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Groups and Fields

Groups
Definition

A group G is a non-empty set with a binary operation
∗ defined on it. It satisfies the following properties:

1. Closure: for all a, b ∈ G, a ∗ b ∈ G

2. Associativity: for all a, b, c ∈ G, a∗(b∗c) = (a∗b)∗c

3. Identity: there exists an element e ∈ G such that,
for all a ∈ G, a ∗ e = e ∗ a = a

4. Inverse: for all a ∈ G, there is a′ ∈ G such that
a ∗ a′ = a′ ∗ a = e.

The group is the pair of the set and the operation, often
denoted (G, ∗).

A group is called abelian if it also satisfies
commutativity: a ∗ b = b ∗ a for all a, b ∈ G.

Properties of Groups

The group definition leads to some other useful
properties:

• The identity element is unique

• The inverse of any given element is always unique

• (a−1)−1 = a i.e. the inverse of an inverse is the
original element

• For all elements a, b ∈ G, (a ∗ b)−1 = b−1 ∗ a−1

• Elements can be ‘cancelled’ on both sides of an
equation i.e. if a, b, c ∈ G and a ∗ b = a ∗ c, then
b = c. This also holds true if b ∗ a = c ∗ a.

Permutation Groups

Let Ωn = {1, 2, 3, . . . , n}. There are n! permutations of
Ωn, and each of these map the elements of Ωn to other
elements in Ωn, forming a bijection. The set of these
permutation maps, with the operation of composition,
the symmetric group, denoted as Sn.

Fields
Definition

A field (F,+,×) is a set F with two binary operations,
+,× defined on it (not necessarily the obvious addition
and multiplication). It satisfies the following properties:

1. (F,+) is an abelian group with its identity
element being denoted 0 and the inverse element
of a ∈ F being −a

2. (F∗,×) is an abelian group, where F∗ = F \ 0. Its
identity element is denoted 1 and the inverse
element of a ∈ F being a−1

3. Distributive laws from obvious addition and
multiplication hold with the two binary
operations i.e. if
a, b, c ∈ F, a× (b+ c) = a× b+ a× c and
(a+ b)× c = a× c+ b× c.

Note that some extra notation is often used:
a− b = a+ (−b) and a/b = a× b−1.

Properties of Fields

The field definition leads to some other useful
properties:

• a× 0 = 0

• a× (−b) = −(a× b)

• If a× b = 0, a = 0 or b = 0.

Subgroups and Subfields
Definition

Let (G, ∗) be a group, and H be a non-empty subset of
G. If (H, ∗) is a group, then it is called a subgroup of G,
denoted as H ≤ G. We say that H inherits the group
structure of G.

Let (F,+,×) be a field, and E be a non-empty subset of
F. If (E,+,×) is a field, then it is called a subfield of F,
denoted E ≤ F.

Subgroup Lemma

A non-empty subset H of a group (G, ∗) is a subgroup
of G if and only if, for all a, b ∈ H:

1. a ∗ b ∈ H (closure)

2. a−1 ∈ H (inverse).

Subfield Lemma

A non-empty and non-trivial subset E of a field F is a
subfield of F if and only if:

1. a+ b ∈ E (closure under addition)

2. −a ∈ E (inverse under addition)

3. a× b ∈ E (closure under multiplication)

4. b−1 ∈ E for b ̸= 0 (inverse under multiplication).
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Morphisms
Definition

A homomorphism is a map ϕ : G → H (where (G, ∗)
and (H, ◦) are groups), with the special property that
ϕ(a ∗ b) = ϕ(a) ◦ ϕ(b) for all a, b ∈ G.
If ϕ is bijective, then it is called an isomorphism, with
G,H being called isomorphic (to each other). These are
essentially identical groups with regard to group theory.

Properties of Homomorphisms

The homomorphism definition leads to some other
useful properties:

• ϕ maps the identity of G to the identity of H

• ϕ maps inverses in G to inverses in H i.e.
ϕ(a−1) = (ϕ(a))−1

• Isomorphisms have an inverse which are also
isomorphisms.

Kernel and Image of a Homomorphism

For a homomorphism ϕ : G → H, with H having an
identity element e′:

• Its kernel is the set ker(ϕ) = {g ∈ G : ϕ(g) = e′},
with ker(ϕ) ≤ G

• Its image is the set im(ϕ) = {h ∈ H : h = ϕ(g) for
some g ∈ G}, with im(ϕ) ≤ H.

ϕ is injective (one-to-one) if and only if ker(ϕ) = {e}. If
ϕ is injective, we also have that im(ϕ) is isomorphic to
G (the converse is not necessarily true).

Vector Spaces
Definition

Consider an abelian group (V,+) with identity element
0 and a field F, with a function from F× V to V (scalar
multiplication, denoted αv). V is then called a vector
space over F if it satisfies the following properties for all
α, β ∈ F,u,v ∈ V :

1. α(βv) = (αβ)v (associativity)

2. 1v = v (identity element of F acts as an identity
map)

3. α(u+ v) = αu+ αv (distributivity of scalar
multiplication over vector addition)

4. (α+ β)u = αu+ βu (distributivity of scalar
addition over scalar multiplication).

Note that there are 6 axioms involved in proving a
vector space - these come from the abelian group and
proving closure for scalar multiplication.

Properties

The vector space definition leads to some other useful
properties:

• 0v = 0 and λ0 = 0

• λv = 0 implies λ = 0 or v = 0

• (−1)v = −v (the inverse of v)

• λv = λv with λ ̸= 0 means that v = w

Subspaces
Definition

If V is a vector space over F and U ⊆ V , then U is a
subspace of V , denoted U ≤ V , if it is a vector space
over F with the same vector addition and scalar
multiplication.

The trivial subspace ({0}) and V itself are always
subspaces.

Subspace Test Lemma

If V is a vector space over F and U is a non-empty
subset, then it is a subspace of V if and only if for all
u,v ∈ U and α ∈ F, αu+ v ∈ U .
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Linear Combinations, Spans and
Independence
Linear Combinations

For a vector space V over F, a (finite) linear
combination of vectors v1,v2, . . . ,vn ∈ V is any vector
which can be expressed as

α1v1 + α2v2 + · · ·+ αnvn,

where αi ∈ F for 1 ≤ i ≤ n.

