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Part 1
Probability and
Distribution Theory

Probability Revision

Set Operations

Associative Law

If A, B, and C are sets, then
(AUB)UC =AU ((BUC),

and

(ANB)NC=AnN(BNC).

Distributive Law

If A, B, and C are sets, then
(AUB)NC=(ANnC)u(BNQO),
and
(ANnB)UC =(AuC)n(BUCQO).
Conditional Probability

The conditional probability that an event A occurs, given
that an event B has occurred is

(AN B)

P(A|B) = = b HE(B) A0

Independence

Two events A and B are independent if and only if
P(AN B) =P(A)P(B),

of if equivalently,

P(A|B) = P(A) and P(B|A) = P(B).

Independence For Multiple Events

A set of events {A4;}, is pairwise independent if
P(A; N Aj) =P(A;)P(A;) for all i # j.

A sets of events {A;}1_; is mutually independent if for

any subset {A;,, Ay, ..., Ai T,

P(A;, NA,N---NA; )= H]P’(Aij).
j=1

Probability Laws
1. Multiplicative Law:

P(AN B) = P(BN A) = P(B|A)P(A)

2. Additive Law:
P(AUB) =P(A)+P(B)-P(ANB)
3. Law of Total Probability:
Suppose that {4;}%_ | forms a partition of the sample

space {2. Then for any event B

k
P(B) = ZP(B|Ai)P(Ai)
=1
Bayes’ Theorem

Where A can be partitioned into {A;}¥_,, the
conditional probability of A given B is
P(B|A)P(A)
: .
> im1 P(BlA)P(A:)

P(A|B) =



Random Variables

Cumulative Distribution Functions

The cumulative distribution function (CDF) of a
random variable X is defined by

Fx(z) =P(X < x).
Using the CDF
1. P(X >2)=1- Fx(x).
2. Forany z <y, Pz < X <y)=F(y) — F(x).
Properties of the CDF
1. F is bounded between 0 and 1, such that

lim F(z) =0 and lim F(z)=1.

T —o00 xToo

2. F is non-decreasing: if < y, then F(x) < F(y)

3. F is right continuous: lim;_,,+ F(t) = F(z) for all z.

Probability Mass Functions

The probability mass function of a discrete random
variable X is the function fx given by

fx(aﬁ) = P(X = 33)

It is related to the CDF by the following:

Fx(z) =Y fx().

y<z

Properties

1. fx(z) >0forall z € R
2. Zallmfx(x) =1

Probability Density Functions

The probability density function (PDF) of a continuous
random variable X is the function fx given by

fx(l‘) = %Fx(fﬂ)

Naturally, we can integrate the PDF to find the CDF:

pﬂ@:[rh@m

In addition, for any pair of numbers a < b,

b
ngng:/fﬂ@w.

Expectation and Moments
The expected value of a random variable X is given by

> zfx(x),

allz

| @) as,

— 0o

for discrete X

E[X] =

for continuous X.

Similarily, the expected value of a function g(z) of a
random variable X is

Zg(x)fX@%

allz

for discrete X

Elg(X)] = -
/ 9(z) fx (z) dz, for continuous X

— 00

The non-central moments of a random variable are

EX",r=1,2,...,

Properties of the expectation

Let a,b € R be constants and X,Y be random variables.
1. Expectation of a constant is constant: E(a) = a.

2. Linearity: E(aX 4 bY) = aE(X) + DE(Y)

3. If X and Y are independent,

E(XY) = E(X)E(Y)

Standard Deviation and Variance

Let p = E[X], then the variance and standard deviation
of a random variable X are given by

Var(X) = E[(X — )?]
_ ]E(XZ) _ /1/2
and

standard deviation of X = /Var(X).

Properties of the variance
1. Var(a) =0

2. Var(aX) = a*Var(X)

3. Var(X +b) = Var(X)

4. If X and Y are independent,

Var(X +Y) = Var(X) + Var(Y)



Moment Generating Functions

The moment generating function (MGF) of a random
variable X is
mx (u) = E(e"Y).

The moment generating function of X exists if there
exists a h > 0 such that mx (u) is finite for u € [—h, h].

