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Introduction to Complex Numbers

Basic Rules and Ideas I

Basic Exponential

1 A complex number is a number of the form z = x + iy and can

be written in the form z = re iθ, r being the distance from the
origin and θ the angle through which the positive real axis
rotates to hit the line.

2 Normal rules of addition, multiplication and subtraction hold.
As with division, ”rational” complex numbers can be simplified
by ”real-ising” the denominator. That is, multiply numerator
and denominator by the conjugate of the denominator.

3 Geometrically, multiplying complex numbers involves scaling
and rotation about the origin. Addition involves shifting in the
direction of the vector that you have added.
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Introduction to Complex Numbers

Basic Rules and Ideas II

Important Ideas

1 |z |2 = zz̄

2 Extended Triangle Inequality: ||z | − |w || ≤ |z ±w | ≤ |z |+ |w |

Principal Argument

The principal argument of a complex number is the argument θ of a
complex number z such that −π < θ ≤ π
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Introduction to Complex Numbers

Topology and Sets

Types of Points

Consider a set S . Then an element x ∈ S must be one of the
following:

1 interior point: There exists an ε > 0 such that B(x , ε) ⊆ S ,
where B(x , ε) is the open ball about x or radius ε.

2 exterior point: There exists an ε > 0 such that
B(x , ε) ∩ S = ∅.

3 boundary point: None of the above. More formally, for every

ε > 0, B(x , ε) overlaps with S and SC at elements EXCEPT
for x .
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Introduction to Complex Numbers

Arcs

Types of Arcs

1 Polygonal arcs: A polygonal arc is a set of finite line segments
with the end point of a line segment equal to the initial point
of the next line segment.

2 Closed polygonal arc: A polygonal arc where the end point of
the final line segment is the start point of the first line segment.

3 Simple: If it does not cross over itself at any point in time.

A polygonal arc always separates the plane into 2 disjoint open sets.
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Introduction to Complex Numbers

Topology and sets

Types of Sets I

Consider a set S . Then it can described using the following terms:

1 Open: If every x ∈ S is an interior point.

2 Closed: If the complement of S is open.

3 Bounded: If there exists an M > 0, x ∈ S such that
S ⊂ B(x ,M).

4 Compact: For now, it’ll suffice to say that a set is compact if
and only if it is closed and bounded.

5 Connected: If it cannot be written as a disjoint union of 2 open
sets U,V such that U ∩ V ∩ S = ∅. In effect, you can always
find a path between any 2 points in the set, typically a line.
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Introduction to Complex Numbers

Types of Sets II

Types of sets

1 Simply connected: Every element contained within a closed
polygonal arc c ⊆ S is contained in S .

2 Region: A set S that can be written as Int(S) ∪ ∂S , where ∂S
is the boundary of S and Int(S) is non-empty.

3 Domain: A set that is connected and open.
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Introduction to Complex Numbers

Examples

Example 1

Describe the following sets in terms of if they are open, closed,
bounded, compact, connected, simply connected, regions or
domains.

1 S1 = {z ∈ C : |z | < 1}
2 S2 = {z ∈ C : |z | ≤ 1}
3 S3 = {p}
4 S4 = {z ∈ C : 0.5 < |z | < 1}
5 S5 = {z ∈ C : |z | > 1}
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Introduction to Complex Numbers

Graphs and special sets

Typical shapes

The typical shapes you can obtain:

1 Circle with centre a and radius r : |z − a| = r .

2 Line (perpendicular bisector of line segment between a, b ∈ C):
|z − a| = |z − b|.

3 Line (through 2 points a, b: z = ta + (1− t)b, t ∈ R. More on
this later.
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Introduction to Complex Numbers

Complex Transforms

There are 2 ways to go about problems like these.

1 Graphical/Geometrically

2 Algebraically

Method 1 Interpret the transformation as rotations, reflections,
translations, and scales and accordingly change the shape of the
region or curve. Method 2 Let z = x + iy and substitute into the
transformation f : S 7→ C. We thus obtain a new complex number
u + iv in terms of x , y . We then solve for the relationship between
u, v .
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Introduction to Complex Numbers

Example

Example 2

Consider the function f (z) = (1 + i)z + 2. Find the image of the
following sets:

1 S = {z ∈ C : 0 ≤ Re(z) ≤ 4,−0.5 ≤ Im(z) < 5}
2 S is the set of points on the line passing through

z = 1, z = 3 + 4i .
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Introduction to Complex Numbers

Properties and Inequalities Examples

Example 3: Images under transformations

Find the image of the rectangle
S = {x + iy ∈ C : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
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Introduction to Complex Numbers

Types of functions

The 2 main types of transformations covered are affine (fancy word
for linear) and fractional linear transformations.

Affine Transformations

An affine transformation is of the form f (z) = az + b. It consists of
first scaling and rotating a complex number z by a, followed by
shifting by a complex number b.
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Introduction to Complex Numbers

Estimating Sizes of functions

Bounding functions by a size

This just basically involves using Extended Triangle inequality to
bound function sizes given some size of z .

Example 3

Suppose that f (z) = 1
z4−1

for all z ∈ C− {±1,±i}. Show that

|f (z)| ≤ 1
15 for |z | > 2.
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Limits

Limit

Definition of limits

A limit of a function f : C→ C is denoted as limz→z0 f (z).

Existence of limits

1 A limit is said to not exist if the function attains different
values along different paths.

2 A limit is said to exist, that is, there is a unique l ∈ C with
limz→z0 f (z) = l if the following statement holds true: For
every ε > 0, there is a δ > 0 such that
0 < |z − z0| < δ =⇒ |f (z)− l | < ε.
More simply put: f (z) gets close to l whenever z gets close to
z0.
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Limits

Example

Example 4

Prove that limz→1+i z
2 = 2i using the definition of limits.

Example 5

Prove that the following limit does not exist:

lim
z→0

Re(z)

z
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Limits

Limit Properties

Properties and relationships

1 limz→z0 f (z)± g(z) = L1 ± L2

2 limz→z0 f (z)g(z) = L1L2

3 limz→z0

f (z)
g(z) = L1

L2
provided that L2 6= 0.

Note that for polynomial function f (z) =
∑n

k=0 akz
k , for positive

integer n, and ak ∈ C for each k, we have the more specific limit:

lim
z→a

f (z) = f (a)
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Limits

Continuity

Definition: Continuity

A function is said to be continuous if:

lim
z→a

f (z) = f (a)

That is, it’s function value is equal to the limit of the function as
that point.