Span

If S is a subset of V , then the span of S is the set of all
finite linear combinations of vectors in S, denoted
span(S).

If span(S) = V , then we say S spans V , or S is a
spanning set of V .

Note that span(S) ≤ V if S is a non-empty subset of V .

Linear Independence

A non-empty (and finite) subset S of V is linearly
independent if, for all vectors v1,v2, . . . ,vn ∈ S,

α1v1 + α2v2 + · · ·+ αnvn = 0,

with αi ∈ F for 1 ≤ i ≤ n, implies αi = 0 for 1 ≤ i ≤ n.
A set which isn’t linearly independent is called linearly
dependent.

Linear Dependence

If S is an arbitrarily ordered set of n linearly
independent vectors, then at least one of the vectors in
the set can be written as a linear combination of
previous vectors.

Properties of Linear Independence

• Any subset of a linearly independent set is also
linearly independent

• If v ∈ span(S) and v /∈ S, S ∪ {v} is linearly
dependent. Similarly, if S is linearly independent
and S ∪ {v} is not, then v ∈ span(S)

• If S1 ⊆ S2, then span(S1) ⊆ span(S2)

• span(S ∪ {v}) = span(S) if and only if
v ∈ span(S)

• If S is linearly dependent, then there exists v ∈ S
such that span(S \ {v}) = span(S)

• For an invertible matrix P ∈ GL(p,F) and a
linearly independent set {vi}, {Pvi} is also
linearly independent (related to linear
transformations)

Bases
Definition

A set S ⊆ V is a basis for V if and only if it is a
linearly independent spanning set of V . An example of
this is the standard basis of Fn, which has a basis
{e1, e2, . . . , en} where ei has 1 at the ith position and 0
everywhere else.

An equivalent result is that S is a basis if and only if
every vector in V can be uniquely expressed as a linear
combination of the vectors in S.

A useful result to know is that any linearly independent
set can be extended to a basis by adding more vectors
(implying that linearly independent sets must have at
most the same number of vectors as a basis)

Dimension
Definition

If a vector space V can have a finite spanning set, it
can have a finite basis, and all bases will contain the
same number of elements, which is called the dimension
of V , or dim(V ). This can be infinite (though we
mainly deal with finite dimensional vector spaces).

Properties from Spans, Linear
Independence and Bases
For an n-dimensional vector space V :

• The number of elements in a spanning set of V
must be at least n

• The number of elements in a linearly independent
set of V must be at most n

• If span(S) = V and |S| = n then S is a basis

• If S is linearly independent and |S| = n then S is
a basis.

Another useful property is that if U ≤ V , then
dim(U) = dim(V ) with equality if and only if U = V .

Coordinates in Bases
Definition

Consider a vector v, an element of vector space V , and
an ordered basis B of V with vectors {v1, . . . ,vn}. If
v = α1v1 + · · ·+ αnvn (a unique representation), then

α =

α1

...
αn


is called the coordinate vector of v with respect to an
ordered basis of V , called B. This is often denoted as
α = [v]B.
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Addition and Scalar Multiplication in Different
Bases

• u = v if and only if [u]B = [v]B for every basis B
of V .

• [u+ v]B = [u]B + [v]B

• [λv]B = λ[v]B.

This is useful as any vector space can have calculations
done on it by forming coordinates in Fn.

Sums and Direct Sums of Vector Spaces
Definition

If you have two vector spaces S, T over the same field
F, the sum S + T is defined as

S + T = {a+ b : a ∈ S,b ∈ T}.

If S ∩ T = {0}, then this sum is called a direct sum,
denoted as S ⊕ T .

Properties

A sum S + T is direct if and only if any vector in
x ∈ S + T can be written uniquely as a sum of two
vectors, one from S and one from T .

dim(S) + dim(T ) = dim(S + T ) + dim(S ∩ T ). For a
direct sum, this can be simplified to
dim(S) + dim(T ) = dim(S ⊕ T )

Complementary Subspaces

For any vector space X ≤ V , there exists a (not
necessarily unique) subspace Y such that X ⊕ Y = V ,
called the complementary subspace.

External Direct Sums

The above are called internal direct sums. External
direct sums are the Cartesian product of two vector
spaces, and turning that into its own vector space.
Addition and scalar multiplication are done
elementwise. This external direct sum is also denoted
with the symbol ⊕.

Linear Transformations

Linear Transformations
Definition

Let V,W be vector spaces over a field F . A linear
transformation or linear map T : V → W is a function
that satisfies

• T (v + u) = T (v) + T (u)

• T (λv) = λT (v)

for all v,u ∈ V and λ ∈ F.

Linearity Test Lemma

A function T : V → W for vector spaces V,W over F is
linear if and only if

T (λv + u) = λT (v) + T (u)

for all v,u ∈ V and λ ∈ F.

Properties

Let V,W,X be vector spaces over F and let T : V → W
and S : W → X be linear transformations between
these spaces.

(a) The identity map id : V → V defined by
id(v) = v is linear.

(b) T (0) = 0 and T (−v) = −v.

(c) The map S ◦ T : V → X is linear.

(d) If T is invertible, then the map T−1 : W → V is
also linear.

(e) Let B = {v1, ...,vp} be a basis for V . Then
T : V → Fp defined by T (x) = [x]B is linear. In
other words, taking coordinates is a linear map.

Kernel and Image
Kernel

The kernel or nullspace of a linear map T : V → W is
the set of all vectors in V which map to 0, or
equivalently,

ker(T ) = {v ∈ V : T (v) = 0}.

Image

The image of a particular U ≤ V is the set of all
possible outputs under the linear map T : V → W , or
equivalently T (U) where

T (U) = {T (u) : u ∈ U}.
The image of T , denoted im(T ) is the image of V under
T ; that is, im(T ) = T (V )
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Properties

The kernel and image are subspaces. Let T : V → W
be a linear transformation and suppose U ≤ V . Then:

(a) kerT is a subspace of V .

(b) imT is a subspace of W .

(c) If U is finite dimensional then so is T (U).

Rank and Nullity

Define nullity to be the dimension of the kernel, and
rank to be the dimension of the image. That is, if T is
a linear map, then

nullity(T ) = dim (kerT ), rank(T ) = dim (imT ).

