise; observe that

∞∑
n=1

(−1)n+1xn = −
∞∑
n=1

(−x)n =
x

1 + x
.

Therefore,

J =

∫ 1

0

x

1 + x
dx =

∫ 1

0

(
1− 1

1 + x

)
dx = 1− ln 2.
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Question 11

You are given a pile of coins. There are 73789 real coins that weigh the exact same. Then,
there is one counterfeit mixed in. It is unknown whether it weighs slightly more or slightly
less. You are given a scale. What is the minimum number of comparisons required to
guarantee finding the counterfeit coin with the scales?

Answer: 12.

Question 12

Given that f(x+ y) = f(x) + f(y) + xy and f(4) = 10, find f(2022).

Answer: 2045253.

Question 13

Rectangles are considered different if they vary in size or have different locations. How many
different rectangles can be drawn along the lines of a chessboard? A chessboard is an 8× 8
grid of squares.

Answer: 1296.

Question 14

Let ABCD be a trapezoid with bases 3 and 5, and equal legs 7. Find the length of the
diagonal.

Answer: 8.

Question 15

A point is chosen at random inside the unit circle. Compute the probability that the point
occurs at a distance less than 1

3
from the centre to 3 decimal points.

Answer: 0.111 ≈ 1
9
.
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Question 16

If x2 − x − 3 = 0, find x5 in terms of ax + b where a and b are real constants. Answer:
19x+ 12.

Question 17

Find the number of 0s at the end of 999!. Answer: 244.

Question 18

Find the sum of all values of n which make n3 − 13n2 + 45n− 33 prime. Answer: 14.

Question 19

Find the greatest integer n > 1 for which (n− 1)! + 1 = n2. Answer: 5.

Question 20

Compute the number of digits in 22022 − 1. Answer: 609.
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