As a result, we can say that the sum and product of continuous
functions are always continuous. The quotient of 2 continuous
functions, provided that the denominator does not evaluate to 0, is
also continuous. If a function is continuous for each value of z on
it’s domain S , then we say that f is continuous on S .
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Limits

Differentiability

Definition: Differentiability

1 The function values get close to each other quicker than the
inputs get closer to each other.

2 A function is differentiable if the following limit exists:

lim
z→z0

f (z)− f (z0)

z − z0
= f ′(z0)

Note: Differentiability implies continuity.

The differentiation rules from real numbers apply as usual.

Kabir Agrawal, Ethan Brown MATH2521/MATH2621



Limits

Cauchy-Riemann Equations

Cauchy-Riemann Equations

The Cauchy-Riemann Equations state that a function
f (x + iy) = u(x , y) + iv(x , y) is differentiable at an interior point
z = a ∈ dom(f ) if and only if the partial derivatives of u, v all exist
and are continuous and:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x

at x + iy = a. The derivative, provided it exists, of f is given by
f ′(z) = ux(x , y) + ivx(x , y). The partials also satisfy |∇u| = |∇v |
and ∇u · ∇v = 0.

To find out where a function is differentiable, you solve the 2
equations simultaneously and solve for all possible pairs of values of
x , y .
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Limits

Cauchy-Riemann Polar Equations

Polar form

Using the substitutions x = r cos θ, y = r sin θ, we obtain the
following equations:

r
∂u

∂r
=
∂v

∂θ
,

∂u

∂θ
= −r ∂v

∂r
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Limits

Examples

Example 6

Where are the following functions differentiable?

1 f1(z) = z |z |2

2 f2(x + iy) = x2 + iy2

3 f3(x + iy) = |x |+ i |y |
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Limits

Holomorphic

Definitions

A function is said to be holomorphic at a if the function is
differentiable in some neighbourhood of a (an open disk with centre
a). A function that is holomorphic everywhere is called entire.

Thus if the function is differentiable on an open set, it is
holomorphic in that set.

Holomorphic-ness

A function can only ever be holomorphic on an open set. So if a
function is differentiable on a closed set, it will NOT be
holomorphic.
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Limits

Harmonic Functions

Definition

Let D be a domain in R3. A function of 2 variables u is harmonic if
it satisfies Laplace’s equation:

∂2u

∂x2
+
∂2u

∂y2
= 0

and al first and 2nd partials are continuous in D. The
harmonic conjugate is a function of 2 variables v so that the
Cauchy-Riemann equations are satisfied.

Harmonic Conjugates

It has absolutely nothing to do with the actual conjugate of a
complex number.
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Limits

Properties of Harmonic Conjugates

Corollaries

1 −u is the harmonic conjugate of v .

2 If u is a harmonic on a simply connected domain, then u has a
harmonic conjugate on D.

3 Harmonic conjugates of u only ever differ by a constant.

4 Let f be a function holomorphic at z = a. Then f (z) admits a
power series expansion about a (not needed for now, but is a
master-key for later).

5 Let f , g be 2 holomorphic functions on D and C be a smooth
curve in D. If f (z) = g(z) for each z ∈ C , then f (z) = g(z)
for each z ∈ D.
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Limits

Examples

Example 7

Show that cos x cosh y is harmonic and find its harmonic conjugate.

Example 8

Show that x
x2+y2 is harmonic and find its harmonic conjugate.
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Limits

Super Important functions

Definitions

The following will be important functions we will be dealing with for
solving questions:

1 f (z) = ez = ex+iy = ex(cos y + i sin y)

2 f (z) = sin(z) = e iz−e−iz

2i , f (z) = cos z = e iz+e−iz

2
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Limits

Examples: Solving Equations

Example 9

Solve the following equations

1 ez = 2i

2 cos z = 3

3 cosh z = −4.

Example 10

Show that tan z = i has no solution.
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Limits

Logarithms and Powers

Invertibility

A function f : S 7→ T is invertible if it is bijective. That is, there is
an element of S that maps to T for any T , and such an element is
unique. So to check for bijectivity, one must test:

1 Is there a value of z such that f (z) = w for any w ∈ T

2 f (z) = f (w) =⇒ z = w

With obvious reasoning, we see that exp is not bijective on C,
because we can keep rotating by 2π and so while the inputs of
exp : C 7→ C might be different, the output is still the same. Thus,
the idea of principal value becomes super important to create these
bijective functions.
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Limits

Inverting the exponential

Basic multi-valued logarithm

Consider the expression ez = w . The multi-valued logarithm log is
the function such that z = logw . In terms of a formula:

z = logw = ln|w |+ i(argw + 2kπ)

where k ∈ Z.

Now obviously, we run into some problems because this is obviously
not a function, so it won’t be differentiable nor holomorphic and
there’s no point continuing the discussion.
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Limits

Principal valued logarithm

Definition

We thus yield the following definition of the
principal valued logarithm:

Logz = ln|z |+ i(Argz)

where Arg denotes the principal value argument function.
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Limits

Differentiability and properties of Log

The principal valued logarithm is indeed differentiable everywhere
where it is not continuous. Now obviously, |z | is always
non-negative, and since we are taking the natural logarithm (in the
real numbers, we automatically know that Log is not continuous at
z = 0. The only other issue arises with the Arg. Since Arg by
definition finds the argument of z over the interval −π < arg z ≤ π,
we can figure out that it is not differentiable on (−∞, 0) ⊆ R.
Hence, Log is differentiable everywhere except (−∞, 0].
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Limits

Powers

Finding powers of numbers

za = exp(aLog(z))

Note that based on this, because exp is continuous and differentiable
everywhere, we only really need to check the differentiability of Log
whenever we are dealing with weirder functions.

Example 11: Evaluating principal value powers

1 pv
[(

1+
√

3i
2

)−3]1−i

2 i i

3 limz→0(cos z)
1
z2
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Limits

Examples

Example 12: Differentiability of weird functions

Where are the following functions analytic:

1 f (z) = Log(iz)

2 g(z) = z−1Log(z + 1)

Example 13: More differentiability examples

Where are the principal branches of the following operations
analytic:

1 f (z) =
√
z + 1

2 f (z) =
√
z2 − 1
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Line

Linear Fractional Transformations

Definition

A fractional linear transformation is a function f : C 7→ C such
that:

f (z) =
az + b

cz + d

with ad − bc = 1 for some complex numbers a, b, c , d .