For a linear map T to be injective (one-to-one) then
ker(T ) = {0} or equivalently nullity(T ) = 0

Rank-Nullity Theorem

If V is a finite dimensional vector space over a field F
and T : V → W is a linear transformation, then

rank(T ) + nullity(T ) = dim(V ).

As a corollary suppose that dim(V ) = dim(W ). Then,
all the following statements are equivalent:

(i) T is invertible (bijective).

(ii) T is one-to-one (injective) so nullity(T ) = 0.

(iii) T is onto (surjective) so rank(T ) = dim(V ).

Isomorphisms

An invertible linear map between two vector spaces V
and W is an isomorphism. Then, V and W are
isomorphic if such a map exists. Finite dimensional
vector spaces are isomorphic if and only if their
dimensions are equal.

A p dimensional vector space is isomorphic to Fp, and
the isomorphism is taking coordinates with respect to a
certain basis.

Matrices as Linear Maps
Theorem

Suppose V,W are finite dimensional vector spaces over
F. Let dim(V ) = q and dimW = p, and let B be a basis
for V with C being a basis for W .

If T : V → W is a linear map then there exists a unique
matrix A ∈ Mp,q(F) such that

[T (v)]C = A[v]B

Conversely, for any matrix A ∈ Mp,q(F), the above
equation defines a unique linear map from V to W . A
is referred to as the matrix of the linear map, and often
denoted as [T ]BC .

Intuition: applying linear maps is represented by
matrix multiplication of coordinate vectors. The matrix
of the linear map, [T ]BC , is found by applying T to each
vector in B. Each column will be this vector expressed
with respect to the basis C.

Properties

(a) Let T : V → W and S : W → X be linear maps,
where V,W,X have bases A,B, C respectively.
Then the matrix representing the linear map
S ◦ T is the product of the matrices representing
S and T . That is,

[S ◦ T ]AC = [S]BC [T ]
A
B

Composition of linear maps corresponds to matrix
multiplication

(b) For an invertible linear map T with corresponding
matrix M , the inverse map T−1 os represented by
the inverse matrix M−1

Change of Basis
Let B = {v1, ...,vp} be a basis for a vector space V
with each vi written with respect to the standard basis.
Then the matrix with columns v1, ...,vn corresponds to
transforming coordinates in B to the standard basis
and is denoted [id]BS .

Change of Basis Matrix

Consider two bases B and C. The matrix [id]BC is the
change of basis matrix between B and C.

[v]C = [id]BC [v]B.

Commutative Diagram

The following diagram summarises the change of basis
operations for a linear map T from V to W .

S V W S ′

B V W C

A

M

P Q

Each element of the diagram is defined as:
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• The matrix of T with respect to the standard
basis in the domain (S) and standard basis in the
codomain (S ′) is A.

• P is the change of basis from B to S in V , while
Q is the change of basis from C to S ′ in W .

• M is the matrix of T with respect to B in the
domain and C in the codomain.

Thus M = Q−1AP .

Normal Form
Invariant Subspaces

Let T be a linear transformation from V to V . If
X ≤ V and T (X) ≤ X then X is an invariant subspace
of V .

Theorem

Suppose V = X ⊕ Y for invariant X,Y , under a linear
map T , with dimensions p, q respectively. Then there
exists a basis B so that the matrix of T takes the form

[T ]BB =

(
A 0
0 B

)
where A is p× p and B is q × q. This matrix is referred
to as the direct sum of A and B, denoted A⊕B.

Normal Form

Let T : V → W be linear with dimV = p, dimW = q,
rankT = r. Then there exist bases B and C in V,W
respectively such that the matrix of T takes the form

Nq,p;r =

(
Ir 0
0 0

)
∈ Mq,p(F)

Ir is the r × r identity matrix and each zero matrix is
appropriately sized. This is the normal form of the
linear map T .

Similarity
p× p matrices A,B are similar if there exists a p× p
invertible matrix P such that B = P−1AP .

Similarity Theorem

Matrices are similar if and only if they represent the
same linear map with respect to two different bases.

Similarity Invariants

Similarity invariants are properties that remain the
same for all similar matrices. Examples are:

• Rank

• Nullity

• Determinant

• Trace

Multilinear Maps
Let V1, V2,W be three vector spaces over F and define
a map T : V1 × V2 → W . T is bilinear if it is linear in
each argument, that is,

T (v1 + λu1,v2) = T (v1,v2) + λT (u1,v2),

and the same for the second argument. This can be
extended to trilinear maps which are linear in three
arguments.
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Inner Product Spaces

Inner Products
Generalising the real and complex dot product, we
define other ‘inner products’ which maintain some
properties from the real and complex dot products.

Definition

Given a vector space V over F, an inner product is a
complex valued function ⟨, ⟩ : V × V → F which, for all
u,v,w ∈ V , satisfies:

1. ⟨u,v +w⟩ = ⟨u,v⟩+ ⟨u,w⟩ (additive part of
sesquilinearity)

2. ⟨u, αv⟩ = α⟨u,v⟩ (multiplicative part of
sesquilinearity)

3. ⟨u,v⟩ = ⟨v,u⟩ (conjugate symmetry)

4. ⟨v,v⟩ ∈ R and ⟨v,v⟩ ≥ 0 with equality if and
only if v = 0 (positive definiteness).

V paired with ⟨, ⟩ is called an ‘inner product space’.
The corresponding norm is then ∥v∥ =

√
⟨v,v⟩.

Properties

1. ⟨u+ v,w⟩ = ⟨u,w⟩+ ⟨v,w⟩

2. ⟨αu,v⟩ = α⟨u,v⟩

3. ∥αv∥ = |α|∥v∥

4. ⟨x,v⟩ = 0 if and only if x = 0 for all v ∈ V

5. |⟨u,v⟩| ≤ ∥u∥∥v∥ (Cauchy-Schwarz inequality)

6. ∥u+ v∥ ≤ ∥u∥+ ∥v∥ (Triangle inequality).

Generalising Orthogonality and
Orthonormality
Definition

For an inner product space V , two non-zero vectors u,v
are orthogonal if ⟨u,v⟩ = 0. This is denoted as u ⊥ v.
A set of vectors S = {v1,v2, . . . ,vn} is orthogonal if
each pair of distinct vectors is orthogonal.
We say that it is orthonormal instead if the norm of
each vector is 1 as well. This is equivalent to saying it
is orthonormal if

⟨vi,vj⟩ = δij =

{
1 i = j

0 i ̸= j

for all 1 ≤ i, j ≤ n.
Note that all orthogonal and orthonormal sets are
linearly independent.