Suppose the MGF of X exists, then we can obtain the
nth non-central moment of X through differentiation:

u—0 U

E(X™) = lim (ddmg?)(u)> :

(Very useful) properties of MGFs

1. The MGF of a random variable is unique:
Mx (u) = My (u) = Fx(z) = Fy(y)
2. Convergence/equality of MGFs implies
convergence/equality of CDFs

3. If X and Y are independent, we also have

Mx yy (u) = Mx (u) My (u)

Useful Inequalities
Markov’s Inequality
If X is a non-negative random variable and a > 0, then

E(X)

P(X >a)<
(Xza) <=

Chebychev’s Inequality
Let X be any random variable with mean ¢ and

variance o2. Then for any k > 0,

1
P(X =l > o) < .

These two inequalities allow us to find upper and lower

bounds for probabilities for variables of any distribution.

Jensen’s Inequality

A convex function h is one such that for any A € [0, 1],
h(Azy + (1 — N)xa) > Ah(x1) + (1 = N)h(z2).

Jensen’s inequality states that if X is a random variable
and h is a convex function, then

WE(X)) < E(h(X)).

Common Distributions

Discrete Distributions
Bernoulli distribution

A Bernoulli trial is an experiment which can either
succeed (probability p) or fail (probability (1 — p)).
X ~ Bernoulli(p) if

_J 1 with probability p

~ ] 0 with probability 1 — p.
e E(X)=mnp
e V(X) =np(l-p)

Binomial distribution

If we have a sequence of n independent Bernoulli trials
each with probability of success p, then the total number
of successes X is a Binomial random variable and

X ~ Bin(n,p).
e P(X =k)=(Q)pF1—-p)" % k=0,1,...,n,
o E(X)

np
o V(X)

np(l —p)

Poisson Distribution

For a random variable X ~ Poisson(\):

e P(X =k)=2e k—01,...
° E(X)Z)\
° V(X)Z)\

Hypergeometric Distribution

For a random variable with hypergeometric distribution
with parameters N, m,n, that is, X ~ Hyp(n,m, N),

n

e P(X =2x)= 7(”((%;),;3 =1,...,n

o E(X) =

Given a collection of N objects, if m fall into one
category and N — m fall into the other, if n are chosen
at random, then the number of objects X belonging to
the first category satisfies

X ~ Hyp(n,m, N).



Continuous Distributions
Gaussian/Normal distribution

A normal random variable X ~ N (u, 0?) satisfies

)2

1 _(z—n

Ofx(x)zme 222z eR
o E(X)=yp
e V(X) =o?

Exponential distribution

An exponential random variable X ~ Exp()\) satisfies
o fx(x)= %e‘§$,x >0
o E(X) =)\
o V(X) =2

Gamma distribution

A Gamma random variable X ~ Gammal(a, 3) satisfies

o fx(aia.f) = Fteia >0
e E(X)=0ap
e B(X)=qap?

Note that the Gamma function I'(«) is given by
I'(@) :/ t* e tdt.
0

Beta distribution

A Beta random variable X ~ Beta(a, 5) satisfies
o fx(waf) =" o<z <1

Note that the Beta function B(a,b) is given by
1
B(a,b) :/ t* (1 —t)YLdt.
0

Quantiles and QQ-Plots

Quantiles

Given a continuous random variable X with CDF Fy,
the 100k%-th quantile of X is given by

Qx(k) = Fx'(k),0 <k <1,

that is, the level z such that 100k% of random variables
following the distribution are less than or equal to x.

Sample quantiles

Given an sample of observations x = (x1,...,%,) we can
order the samples in ascending order to obtain

These are the sample quantiles of x.

Definition: QQ-Plot

In a QQ plot, we are given a sample of observations and
a distribution. We plot the sample quantiles on the
y-axis and their corresponding theoretical quantiles on
the z-axis. That is, we plot the points

(Fx'(p),2) = (Fxl (k_n0'5> ,w(m)

— 5 .
fork=1,...,n,and p= % is a rough measure of

where the sample z(;) lies in the data set.

The point is that if the observations follow the
distribution, the dots should roughly form a straight
line. If not, then the observations most likely don’t
follow the given distribution.