Theorem

A fractional linear transformation maps a line or a circle to another
line or circle.

That means, you really only need 3 points to work out the nature of
the shape, so just pick the easiest values you can. Typically, use
z = i , z = 1, z = 0, z →∞.
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Line

Examples

Example 14

Find the image of |z − 1| ≤ 1 under the mapping w = z
z+2 .

Example 15

Find the image of the line x + 2y = 2 under the mapping w = 1
z+i .
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Contour Integration Curves and Contours

Curves

If you’ve done MATH2011 or MATH2111 a lot of this may look
similar to what you learnt for curves in R2. Most of the results for
curves in R2 can be easily transferred to C.

Definition 1

A curve in C is a continuous function γ : [a, b]→ C.
The initial point of the curve is γ(a) and the final point is γ(b).
The range of a curve is the set {γ(t) : t ∈ [a, b]}.
A curve is closed if γ(a) = γ(b), and simple if γ(s) 6= γ(t) when
s < t, except for possibly s = a, t = b.
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Contour Integration Curves and Contours

Curves

Example 1

Classify the following curves and closed or simple:

Im

Re

Im

Re

Im

Re

Both the first and last curves are simple, as they only “cross”
at the endpoints, if at all.
Only the last curve is closed, as the initial and final points
are the same.
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Contour Integration Curves and Contours

Curves

We can combine and flip curves, as you might expect.

Definition 2

Let α : [a, b]→ C and β : [c , d ]→ C be curves, with α(b) = β(c).
Then the join of α and β is

(α t β)(t) = (α + β)(t) =

{
α(t), a ≤ t ≤ b;

β(t), c ≤ t ≤ d .

Definition 3

Let γ : [a, b]→ C be a curve. Then the reverse curve
γ∗ : [−b,−a]→ C is

γ∗(t) = γ(−t).
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Contour Integration Curves and Contours

Parameterisations

We could write a curve γ(t) = t on [0, 1], or δ(t) = t + 1 on [−1, 0].
These describe the same curve in different ways, so we formalise this.

Definition 4

Suppose that γ : [a, b]→ C is a curve, and h : [c, d ]→ [a, b] is a
continuous bijection such that h(c) = a and h(d) = b. Then we call
γ ◦ h : [c , d ]→ C a reparameterisation of γ.
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Contour Integration Curves and Contours

Derivatives of Curves

Derivatives are used a lot in contour integration, so we define it for
curves in the complex plane.

Definition 5

Suppose γ : [a, b]→ C is a curve, with γ(t) = γ1(t) + γ2(t)i and
γ1, γ2 are real-valued (real and imaginary components). Then we
define the derivative

γ′(t) = γ′1 + γ′2(t)i .

We say that γ is continuously differentiable if the derivative
exists and is continuous on [a, b].
We say that γ is smooth if it is continuously differentiable, and
γ′(t) 6= 0 for all t ∈ [a, b].
We say that γ is piecewise smooth if it is a finite join
γ = α1 + α2 + · · ·+ αn, and all αi are smooth.
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Contour Integration Curves and Contours

Derivatives of Curves

Example 2

Is the curve γ : [−1, 1]→ C given by

γ(t) = |t|+ it

smooth? Piecewise smooth?

Since the derivative of |t| doesn’t exist at t = 0, it cannot be
smooth. However, we can break it up into the curves

γ1(t) = t + it, t ∈ [−1, 0],

γ2(t) = −t + it, t ∈ [0, 1].

Then both γ1 and γ2 are smooth, and γ = γ1 + γ2.
Thus, γ is piecewise smooth.
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Contour Integration Curves and Contours

Curve Length

Almost every curve you’ll deal with will be piecewise smooth, but
keep in mind the piecewise smooth condition if you’re asked to
define the terms.

Definition 6

The length of a piecewise smooth curve γ : [a, b]→ C is

Length(γ) =

∫ b

a
|γ′(t)| dt.

This definition plays nicely with intuition in R2. The length of a
curve in the complex plane is the same as the length of a
string along the curve.
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Contour Integration Curves and Contours

Curve Length

Example 3

Find the length of the curve

γ(t) = Re it ,

for t ∈ [0, 2nπ], n ∈ N, and R > 0.

γ′(t) = Rie it , so the length of our curve is:

Length(γ) =

∫ 2nπ

0
|Rie it | dt

=

∫ 2nπ

0
R dt

= 2nπR.
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Contour Integration Curves and Contours

Contours

Definition 7

A contour is the oriented range of a piecewise smooth curve γ. In
other words, it is the range Range(γ) with some orientation
describing how this set should be traversed.

This is really just another word for a curve, however we don’t care
about how the curve is parameterised, just the direction you’re
meant to traverse it.
Generally these are described as a set in the complex plane,
traversed in some manner. If the contour is simple (doesn’t cut
itself), then we traverse it anticlockwise or clockwise. If an
orientation isn’t defined, we traverse it anticlockwise.
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Contour Integration Curves and Contours

Complex Integration

Definition 8

We define the integral of a complex-valued function f : [a, b]→ C
where f (t) = u(t) + v(t)i and u, v are both real-valued as∫ b

a
f (t) dt =

∫ b

a
u(t) dt + i

∫ b

a
v(t) dt.

Effectively, we treat the imaginary unit i as just another constant.
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Contour Integration Curves and Contours

Complex Integration

Just as with real integrals, we have some familiar identities.

Theorem 1

Let f : [a, b]→ C and g : [a, b]→ C. Further, let h : [c, d ]→ [a, b]
be a differentiable with h(c) = a, h(d) = b, and λ, µ ∈ C. Then∫ b

a
λf (t) + µg(t) dt = λ

∫ b

a
f (t) dt + µ

∫ b

a
g(t) dt,∫ d

c
f (h(t))h′(t) dt =

∫ b

a
f (t) dt,∫ b

a
f ′(t)h(t) dt = [f (t)g(t)]ba −

∫ b

a
f (t)g ′(t) dt,∣∣∣∣∫ b

a
f (t) dt

∣∣∣∣ ≤ ∫ b

a
|f (t)| dt.
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Contour Integration Curves and Contours

Complex Integration

Example 4

Integrate f (t) = te it over [0, 2π].

∫ 2π

0
te it dt =

[
t
e it

i

]2π

0

−
∫ 2π

0

e it

i
dt

= −2πi −
[
e it

i2

]2π

0

= −2πi .
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Contour Integration Curves and Contours

Complex Integration

Example 5

Using the previous example, deduce that∫ 2π

0
t cos t dt = 0.