Projection
Definition

For v ̸= 0 in an inner product space V , the projection
of u onto v is defined as

projv(u) =
⟨v,u⟩
⟨v,v⟩

v.

This projection is the component of u in the direction
of v - subtracting it from u will give a vector
orthogonal to v.

Properties

• If S = {v1, . . . ,vk} is a set of orthogonal vectors,
and v ∈ span(S), then v is equal to

k∑
i=1

projvi
v,

i.e. the sum of the projection of v onto all vectors
in S.

• Specifically, if S is orthonormal, then ⟨vi,vi⟩ = 1,
so

v =

k∑
i=1

⟨vi,v⟩vi.

Gram-Schmidt Process
The Gram-Schmidt Process enables us to form an
orthonormal basis for a finite dimensional inner
product space, by taking a basis, orthogonalising it and
then normalising it.

Construction

Given a basis S = {v1, . . . ,vn}, we define a new set of
orthogonal vectors S′ = {w1, . . . ,wn} where:

w1 = v1

w2 = v2 − projw1
(v2)

w3 = v3 − projw1
(v3)− projw2

(v3)

...

wn = vn −
n−1∑
i=1

projwi
(vn).

From here, we normalise our vectors by defining
ei =

wi

∥wi∥ for 1 ≤ i ≤ n, to get our orthonormal basis
T = {e1, . . . , en}.

Orthonormal Complement
Definition

For a inner product space V and a subspace X, the
space Y = {y ∈ V : ⟨y,x⟩ = 0 for all x ∈ X} is called
the orthogonal complement to X, denoted X⊥.
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Properties

• V = W ⊕W⊥

•
(
W⊥)⊥ = W

• If v ∈ V then v − projW (v) is in W⊥, where
projW (v) is defined as the component of which is
part of W (which must exist from point 1)

• For w ∈ W, projW (w) = w

• ∥ projW (v)∥ ≤ ∥v∥ for all v.

• projW (v) + projW⊥(v) = v.

• ∥v −w∥ ≥ ∥v − projW (v)∥ with equality if and
only if w = projW (v) (i.e. v −w ∈ W⊥).

Adjoints
Covectors

Covectors are linear maps from a vector space V to the
field it lies on, F. The set of all covectors in V is called
the dual space, V ∗.

All covectors can be represented as a dot product with
a constant vector (which is unique), and this leads to
an isomorphism between V and V ∗.

Going from the map to this vector is called ‘raising the
index,’ denoted t = T ♯. Going in the opposite direction
is called ‘lowering the index,’ denoted T = t♭.

Defining the Adjoint

For a linear map T : V → W where V,W are finite
dimensional, there is a unique linear map T∗ : W → V ,
called the adjoint, with

⟨w, T (v)⟩ = ⟨T ∗(w),v⟩

for all v ∈ V,w ∈ W .

Specifically for matrices, we find that the matrix
representation can also have an adjoint, which is
defined as A∗ = AT

Properties

For linear transforms S, T mapping from V to W ,

• (S + T )∗ = S∗ + T ∗

• (αT )∗ = αT ∗

• (T ∗)∗ = T

• For linear U : W → X, (U ◦ T )∗ = T ∗ ◦ U∗

• If T has a matrix representation A, then T ∗ has a
matrix representation A∗ = AT .

Maps with Special Adjoints
Definitions

For a linear map T : V → V where V is a finite
dimensional inner product space. T is:

• unitary if T ∗ = T−1

• an isometry if ∥T (v)∥ = ∥v∥ for all v ∈ V

• self-adjoint or Hermitian if T ∗ = T

These definitions can also be applied to the
corresponding matrices - A is unitary if A∗ = A−1 and
Hermitian if A = A∗.

Properties

For a linear map from a finite dimensional inner
product space V to itself, the following are equivalent

• T is an isometry

• T ∗ is an isometry

• T is unitary

• T ∗ is unitary

• ⟨T (v), T (w)⟩ = ⟨v,w⟩ for all v, w

• If {e1, . . . , en} is an orthonormal basis for V , so is
{T (e1), . . . , T (en)}.

• The corresponding matrix of T has columns (and
rows) which form an orthonormal basis of Cp

QR Factorisation
Construction

We aim to decompose A ∈ Mp,q(F) with rank q
(meaning p ≥ q) into a product QR where Q ∈ Mp,q(F)
with orthonormal columns, and R ∈ GLq(F) which is
upper triangular.

To do this, we use the Gram-Schmidt process to
generate an orthogonal basis from the columns of A
(the set {v1, . . . ,vn}), generating the set {w1, . . . ,wq}
with a corresponding normalised set of vectors
{e1, . . . , eq}.

We then define

Q =
(
q1 · · · qn

)
and

R =


∥w1∥ ⟨q1,v2⟩ · · · ⟨q1,vq⟩

∥w2∥ · · · ⟨q2,vq⟩
. . .

...
∥wq∥


.
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Alternative Construction

If A has p > q (i.e. isn’t square), then we can also write
A = Q̃R̃, with Q̃ ∈ GLp(F) being unitary and
R̃ ∈ Mp,q(F) of rank q and in echelon form.

We form Q̃ by completing the columns of Q to an
orthonormal basis, and create R̃ by adding p− q rows
of zeroes to the bottom of R.

Method of Least Squares
Definition

When solving a system of linear equations Ax = b, we
often can’t find the best solution. The best we can get
is done by minimising the sum of the squares of the
errors, which is equivalent to minimising ∥Ax− b∥ with
the norm defined based on the standard inner product.
Such a solution always exists, and is unique provided
the columns of A are independent.

Equivalent Problem

Any least squares solution to Ax = b will be a solution
to the equations A∗Ax = A∗b, known as the normal
equations.

If A has independent columns, then (A∗A) is invertible,
meaning the least squares solution is x = (A∗A)−1A∗b.

Determinants

Determinants from the Definition
Permutations

Recall Sn is group of permutations on n objects. Let
Ωn = {1, 2, ..., n}. Then a shorthand notation for a
permutation on Ωn is [p1, p2, ..., pn] where 1 is mapped
to p1, 2 to p2 and so forth.