We have ∫ 2π

0
t cos t dt =

∫ 2π

0
Re
(
te it
)
dt

= Re

(∫ 2π

0
te it dt

)
= Re(−2πi)

= 0.
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Contour Integration Curves and Contours

Line Integration

We define line integrals in C much the same as R2.

Definition 9

Given a piecewise smooth curve γ : [a, b]→ C, we define the
complex line integral∫

γ
f (z) dz =

∫ b

a
f (γ(t))γ′(t) dt.

You can think of this as using the substitution z = γ(t).
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Contour Integration Curves and Contours

Line Integration

Theorem 2

Let λ, µ ∈ C, α, β be piecewise smooth curves, and f , g be complex
functions defined on Range(γ). Further, let γ = α + β. Then∫

α
λf (z) + µg(z) dz = λ

∫
α
f (z) dz + µ

∫
α
g(z) dz ,∫

α∗
f (z) dz = −

∫
α
f (z) dz ,∫

γ
f (z) dz =

∫
α
f (z) dz +

∫
β
f (z) dz .
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Contour Integration Curves and Contours

Line Integration

Example 6

Show that the line integral of f (z) = z along the curve γ(t) = e it

for t ∈ [0, 2π] is zero.

∫
γ
f (z) dz =

∫ 2π

0
f (e it)ie it dt

=

∫ 2π

0
ie2it dt

=

[
e2it

2

]2π

0

= 0.
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Contour Integration Curves and Contours

Line Integration

Example 7

Evaluate the line integral of f (z) = 1 along the line segment from 0
to 1 + i .

We can parameterise the segment as γ(t) = (1 + i)t for t ∈ [0, 1].
Then ∫

γ
f (z) dz =

∫ 1

0
γ′(t) dt

= [γ(t)]10

= γ(1)− γ(0)

= 1 + i .
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Contour Integration Curves and Contours

Line Integration

Theorem 3

Let γ, δ be piecewise smooth curves, where δ is a reparameterisation
of γ, and f be complex-valued defined on Range(γ). Then∫

γ
f (z) dz =

∫
δ
f (z) dz .

Theorem 4 (ML Lemma)

Let γ be a piecewise smooth curve and f be a complex-valued
function defined on Range(γ). Then∣∣∣∣∫

γ
f (z) dz

∣∣∣∣ ≤ ML,

where L is the length of γ, and M is a maximiser of |f | on Range(γ).
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Contour Integration Curves and Contours

ML Lemma

Example 8

Confirm the ML Lemma for f (z) = 1
z2 over the upper semicircle or

radius R > 0.

We can parameterise the upper semicircle as γ(t) = Re it for
t ∈ [0, π]. Note that Length(γ) = πR, and |f (z)| = 1

R2 over γ.
Then ∣∣∣∣∫

γ
f (z) dz

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣ Rie itR2e2it

∣∣∣∣ dt
=

1

R

∫ π

0
dt

=
π

R
.

Here, ML = πR
R2 = π

R as we expect.
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Contour Integration Curves and Contours

Contour Integration

Definition 10

Given a contour Γ, we define the contour integral∫
Γ
f (z) dz =

∫
γ
f (z) dz ,

where γ is any parameterisation of Γ. This is well-defined, as the
complex line integral is independent of parameterisation.
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Contour Integration Cauchy-Goursat Theorem

Cauchy-Goursat Theorem

Theorem 5 (Cauchy-Goursat)

Suppose that Ω is a simply connected domain, that f is
holomorphic on Ω, and that Γ is a closed contour in Ω. Then∫

Γ
f (z) dz = 0.

Theorem 6 (Cauchy-Goursat (v2.0))

Suppose that Ω is a bounded domain whose boundary consists of
finitely many contours Γ1, Γ2, · · · , Γn. Further, suppose f is
holomorphic on an open set containing Ω. Then∫

∂Ω
f (z) dz =

n∑
k=1

∫
Γk

f (z) dz = 0.
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Contour Integration Cauchy-Goursat Theorem

Cauchy-Goursat Theorem

Example 9

Show that the integral of f (z) = 1
z is the same along every contour

ΓR = {z ∈ C : |z | = R}.

Note that f is holomorphic on C \ {0}, so consider the bounded
domain Ω = {z ∈ C : R1 < |z | < R2} for R1,R2 > 0 (noting
Ω ⊆ C \ {0}). We apply Cauchy-Goursat to get∫

∂Ω
f (z) dz = 0

=⇒
∫

ΓR1

f (z) dz +

∫
Γ∗
R2

f (z) dz = 0

=⇒
∫

ΓR1

f (z) dz =

∫
ΓR2

f (z) dz .
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Contour Integration Cauchy-Goursat Theorem

Cauchy-Goursat Theorem

Example 10

Find ∫ ∞
−∞

x2 − 1

(x2 + 1)2
dx

by considering an integral of

f (z) =
1

(z + i)2
.

Let ΓR be the upper semicircular arc or radius R > 0 around 0, and
Γx = [−R,R]. f (z) is holomorphic on the set{
z ∈ C : Im(z) > −1

2

}
, and the join of ΓR and Γx (say Γ) lies

inside this domain. Thus, by Cauchy-Goursat,∫
Γ
f (z) dz = 0.
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Contour Integration Cauchy-Goursat Theorem

Cauchy-Goursat Theorem (cont.)

Now, we can evaluate each part of the contour integral separately.
Note that on ΓR , we have

|f (z)| =

∣∣∣∣ 1

(z + i)2

∣∣∣∣ ≤ 1

(R − 1)2
,

when R > 1. Since Length(ΓR) = πR, by ML lemma,

lim
R→∞

∫
ΓR

f (z) dz ≤ lim
R→∞

1

(R − 1)2
· πR = 0.

So, we deduce that the integral is zero as R →∞.
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Contour Integration Cauchy-Goursat Theorem

Cauchy-Goursat Theorem (cont.)

Along Γx , we have∫
Γx

f (z) dz =

∫ R

−R

1

(x + i)2
dx =

∫ R

−R

(x − i)2

(x2 + 1)2
dx .

Combining this with the integral along ΓR , we have

lim
R→∞

Re

(∫
Γ
f (z) dz

)
= Re

(∫ ∞
−∞

(x − i)2

(x2 + 1)2
dx

)
=

∫ ∞
−∞

x2 − 1

(x2 + 1)2
dx

= 0.
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Contour Integration Cauchy-Goursat Theorem

Consequences of Cauchy-Goursat

Theorem 7 (Independence of Contour)

Suppose Ω is a simply connected domain, f is holomorphic on Ω,
and Γ,∆ are two contours with the same initial and final points.
Then ∫

Γ
f (z) dz =

∫
∆
f (z) dz .

Theorem 8 (Existence of Primitives)

Suppose Ω is a simply connected domain, f is holomorphic on Ω,
and Γ is a contour from p to q. Then there exists some
differentiable function F on Ω such that F ′ = f and∫

Γ
f (z) dz = F (q)− F (p).
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Contour Integration Cauchy’s Integral Formula

Cauchy’s Integral Formula

Theorem 9 (Cauchy’s Integral Formula)

Suppose that Ω is a simply connected domain, f is holomorphic on
Ω, Γ is a simple closed contour in Ω, and w ∈ Int(Γ). Then

f (w) =
1

2πi

∫
Γ

f (z)

z − w
dz .

This allows us to handle integration of functions that aren’t
holomorphic at a point (to some extent).
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Contour Integration Cauchy’s Integral Formula

Cauchy’s Integral Formula

Example 11

Evaluate ∫
Γ

1

z2 + 1
dz

where Γ is the circle of radius 1 centred at i .

Let f (z) = 1
z+i , w = i , and Ω = B(i , 1 + ε). Then Ω is a simply

connected domain, f is holomorphic on Ω, Γ is a simple closed
contour in Ω, and w ∈ Int(Γ). Thus, by Cauchy’s Integral formula,∫

Γ

1

z2 + 1
dz =

∫
Γ

f (z)

z − w
dz

= 2πif (w)

=
2πi

i + i

= π.
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Contour Integration Cauchy’s Integral Formula

Power Series

Using Cauchy’s Integral Formula, we can prove that any
holomorphic function can be written as a power series.

Theorem 10

Suppose that f is holomorphic on the ball B(z0,R), and Γ is a
simple closed contour in B(z0,R) with z0 ∈ Int(Γ). Then, for all
w ∈ B(z0,R),

f (w) =
∞∑
n=0

cn(w − z0)n,

where

cn =
1

2πi

∫
Γ

f (z)

(z − z0)n+1
dz .

This shows that holomorphic functions are actually infinitely
differentiable.
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Contour Integration Cauchy’s Integral Formula

Cauchy’s Generalised Integral Formula

Theorem 11 (Cauchy’s Generalised Integral Formula)

Suppose that Ω is a simply connected domain, f is holomorphic on
Ω, Γ is a simple closed contour in Ω, and w ∈ Int(Γ). Then

f (n)(w) =
n!

2πi

∫
Γ

f (z)

(z − w)n+1
dz .

This is one of the most useful theorems of the course.
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Contour Integration Cauchy’s Integral Formula

Cauchy’s Generalised Integral Formula

Example 12

Evaluate ∫
Γ

1

zn
dz ,

where Γ is the unit circle, and n ∈ Z.

Let f (z) = 1 and w = 0. Then if n > 0, we can use Cauchy’s
generalised integral formula to evaluate∫

Γ

1

zn
dz =

2πi

(n − 1)!
f (n−1)(0) =

{
2πi , n = 1;

0, n > 1.

If n ≤ 0, then 1
zn is entire, so by Cauchy-Goursat,∫

Γ

1

zn
dz = 0.
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Contour Integration Cauchy’s Integral Formula

Cauchy’s Generalised Integral Formula

Example 13 (MATH2621 2018 Q83)

Suppose f is entire, and |f (z)| ≤ 1 + |z | everywhere. Show that
f (z) = az + b for some constants a, b ∈ C.

Let ΓR be the circle of radius R > 0 centred at 0. Then, by
Cauchy’s generalised integral formula and ML lemma,

|f (n)(0)| =

∣∣∣∣ n!

2πi

∫
ΓR

f (z)

zn+1
dz

∣∣∣∣ ≤ n!

2π

1 + R

Rn+1
· 2πR.

Since this is true for all R > 0, taking the limit, we find that
f (n)(0) = 0 for n > 1. Thus, when written as a Taylor series,
f (z) = f (0) + f ′(0)z , as required.
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Contour Integration Minor Theorems

Liouville’s and Morera’s Theorems

Theorem 12 (Liouville)

Suppose f is bounded and entire. Then f is constant.

Theorem 13 (Morera)

Suppose that Ω is a domain, f is continuous on Ω, and∫
Γ
f (z) dz = 0

for every closed contour Γ ⊆ Ω. Then f is holomorphic on Ω.

This is, to some extent, the converse of Cauchy-Goursat.
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Contour Integration Minor Theorems

Liouville’s Theorem

Example 14

Suppose that f , g are entire functions, and |f (z)| ≤ |g(z)|
everywhere. Prove that if g has no roots, then f (z) = ag(z) for
some fixed a ∈ C and all z ∈ C.

Let

h(z) =
f (z)

g(z)
.

Since f and g are entire, and g(z) 6= 0, h is entire. Further,
|h(z)| ≤ 1 for all z ∈ C. Thus, by Liouville’s Theorem, h(z) = a for
some constant a ∈ C. Simply rearranging gives us

f (z) = ag(z),

as required.
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Series Power Series

Power Series

Definition 11

A (complex) power series is an expression of the form

∞∑
n=0

an(z − z0)n,

where z , z0, and z are complex. The largest R > 0 such that the
power series converges in B(z0,R) is called the radius of
convergence. If the series converges only at z0, we say R = 0. If it
converges everywhere, then we say R =∞.

Theorem 14

A power series can be integrated and differentiated term-by-term
inside its radius of convergence.
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Series Power Series

Power Series

Example 15

Find the radius of convergence of

∞∑
n=2

2nn

n2 − 1
(z − 2)n.

We apply the ratio test. We have

lim
n→∞

∣∣∣∣2n+1(n + 1)(z − 2)n+1

(n + 1)2 − 1
· n2 − 1

2nn(z − 2)n

∣∣∣∣
= lim

n→∞

2(n + 1)(n2 − 1)

n(n2 + 2n)
|z − 2|

=2|z − 2|.

Thus, we have convergence for 2|z − 2| < 1. So, our radius
of convergence is R = 1

2 .
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Series Taylor Series

Taylor Series

Taylor series can be defined for complex functions exactly like real
functions.