Inversions

An inversion is when a permutation causes a larger
number to preceed a smaller number, for example 4
before 2. For a permutation σ = [p1, p2, ..., pn] which
contains k inversions, define

sign(σ) = (−1)k

A transposition (swap) has an odd number of
inversions, hence its sign is negative.

Determinant Definition

The determinant of an n× n matrix A = (a)ij is

detA =
∑
σ∈Sn

sign(σ)a1σ(1)a2σ2 · · · anσ(n)

Key Properties

Let A be an n× n matrix

(i) detA =
∑

σ∈Sn
sign(σ)aσ(1)1aσ22 · · · aσ(n)n. That

is, we can order by columns or rows.

(ii) detA = detAT and detA∗ = detA.

(iii) If there is a 0 row or column, det(A) = 0.

(iv) If the rows or columns of A are permuted, the
determinant is multiplied by the sign of the
permutation - a consequence is if rows are
transposed then the determinant is multiplied by
-1.

(v) If A has two equal columns or rows the
determinant is 0.

(vi) Adding a multiple of a row or column to another
row or column does not affect the determinant.

(vii) The determinant is a multilinear and alternating
map from the rows and columns to a single
number.

(viii) If B is also n× n then det (AB) = detA detB.

(ix) A is invertible if and only if detA ̸= 0

(x) If A is invertible then detA−1 = 1
detA

11



Calculating Determinants
Minors

If A is a p× p matrix, the (i, j)-minor of A, denoted
Aij , is the matrix obtained by deleting the ith row and
jth column from A.

If A has row i entirely 0 except for entry aij then

detA = (−1)i+jaij detAij

Likewise goes for columns. A method to calculate
determinants is then

1. Add multiples of rows/columns until one
row/column is zero except for one entry.

2. Reduce the determinant to one that is one row
and one column smaller using the above result.

3. Repeat this process until the determinant is 2× 2
and can be easily calculated.

Row Operations and Elementary Matrices

The determinant of an upper or lower triangular matrix
is the product of the diagonal elements.

Defintion: Elementary row operations are one of the
following:

• Swapping two rows.

• Multiplying rows by a non-zero scalar.

• Adding multiples of one row to another.

An elementary matrix is formed from applying
elementary row operations to the identity matrix.

Given an elementary matrix corresponding to a
particular row operation E and a matrix A, applying
the row operation on A is equivalent to finding EA.

(a) If E is a swap of two rows, then detE = −1.

(b) If E is multiplying a row by a non-zero scalar λ,
then detE = λ.

(c) If E is adding multiples of one row to another,
then detE = 1.

Lemma: If A is invertible there is a sequence of
elementary matrices E1, E2, ..., Ek such that
A = E1E2 · · ·Ek and

detA =

k∏
i=1

detEi

Thus a method for determining detA is to perform row
operations until A is an upper triangular matrix. Then,
find the product of the diagonal elements and multiply
by the corresponding determinants of the elementary
row operations required.

Cofactor Expansion

In A ∈ Mp,p(F), the cofactor of element aij is the
number cij = (−1)i+j detAij . Then

detA =

p∑
i=1

aijcij

The adjugate of A is the matrix adj(A), which is the
transpose of the matrix of cofactors, adj(A)ij = cji. An
alternative way to express the inverse matrix A−1 is

A−1 =
adj(A)

detA

In general, cofactor expansion and the adjugate-inverse
formula are only useful in 2× 2 case. The most useful
method is using row-reduction.
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Eigenvalues and Eigenvectors

Definition
Let T be a linear map from V to V . Then we have the
following definitions:

1. If T (v) = λv, for λ ∈ F and v ̸= 0, then λ is an
eigenvalue of T and v is its corresponding
eigenvector.

2. If λ is an eigenvalue of T then the eigenspace of T
is

Eλ(T ) = {v ∈ V : T (v) = λv}

3. The set of all eigenvalues is called the spectrum of
T .

A key distinction is that eigenvectors are never 0.

Key Properties

(i) Eλ(T ) = ker (λid − T ).

(ii) If λ1, ..., λk are distinct eigenvalues with
corresponding eigenvectors v1, ...,vk then
v1, ...,vk are linearly independent.

(iii) If λ ̸= µ then Eλ(T ) ∩ Eµ(T ) = {0}.

Diagonalisation
A ∈ Mp,p(F) is diagonalisable on F if it is similar to a
diagonal matrix (only non-zero entries along the main
diagonal). That is,

D = P−1AP

where P is an invertible p× p matrix and D is
diagonal. A linear map T : V → V is diagonalisable if
there is a basis of V in which the matrix representing T
is diagonal.

We can write A = PDP−1 where D is a diagonal
matrix of the eigenvalues of A and P is a matrix
formed by the corresponding eigenvectors as columns.

Theorem

If T : V → V is linear, for a finite dimensional vector
space V over F, T is diagonalisable if and only if V has
a basis whose elements are all eigenvectors of T .

The p× p matrix A over F is likewise diagonalisable if
and only if Fp has a basis consisting of eigenvectors of
A.

Special Case: A p× p matrix with p distinct
eigenvalues is diagonalisable.

Characteristic Polynomial
The characteristic polynomial of the p× p matrix A is
defined as:

cpA(t) = det (tI −A)

Its properties are:

(a) It is a degree p polynomial in t.

(b) The zeroes are eigenvalues of A, i.e. the set of
zeroes of cpA is the spectrum of A.

(c) It is monic.

(d) It is a similarity invariant.

In practice, eigenvalues are usually determined by
solving det(A− tI) = (−1)pcpA(t) = 0 instead.

Note that as the characteristic polynomial is a
similarity invariant, if A represents the linear map
T : V → V then cpT (t) = cpA(t). This gives further
properties:

(e) λ is an eigenvalue of T if and only if cpT (λ) = 0.

(f) W ≤ Eλ(T ) implies W is an invariant subspace.

(g) λ is an eigenvalue if and only if
nullity(T − λid) > 0

The problem of finding eigenvalues and eigenvectors for
a linear map can be reduced to finding them for a
matrix representing the map with respect to a certain
basis.

Multiplicity
Diagonalisation of T : V → V relies on whether V (n
dimensional vector space) has a basis of eigenvectors of
T , that is, whether

∑
λ dimEλ(T ) = n. This is

contigent ont the multiplicities of the eigenvalues.