Definition 12

The Taylor series of a holomorphic function f “around” or “with
centre” z0 is

∞∑
n=0

f (n)(z0)

n!
(z − z0)n.

A Taylor series around 0 (z0 = 0) is called a Maclaurin series.

You are expected to know common Maclaurin series, like ex

and sin x from first year.
Their complex analogues are identical.
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Series Taylor Series

Taylor Series

Example 16

Find the Taylor series expansion for sin z around π.

First, we compute the derivatives of sin z

f (z) = sin z =⇒ f (π) = 0,

f ′(z) = cos z =⇒ f ′(π) = −1,

f ′′(z) = − sin z =⇒ f ′′(π) = 0,

f (3)(z) = − cos z =⇒ f (3)(π) = 1,

...

Then,

sin z =
∞∑
n=1

(−1)n

(2n − 1)!
(z − π)2n−1.

Kabir Agrawal, Ethan Brown MATH2521/MATH2621



Series Taylor Series

Taylor Series

Example 17

Find a series representation of f (z) =
∫

Γ
sin x
x dx , where Γ is the line

segment from 0 to z .

We know the Maclaurin series for sin z :

sin z =
∞∑
n=0

(−1)n

(2n + 1)!
z2n+1.

From this, we find

sin z

z
=
∞∑
n=0

(−1)n

(2n + 1)!
z2n.
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Series Taylor Series

Taylor Series (cont.)

Parameterising Γ as γ(t) = tz for t ∈ [0, 1], and noting that we can
swap integration and summation inside the domain of convergence
(which is all C in this case), we have∫

Γ

sin x

x
dx =

∞∑
n=0

∫
Γ

(−1)n

(2n + 1)!
x2n dx

=
∞∑
n=0

∫ 1

0

(−1)n

(2n + 1)!
(tz)2nz dt

=
∞∑
n=0

z2n+1

∫ 1

0

(−1)n

(2n + 1)!
t2n dt

=
∞∑
n=0

(−1)n

(2n + 1)(2n + 1)!
z2n+1.
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Series Laurent Series

Laurent Series

If a function isn’t holomorphic at a point, then to get a power series
near that point, you’d need to find several around it. In this case, it
can be useful to discuss series defined on annuli.

Theorem 15 (Laurent’s Theorem)

Let A be the annulus A = B(z0,R2) \ B(z0,R1), and R1 < r < R2.
If f is holomorphic on A, then, for every w ∈ A,

f (w) =
∞∑

n=−∞
cn(w − z0)n,

where

cn =
1

2πi

∫
∂B(z0,r)

f (z)

(z − z0)n+1
dz .

This is called the Laurent series of f on the annulus A.
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Series Laurent Series

Laurent Series

Example 18

Find the Laurent series of

f (z) =
1

z(z − 1)(z − 2)

in the “annulus” {z ∈ C : |z − 1| > 1}.

First, we expand into partial fractions:

f (z) =
1

z(z − 1)(z − 2)
=

1

2

1

z
− 1

z − 1
+

1

2

1

z − 2
.
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Series Laurent Series

Laurent Series (cont.)

Now, we expand it out into convergent geometric series, only in
terms of (z − 1):

f (z) =
1

2

1

z − 1

1

1 + 1
z−1

− 1

z − 1
+

1

2

1

z − 1

1

1− 1
z−1

=
1

2

1

z − 1

∞∑
n=0

(−1)n

(z − 1)n
− 1

z − 1
+

1

2

1

z − 1

∞∑
n=0

1

(z − 1)n

=
∞∑

n=−∞
cn(z − 1)n,

where

cn =

{
1, n = −3,−5,−7, · · · ;

0, otherwise.
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Series Laurent Series

Laurent Series

Example 19

Find the Laurent series of

f (z) =
z

(z − 2)(z + 1)

in the largest annulus containing 0 around 2.

First, we expand into partial fractions:

f (z) =
2

3

1

z − 2
+

1

3

1

z + 1
.

Now, we look for a solution on {z ∈ C : 0 < |z − 2| < 3}.
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Series Laurent Series

Laurent Series (cont.)

As previously, expand it using geometric series

f (z) =
2

3

1

z − 2
+

1

3

1

3 + (z − 2)

=
2

3

1

z − 2
+

1

9

1

1 + z−2
3

=
2

3

1

z − 2
+

1

9

∞∑
n=0

(−1)n

3n
(z − 2)n

=
∞∑

n=−∞
cn(z − 2)n,

where

cn =


2
3 , n = −1;
(−1)n

3n+2 , n ≥ 0;

0, otherwise.
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Series Singularities

Singularities

Definition 13

An isolated singularity of f is a point z0 for which f is holomorphic
on B◦(z0, r) for some r > 0, but is not differentiable at z0.

Definition 14

Suppose f has an isolated singularity at z0, and has Laurent
coefficients cn. Assume f 6≡ 0 so that there is at least one non-zero
cn. Then we have three exclusive and exhaustive possibilities:

1 No n < 0 have cn 6= 0. We say that f has a removable
singularity at z0.

2 Some non-zero, finite number of n < 0 have cn 6= 0. We say
that f has a pole at z0.

3 Infinitely many n < 0 have cn 6= 0. We say that f has an
essential singularity at z0.
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Series Singularities

Singularities

Rather than using Laurent series, it can be easier to evaluate a limit,
in some cases.

Theorem 16

Suppose f has an isolated singularity at z0, and f 6≡ 0. Then

1 If lim
z→z0

f (z) exists, we have a removable singularity.

2 If lim
z→z0

(z − z0)k f (z) exists for k = n, but not for

k = 0, · · · , n − 1, we have a pole (of order n).

3 If lim
z→z0

(z − z0)k f (z) doesn’t exist for any k , we have an

essential singularity.
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Series Singularities

Poles and Zeroes

Definition 15

Suppose f has a pole at z0. Then there is an M < 0 such that
cM 6= 0 and cn = 0 for all n < M. We say that f has a pole of
order −M at z0, or that the pole has order −M. A simple pole is
a pole of order 1.

Definition 16

Suppose a non-constant function f has a removable singularity at z0.
If there is an M > 0 such that cM 6= 0 and cn = 0 for all n < M,
then we say that f has a zero of order M at z0. A simple zero is
a zero of order 1.
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Series Singularities

Singularities

Example 20

Classify all singularities of f (z) = tan z .

tan is undefined for z = π
2 + nπ, n ∈ Z. At these points,

lim
z→π

2
+nπ

(
z − π

2
− nπ

)
tan z = lim

z→0
z

sin
(
z + π

2 + nπ
)

cos
(
z + π

2 + nπ
)

= lim
z→0

z
(−1)n cos (−z)

(−1)n sin (−z)

= −1.

Thus, at z = π
2 + nπ, we have a pole of order 1.

Another way to see this, is that cos z has simple zeroes at
these points, so since it’s in the denominator, it contributes
simple poles. Thus, tan z has simple poles.
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Series Singularities

Singularities

Example 21

Show that the singularity at z = 0 of f (z) = e−1/z is essential.

We can very easily construct a Laurent series. Since

ez =
∞∑
n=0

1

n!
zn,

simply substituting, we find

f (z) = e−1/z =
∞∑
n=0

1

n!

(
−1

z

)n

=
0∑

n=−∞

(−1)n

(−n)!
zn.

Now, there are infinitely many non-zero negative order
terms, so the singularity must be essential.

Kabir Agrawal, Ethan Brown MATH2521/MATH2621



Series Singularities

Singularities

Example 22

Classify the singularity at z = 0 of f (z) = sin3 z
z .

Note that

lim
z→0

sin3 z

z
= 0.

Thus, we have a removable singularity. Since it’s a zero, we find its
order.

lim
z→0

sin3 z

z2
= 0,

lim
z→0

sin3 z

z3
= 1.

Since we have to force in a pole of order 2, to get a
non-zero limit, we have a zero of order 2.
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Series Residues

Residues

Residues allow us to extend our methods beyond holomorphic
functions.

Definition 17

Suppose f is holomorphic on B◦(z0, r) for some r > 0, with Laurent
coefficients cn in B◦(z0, r). The residue of f at z0 is

Res(f , z0) = Res(f (z); z = z0) = c−1.

Theorem 17

If f has a pole of order N at z0, then

Res(f , z0) =
1

(N − 1)!
lim
z→z0

dN−1

dzN−1
(z − z0)N f (z).
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Series Residues

Residues

Example 23

Find the residues of f (z) = sin z
z(z−1)(z−3)2 at its singularities.

We have poles of order 1 and 2 at z = 1 and z = 3 respectively.
There is a removable singularity at z = 0. Thus,

Res(f , 3) =
1

(2− 1)!
lim
z→3

d

dz
(z − 3)2f (z) =

6 cos 3− 5 sin 3

36
,

Res(f , 1) =
1

(1− 1)!
lim
z→1

(z − 1)f (z) =
sin 1

4
,

Res(f , 0) = 0.
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Series Residues

Residues

Example 24 (MATH2621 2018 Q102c)

Find the residues of f (z) = exp
(
z + 1

z

)
at its singularities.

Note that the only singularity is at z = 0. So,

ez+ 1
z =

∞∑
n=0

1

n!

(
z +

1

z

)n

=
∞∑
n=0

n∑
k=0

z2k−n

k!(n − k)!
.

Now, we need the coefficient of z−1, which occurs when we have
2k − n = −1. Adding the relevant terms, we have

Res(f , 0) =
∞∑
k=0

1

k!(k + 1)!
.
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Series Residues

Cauchy’s Residue Theorem

Theorem 18 (Cauchy’s Residue Theorem)

Suppose Ω is a domain, and that Γ is a simple closed contour with
standard (anticlockwise) orientation in Ω. Further, let f be
holomorphic on Ω, and Int(Γ)∩Ω = Int(Γ) \ {z1, z2, · · · , zK}. Then∫

Γ
f (z) dz = 2πi

K∑
k=1

Res(f , zk).

This theorem is used mostly in evaluating integrals around
singularities, and expands the kinds of integrals we can now
evaluate using complex analysis methods.
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Series Residues

Cauchy’s Residue Theorem

Example 25

Evaluate ∫
Γ

1

z(z − 1)(z + 2)
dz

where Γ is the circle centred at 1 or radius 2 traversed anticlockwise.

The poles at z = 1 and z = 0 lie in the contour, so we calculate
(letting f be the integrand)

Res(f , 0) = lim
z→0

1

(z − 1)(z + 2)
= −1

2
,

Res(f , 1) = lim
z→1

1

z(z + 2)
=

1

3
.

Thus, by Cauchy’s residue theorem.∫
Γ

1

z(z − 1)(z + 2)
dz = 2πi

(
−1

2
+

1

3

)
= −πi

3
.
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Series Residues

Cauchy’s Residue Theorem

Example 26

Using complex methods, evaluate∫ ∞
−∞

cos x

x2 + 1
dx

Let

f (z) =
e iz

z2 + 1
.

Define the contours ΓR and Γx to be the upper semicircle centred at
zero and radius R > 1, and [−R,R] respectively, and let Γ be the
join of these traversed anticlockwise. Since we have a simple pole at
z = i inside our contour, by Cauchy’s residue theorem,∫

Γ
f (z) dz = 2πi Res(f , i) = 2πi lim

z→i

e iz

z + i
= πe−1.
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Series Residues

Cauchy’s Residue Theorem (cont.)

Now, using ML lemma on ΓR , we see

lim
R→∞

∣∣∣∣∫
ΓR

f (z) dz

∣∣∣∣ ≤ lim
R→∞

1

R2 − 1
· πR = 0.

So, we conclude that the integral is zero. Then∫
Γ
f (z) dz = πe−1

=⇒ lim
R→∞

∫
Γx

e iz

z2 + 1
dz = πe−1

=⇒ Re

(∫ ∞
−∞

e ix

x2 + 1
dx

)
= πe−1

=⇒
∫ ∞
−∞

cos x

x2 + 1
dx = πe−1.
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Series Residues

Jordan’s Lemma

Theorem 19 (Jordan’s Lemma)

Let ΓR be the upper half of the circle of radius R about 0. Suppose
that f is continuous on {z ∈ C : Im(z) ≥ 0, |z | ≥ S}, where S > 0,
and |f (z)| ≤ MR for all z ∈ ΓR where limR→∞MR = 0. Then

lim
R→∞

∣∣∣∣∫
ΓR

e iξz f (z) dz

∣∣∣∣ = 0,

for any ξ > 0.

This is particularly useful when combined with Cauchy’s residue
theorem or Cauchy-Goursat theorem for functions involving
e iz or similar. In some cases, ML Lemma isn’t strong
enough, and Jordan’s Lemma is required.
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Series Residues

Jordan’s Lemma

Example 27

Show that ∫ ∞
∞

x sin 2x

x2 + 4
dx = πe−4.