Definition

Let T : V → V be linear, with eigenvalue λ, hence
(t− λ) must be a factor of cpT (t).

• The geometric multiplicity (gm) of λ is
dimEλ(T ).

• The algebraic multiplicity (am) of λ is the
multiplicity of (t− λ) in cpT (t).
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Relationship to Determinant and Trace

NOTE: To get p roots from cpT (t), the field should be
C, which is algebraically closed.

For A ∈ Mp,p(C), A will have p eigenvalues λ1, ..., λp

accounting for algebraic multiplicities. Further,

detA =

p∏
i=1

λi and tr(A) =

p∑
i=1

λi

Properties

Let T : V → V be a linear map on a finite dimensional
vector space T . Then

1 ≤ gm(λ) ≤ am(λ)

Further, the four statements are equivalent:

(a) T is diagonalisable.

(b) There is a basis for V consisting of eigenvectors of
T .

(c) V = Eλ1
(T )⊕ Eλ2

(T )⊕ · · · ⊕ Eλn
(T ) for the

distinct eigenvalues λ1, ..., λn.

(d)
∑k

j=1 dimEλj
(T ) = dimV

Normal Operators
A linear transformation on an inner product space V is
normal if and only if T ∗ ◦ T = T ◦ T ∗, that is, the linear
map commutes with its adjoint.

Unitary, Hermitian, orthogonal and symmetric matrices
are normal.

Properties

Let T be a normal linear map on an inner product
space V with eigenvalues λ, µ.

(i) For all v ∈ V , ||T (v)|| = ||T ∗(v)||.

(ii) For a scalar α, (T − αid) is also normal.

(iii) If λ is an eigenvalue of T , then λ is an eigenvalue
of T ∗.

(iv) Eλ(T ) = Eλ(T
∗).

(v) Distinct eigenvalues have orthogonal eigenspaces,
so if λ ̸= µ then Eλ(T ) ⊥ Eµ(T ).

(vi) Geometric multiplicity of λ equals algebraic
multiplicity of λ.

Spectral Theorem

Let V be a finite dimensional inner product space over
C. Let T : V → V be a normal linear map. Then V has
an orthonormal basis consisting of eigenvectors for T .
Then, if A is a p× p normal matrix then there exists a
unitary matrix P such that

P−1AP = P ∗AP

is diagonal.

Conversely, if [T ]BB = A = PDP−1 for unitary P and
diagonal D (making B an orthonormal basis) then A
and thus T are normal.

Key idea: normal maps are unitarily diagonalisable.
They can be decomposed in terms of unitary matrices
because the eigenvectors form an orthonormal basis,
hence the usual P matrix is unitary.

Self-Adjoint Maps

Let T : V → V be a linear map over finite dimensional
vector space V and field F. Suppose T is self-adjoint
(Hermitian if F = C and symmetric if F = R). Then,

(a) The eigenvalues of T are real.

(b) There is an orthonormal basis for V consisting of
eigenvectors for T .

If you can rewrite a curve in the form xTAx = c for
some constant c, then to classify the curve, only the
signs of the eigenvalues of A are necessary. For
example, if both are positive then the curve is an
ellipse. If one is negative, one is positive, then the curve
is a hyperbola.

Unitary Maps

Suppose V is a p-dimensional inner product space over
F with unitary map T : V → V . The eigenvalues of T
lie on the unit circle in C, so are of the form eiαk for
real αk. Further, V has a unitary (orthonormal) basis
of eigenvectors of T.

Further, if T is an isometry on V , then its
characteristic polynomial is of the form

cpT (t) = (t− 1)a(t+ 1)b
k∏

j=1

(t− eiαj )(t− e−iαj )

where a+ b+ 2k = dim(V ) and αj ∈ (0, π). There is an
orthonormal basis for V in which the matrix for T
takes the form Ia ⊕ Ib

⊕k
j=1 R(αj), where R is a

rotation matrix by the angle αj .
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Singular Value Decomposition
Let A be a p× q matrix over C. A singular value
decomposition (SVD) of A is the factorisation

A = UΣV ∗

where U, V are square unitary matrices. Σ is the p× q
singular value matrix, consisting of singular values σi

in the diagonal entries and 0 elsewhere, ordered as
σ1 ≥ σ2 ≥ · · · ≥ σq ≥ 0. The columns of U and V are
the left and right singular vectors accordingly.

For any matrix A the SVD exists and the singular
values are unique.

Construction

To find the SVD of a p× q matrix A,

1. Find the eigenvalues and corresponding
eigenvectors of the q × q matrix A∗A.

2. Find the unitary diagonalising matrix V of A∗A.

3. Order the eigenvalues in decreasing order, then
set σi =

√
λi so that σ1 ≥ σ2 ≥ · · · ≥ σq ≥ 0.

These are singular values.

4. Set Σ̂ to be the matrix with diagonal entries as
non-zero singular values, then set Σ = Σ̂ ⊕O to
be the p× q matrix formed by filling Σ̂ with
zeroes.

5. Let vi be the ith column of V and then the
vectors ui = σi

−1Avi extended to an orthonormal
basis for Cp form the columns of the p× p unitary
matrix U .

Reduced SVD

If A ∈ Mp,q(C) has rank k, the reduced SVD of A is

A = ÛΣ̂V̂ ∗

for Û , V̂ with orthonormal columns and k × k,
invertible and diagonal Σ̂. Its construction for a matrix
A involves

1. Find Σ̂, U and V from the previous construction
of a SVD for A.

2. Delete the last q − k columns from V to form V̂ .

3. Delete the last p− k columns from U to form Û .

Properties

For any p× p matrix of rank k:

1. The last q − k right singular vectors are an
orthonormal basis for ker(A).

2. The first k left singular vectors are an
orthonormal basis for im(A).

3.
∑k

i=1 σi = tr(A∗A)

Pseudoinverse

For A (not necessarily square) with SVD A = ÛΣ̂V̂ ∗,
the pseudoinverse is given by

A+ = V̂ Σ̂−1Û∗

The least squares solution to Ax = b is x = A+b.
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Canonical Forms
Canonical forms extend the process of diagonalisation
to matrices that cannot be undiagonalised. It reduces a
matrix A to a simple matrix that it is similar to (i.e. a
matrix B such that A = P−1BP ).