We first set up the contour Γ = ΓR + Γx , where Γx = [−R,R] and
ΓR is the supper semicircle of radius R around 0, both traversed
with standard orientation. Let

f (z) =
z

z2 + 4
.

This functions has simple poles at ±2i , of which only z = 2i
lies within our contour (for R > 2).
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Series Residues

Jordan’s Lemma (cont.)

Clearly, f is continuous on the set {z ∈ C : Im(z) ≥ 0, |z | ≥ 3}, and
on ΓR ,

|f (z)| =
|z |

|z2 + 4|
≤ R

R2 − 4
= MR ,

for R > 2. Then
lim

R→∞
MR = 0,

so we can apply Jordan’s lemma, and conclude that

lim
R→∞

∫
ΓR

ze2iz

z2 + 4
dz = 0.
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Series Residues

Jordan’s Lemma (cont.)

Now, we find the residues in our contour. There’s only one, so

Res(f (z)e2iz ; z = 2i) = lim
z→2i

ze2iz

z + 2i
=

1

2
e−4.

Thus, by Cauchy’s residue theorem,∫
Γ

ze2iz

z2 + 4
dz = πie−4.

Taking limits, we have

lim
R→∞

∫
Γ

ze2iz

z2 + 4
dz = lim

R→∞

∫
Γx

ze2iz

z2 + 4
dz = πie−4.

Finally, taking imaginary components,∫ ∞
−∞

x sin 2x

x2 + 4
= Im

(
lim

R→∞

∫
Γx

ze2iz

z2 + 4
dz

)
= πe−4.

Kabir Agrawal, Ethan Brown MATH2521/MATH2621



Theory of Functions (MATH2621 only) Winding Numbers

Winding Numbers

Definition 18

The winding number of a closed curve γ around w is

1

2πi

∫
γ

1

z − w
dz .

Intuitively, this becomes the change in logarithm of z − w , which is
how much the angle changes. Effectively, we count how many times
we “wind” around w .
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Theory of Functions (MATH2621 only) Winding Numbers

Winding Numbers

Example 28

Find the winding number of γ(t) = (t2 + 1)e it for t ∈ [−π, π]
around 0.

First, we find γ′(t) = 2te it + i(t2 + 1)e it . Then the winding number
is

1

2πi

∫
γ

1

z
dz =

1

2πi

∫ π

−π

1

(t2 + 1)e it
(2te it + i(t2 + 1)e it) dt

=
1

2πi

∫ π

−π
i +

2t

t2 + 1
dt

=
1

2πi
[it]π−π

= 1.
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Theory of Functions (MATH2621 only) Counting Zeroes

Meromorphisms

Definition 19

A function f is meromorphic on an open set Ω if it is holomorphic
on Ω \∆, where ∆ is a discrete set, and the singularities at each
point of ∆ are poles.
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Theory of Functions (MATH2621 only) Counting Zeroes

Cauchy’s Argument Principle

Theorem 20 (Cauchy’s Argument Principle)

Suppose that f is meromorphic on a simply connected domain Ω,
and has zeroes of order mi at ai , and poles of order ni at bi .
Further, suppose that Γ is a simple closed contour in Ω that doesn’t
pass through any zero or pole of f . Then

1

2πi

∫
Γ

f ′(z)

f (z)
dz =

∑
ai∈Int(Γ)

mi −
∑

bi∈Int(Γ)

ni .

Theorem 21

Let f ∈ H(Ω), where Ω is a domain, and suppose γ : [a, b]→ Ω be
a simple closed contour such that f (γ(t)) 6= 0 for all t ∈ Ω. Then
the number of zeroes of f in Int(γ) is the same as the number of
times f ◦ γ winds around 0, counting multiplicities.
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Theory of Functions (MATH2621 only) Counting Zeroes

Counting Zeroes

Example 29 (MATH2621 2018 Q119)

Find the number of zeroes of f (z) = z5 + z4 + 2z3 − 8z − 1 with
positive real part.

We begin by taking γ to be the right semicircle around 0 of radius
R , where R is large. and break it up into two parts; the arc γ1, and
the imaginary axis γ2.
We parameterise γ1 as γ1(t) = Re it where t varies from −π

2 to π
2 .

For sufficiently large R, f (Re it) behaves like R5e5it . This winds
around 0 by an angle of 5π.
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Theory of Functions (MATH2621 only) Counting Zeroes

Counting Zeroes (cont.)

We then parameterise γ2 as γ2(t) = it, varying t from R to −R.
Since the endpoints approach the imaginary axis for t → ±∞, we
can determine how the curve winds around 0 by finding the
intercepts with the real axis of f (it). So,

f (it) = it5 + t4 − 2it3 − 8it − 1.

For real intercepts, we then require

t5 − 2t3 − 8t = t(t4 − 2t2 − 8) = t(t2 − 4)(t2 + 2) = 0.

Our intercepts are thus at t = 0,±2, for which:

f (0) = −1, f (±2) = 15.

So the curve winds around 0 by an angle of −3π, which
gives us a total change of 2π. Thus, there is one zero of f
with positive real part.
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Theory of Functions (MATH2621 only) Counting Zeroes

Rouché’s Theorem

Theorem 22 (Rouché’s Theorem)

Suppose that γ : [a, b]→ Ω is a closed curve in a simply connected
domain Ω. Let f , g be holomorphic on Ω, and that |f (z)| < |g(z)|
on γ. Then the number of zeroes of f + g in γ is the same as the
number of zeroes of g inside γ.

Rouché’s theorem can simplify the process of counting roots
significantly, by breaking more complicated functions into parts for
which the roots are obvious.
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Theory of Functions (MATH2621 only) Counting Zeroes

Rouché’s Theorem

Example 30

Show that all roots of p(z) = 7z5 − 2z4 − z + 1 lie within the unit
circle.

Let f (z) = 2z4 + z , and g(z) = 7z5 + 1. Then along the unit circle
|z | = 1, we have

|f (z)| ≤ 2|z |4 + |z | = 3 < 6 = 7|z |5 − 1 ≤ |7z5 + 1| = |g(z)|.

Thus, by Rouché’s theorem, the number of zeroes of p within the
unit circle is the same as of g . Now, roots of g satisfy

7z5 + 1 = 0 =⇒ z5 = −1

7
=⇒ |z | =

1
5
√

7
< 1.

So, p has five roots inside the unit circle. However, p has
exactly five roots, so all of them lie within the unit circle.
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