Generalised Eigenspaces
Definition

Given an eigenvalue λ, the generalised eigenspace of A
in the vector space V is defined as
GEλ(T ) = {x ∈ V : (T − λid)kx for some k ∈ Z}.

Height of an eigenvalue

In a finite dimensional space V , the height of an
eigenvalue λ is the least integer such that
GEλ(T ) = ker (T − λid)h.

We use Vk(λ) to denote ker (T − λid)k.

• Vk(λ) = Vk+1(λ) = . . . = GEλ(T )

• V1(λ) = Eλ(T )

• 0 = dimV0(λ) < dimV1(λ) < ... < dimVh−1(λ) <
dimVh(λ) = dimVh+1(λ) = dimVh+2(λ) = . . .

We can use Zk(λ) to denote spaces Zk(λ) such that
Vk(λ) = Vk−1(λ)⊕ Zk(λ). They are not unique.

• Z1(λ)⊕ Z2(λ)⊕ . . .⊕ Zk(λ) = Vk(λ)

• dimZk(λ) = dimVk(λ)− dimVk−1(λ)

• dimZ1(λ) ≥ dimZ2(λ) ≥ . . . ≥ dimZh(λ). That
is, the dimensions of Vk(λ) increase at a
decreasing rate.

Block diagrams

We can represent the structures of generalised
eigenspaces with a Jordan block diagram:

From bottom up, the rows represent the dimensions of
Zk(λ) as k increases. The dimensions of Zk(λ) must be
non-increasing, since there must be fewer blocks on
each row as you go up.

• The entire structure (all the rows) represents the
generalised eigenspace.

• The first k rows of the structure (bottom up)
represent Vk(λ).

In this case, dimV1(λ) = 5, dimV2(λ) = 8,
dimV3(λ) = 11, dimV4(λ) = 12.

Step down theorem

If v ∈ Zk {0}, then (T − λid)(v) ∈ Vk−1(λ) Vk−2(λ).
That is, applying (T − λid) to a vector moves it down
one level in the block diagram.

Jordan chains

Definition: A Jordan chain of length k is an ordered
set of non-zero vectors {v1, . . . ,vk} such that
T (v1) = λv1 and T (vi) = λvi + vi−1.

• One can construct a Jordan chain by taking a
vector from the kth level of the block diagram as
vk, and then take vi−1 = (T − λid)(vi) for
i = k, k − 1, . . . , 2.

• The columns of the block diagram represent the
maximal (length) Jordan chains. For instance,
{v1, . . . ,v4} in the above diagram represents a
Jordan chain.

Spaces spanned by Jordan chains

A Jordan chain {v1, . . . ,vk} is linearly independent.

• The space spanned by a Jordan chain is
invariant under T , that is, T (U) ⊆ U .

• It is also indecomposable under T , which
means that it cannot further decomposed into
invariant non-trivial subspaces.

Jordan blocks

For U = span{v1, . . .vk}, the matrix of T|U with
respect to the basis {v1,v2, . . . ,vk} has form

λ 1 . . . 0 1
0 λ . . . 0 0
...

...
. . .

...
...

0 0 . . . λ 1
0 0 . . . 0 λ

 := Jk(λ).

A matrix of this form is called a Jordan block.
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Jordan Forms
Jordan basis

For any linear transformation T on a finite-dimensional
vector space V , there exists a basis of the entire space
made up of the concatenation of Jordan chains of the
eigenvalues of T .

Decomposition lemma

For any linear transformation T on a vector space V of
non-zero finite dimension, for some integer m ≥ 1, there
exist T -invariant and indecomposable subspaces
U1, . . . , Um such that V = U1 ⊕ . . .⊕ Um.

• Each of the subspaces is spanned by a maximal
length Jordan chain (i.e. a column of one of the
Jordan blocks).

• Theorem: The number of splitting spaces in the
decomposition lemma is equal to the number of
independent eigenvectors and the number of
maximal Jordan chains.

Jordan matrices and canonical forms

A Jordan matrix is a matrix consisting of a direct
sum of Jordan blocks.

• Theorem: For any linear transformation T on a
non-zero, finite-dimensional complex vector space
V , there exists a basis of V with respect to which
the matrix of T is a Jordan matrix. This is called
a Jordan canonical form.

• The numbers and lengths of the maximal
Jordan chains are similarity invariants. That is,
the Jordan form of a matrix is unique up to
reordering of the individual Jordan blocks.

• Matrices are similar if and only if they have the
same Jordan form.

Finding a Jordan form and the corresponding
Jordan basis

The process is as follows:

• Find the eigenvalues of the matrix A.

• For each eigenvalue λi:

– Calculate the nullities of (A− λiI)
k for

k = 1, 2, . . . until the nullity no longer
increases (which means you’ve found the
height hi of the eigenvalue λi).

– Construct the Jordan block diagram.
– Find a vector in

ker(A− λiI)
hi ker(A− λiI)

(hi−1)) to begin
the first Jordan chain.

– Form the Jordan chain by successively
applying (A− λiI) to the vector until you
reach the bottom of the chain.

– Do the same for each of the other columns.
Note that all the columns must be linearly
independent of the others.

• For each Jordan chain, construct the
corresponding Jordan matrix.

• Take the direct sum of the Jordan matrices, then
concatenate the corresponding Jordan chains in
the same order.

Miscellaneous Properties
Space decompositions

Miscellaneous properties of Jordan chains

Useful properties of Jordan chains. Many of them are
quite intuitive:

• The geometric multiplicity of λi is the number of
maximal Jordan chains for the eigenvalue.

• The algebraic multiplicity of λi is the sum of the
sizes of the maximal Jordan chains for the
eigenvalue.

• The height hi of eigenvalue λi is the size of the
largest Jordan block for λi.

• V is the direct sum of its generalised eigenspaces.
Each of the generalised eigenspaces is the direct
sum of splitting spaces for that eigenvalue.

Cayley-Hamilton theorem

For any matrix A ∈ Mp,p(C), cpA(A) = 0.

• Corollary: The space spanned by {I, A,A2, . . .}
is at most p-dimensional.

• The minimal polynomial of A is the lowest
degree polynomial such that mpA(A) = 0. It is
given by

m∏
i=1

(t− λi)
hi .

Note thate mpA(A) divides cpA(A).
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Functions of Matrices and
Systems of ODEs

Powers of Matrices
Matrix expansions

• If M = A⊕B, then Mn = A⊕B.

• if A = PBP−1, then An = PBnP−1.

– It follows that if A = PBP−1, then
f(A) = Pf(B)P−1 for any polynomial f .

Binomial theorem for commuting matrices

Let A and B be p× p matrices for which AB = BA.
Then for any integer n ≥ 0,

(A+B)n = An+

(
n

1

)
An−1B+

(
n

2

)
An−1B2+ . . .+Bn.

Powers of Jordan blocks

For any Jordan block

Jk(λ) =


λ 1 . . . 0 0
0 λ . . . 0 0
...

...
. . .

...
...

0 0 . . . λ 1
0 0 . . . 0 λ

 := Jk(λ),

we have that Jk(λ) = λI +N , with

N =


0 1 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
0 0 . . . 0 0

 .

• The powers of N are given by shifting the
diagonal up for each subsequent power, e.g.

N2 =



0 0 1 . . . 0 0 0
0 0 0 . . . 0 0 0
0 0 0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 0 1
0 0 0 . . . 0 0 0
0 0 0 . . . 0 0 0


.

• This makes it easy to calculate powers of Jordan
matrices, by using the binomial theorem on
(λI +N)n.

• Since every matrix can be written as A = PJP−1

for some direct sum of Jordan blocks J , this can
be extended to calculate powers of any matrix.

Entrywise convergence

A matrix A(k) converges entrywise to A as k → ∞ iff
all its entries converge to the corresponding entry of A
as k → ∞.

Norms

• The ∞-norm of A is defined as

∥A∥∞ = max{|aij | : 1 ≤ i, j ≤ p}.

• The operator norm (or 2-norm) of A is defined as

∥A∥op = max{∥Av∥ : v ∈ Cp and ∥v∥ = 1}.

• The Frobenius norm of A is defined as

∥A∥F =
√

tr(A∗A).

Norm properties

• If a matrix A ∈ Mp,p(C) has non-zero singular
values

σ1 ≥ σ2 ≥ . . . ≥ σk ≥ 0,

then
∥A∥op = σ1

and
∥A∥F =

√
σ2
1 + . . .+ σ2

k.

• For any matrix A ∈ Mp,p(C),
∥A∥F ≥ ∥A∥∞ ≥ 1

p∥A∥F .

Convergence with norms

For any norm N on Mp,p((C)), and any sequence
A(k) ∈ Mp,p(C), A(k) converges to A in the norm N if
N(A(k) −A) → 0 as k → ∞.

Properties of convergence

• Convergence in the Frobenius norm, the ∞-norm,
the operator norm, and entrywise are equivalent,
that is, any one of them implies the other three.

• If A(k) ∈ Mp,p(C) converges to A and P is an
invertible p× p matrix, then

B(k) = P−1A(k)P

converges to P−1AP .

Matrix power series

Theorem: If f : C → C has a power series expansion
f(t) =

∑∞
k=0 akt

k with a radius of convergence R, then
if A ∈ Mp,p(C), then

∑∞
k=0 akA

k converges provided
that p||A||∞ < R. The limit is f(A).

This is a matrix power series.
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Many of the properties of matrix polynomial
expansions still apply. For a function f : C → C with a
power series expansion:

• If f(A) is defined and B = PAP−1, then
f(B) = Pf(B)P−1.

• If M = A⊕B and f(A) and f(B) are defined,
then f(M) = f(A)⊕ f(B).

• If f(A) is defined and Av = λv, then
f(A)v = f(λ)v.

Matrix exponentials

Definition: eA = exp(A) = I +A+ 1
2!A

2 + . . .

Some properties of the matrix exponential:

• For any matrix A = Mp,p(C), exp(tA) is
differentiable with respect to t, and

d

dt
exp(tA) = A exp(tA) = exp(tA)A.

• etA is always invertible and has inverse e−tA.

• If AB = BA for A,B ∈ Mp,p(C), then
exp(A+B) = exp(A) exp(B).

Matrix Exponentials and Differential
Equations
IVP solution

For A ∈ Mp,p(C), the set of solutions of y′ = Ay is a
vector space of dimension p.

The columns of etA form a basis for this vector space.
This means all such solutions can be expressed in the
form etAc for some c ∈ Cp.

It follows that the initial value problem y′ = Ay,
y(0) = c has a unique solution y = etAc.

The column method

The column method provides a simple way to
evaluate etAc without actually calculating etA.

• Use the basis of generalised eigenvectors to write
c =

∑t
k=1 akvk for generalised eigenvectors vk.

• Write

etAc = etA

(
t∑

k=1

akvk

)

=

t∑
k=1

ake
tAvk.

• Say that the generalised eigenvector vk has
corresponding eigenvalue λk. Then write

etAc =

t∑
k=1

ake
λktet(A−λkI)vk.

• Simplify the exponentials by using the fact that

et(A−λI)v = v + t(A− λI)v +
1

2!
t2(A− λI)2 + . . .

– Find the first power nk such that
(A− λkI)

nkv = 0.

– Then you can reduce the infinite sum in the
exponential term to a finite sum, that is,

e(t−λkI)vk = vk + t(A− λkI)vk+

1

2!
t2(A− λkI)

2 + . . .+

1

(nk − 1)!
tnk−1(A− λkI)

nk−1.

Fundamental matrices

A fundamental matrix is any square matrix whose
columns are independent and each solutions of
y′ = Ay. etA is one such example.

For any basis {v1,v2, . . .vn} of generalised
eigenvectors,

Φ(t) =
[
exp(tA)v1 . . . exp(tA)vn

]
is a fundamental matrix.

Inhomogeneous systems of ODEs

Take the inhomogeneous ODE y′ = Ay + b(t). If you
take any fundamental matrix Φ(t) for the homogeneous
equation, then the solution is
y(t) = Φ(t)c+ Φ(t)

∫ t

0
Φ−1(s)b(s)ds.

This is most commonly done with Φ(t) = eAt.

Recall that the general solution to any inhomogeneous
equation is y = yh + yp, where yh is the general
solution to the corresponding homogeneous equation,
and yp is any solution to the inhomogeneous equation.

• Here, Φ(t)c = yh.

• Φ(t)
∫ t

0
Φ−1(s)b(s)ds = yp.
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