Distributions in R

Each distribution has a family of four commands:

e d___(x, ...) gives either the probability mass
function or probabiliy density function,

e p___(q, ...) gives the cumulative distribution
function (i.e. P(X < q)),
e q___(p, ...) gives the quantile function at p,

e r___(n, ...) randomly generates n values
according to the distribution.

You will need to be familiar with gnorm(p,0,1) in
particular.



Bivariate Distributions

Joint Density Functions

The joint density function of two continuous random
variables X and Y is a bivariate function fx y with the
following properties:

L. fxy(z,y) >0, for all (z,y) € R?

/ / fxy(@,y)=1

3. (X €AY eB)= / fxy(zy) dv dy
yeEB JxeA

Similar properties hold for the discrete case.

Joint CDFs
The joint CDF of X and Y is given by
=P(X <z,Y <y)

Y PX =uY =v),

u<lz vy
for discrete

y T
/ / fxy(u,v) du dv,

for continuous.

FX,Y(xvy)

Marginal Probability /Density

Given fx y(z,y), we can calculate the marginal
probability /density function fx(z) as follows

> Ixy(@y),

all y

for discrete

fx(@)=9
/ fxy(z,y) dy, for continuous
—o0

and similarly for fy (y),

Z fX,Y(xay)a

all z

for discrete

fy(y) =
/ fx,v(z,y) dr, for continuous.

Expectation Under Bivariate
Distributions

For a function g : R? — R, we have

D> 9@y fxy(ey) de

all z all y
for discrete

/_z /_Z gz, y)fxy(z,y) dy d,

for continuous.

Elg(X,Y)] =

Conditional Probability /Density
The conditional probability/density function of X given

Y =yis
fX7Y(m>y)

Conditional Expectation

The conditional expectation of g(X) given Y = y is

D 9@P(X ==Y =y),

all
for discrete

E(g(X))Y =y) = -
/ 9(x) fx)y (zly) dz

—0o0

for continuous.

Independence

Two random variables are independent if and only if for
all z,y
fxy(@y) = fx(@)fv(y)
or
Ixy(zly) = fx(z)
or
fyix(ylz) = fy(y).

This means that if you can separate the joint density
function of two variables X and Y into a product of
functions of x and y, then they are independent.

Covariance and Correlation

Covariance

The covariance of X and Y is a measure of their joint
variability and is given by

=E[(X — px)(Y — py)]
“E(XY) - pxpiy

Cov(X,Y)

where px = E(X) and py =E(Y).

Properties

1. If X and Y are independent, then Cov(X,Y) = 0.

Important: The converse is not true.
2. Cov(X,Y) = Cov(Y, X)

3. Cov(aX +bY,Z) =aCov(X,Z)+bCov(Y, Z)

Relation to variance

Var(aX + bY) = a*Var(X) + b*Var(Y) + 2abCov(X,Y)



Correlation

The correlation between X and Y measures the strength
of their linear relationship between and is given by

Cov(X,Y)
/Var(X) - Var(Y)
This value will always be between —1 and 1. A value of
1 indicates a perfect positive linear relationship while a

value of —1 indicates a perfect negative relationship. X
and Y are uncorrelated if Corr(X,Y) = 0.

Corr(X,Y) =

Bivariate Gaussian

A random vector X = (X1, X5) is Gaussian with
ux = (px,, px,) and covariance matrix V' if

fx(x) exp(— 5 (X — ) V(X = pix).

1
N QW\/V

The covariance matriz is defined with entries

‘/i,j :COV(Xi,Xj),i: 1,2,...,d,j: 1,2,...,d.



Transformations

Monotonic Transformations

For continuous X, if h(z) is monotonic (strictly
increasing or decreasing) over the set {z : f(z) > 0},
then for Y = h(X),

fy(y) = fx () %
U

for y such that fx{h=t(y)} > 0.

Linear transformations

In the case that Y = aX + b is a linear transformation

of X, we have
i (30

for all y such that fX(nyb) > 0.
Probability Integral Transformation

1
|al

y—>
a

Ty (y)

For any random variable X whose CDF is strictly
increasing,

Y = Fx(X) ~ Uniform(0, 1).

Bivariate Transformations

If U and V are functions of continuous random variables

X and Y, then

fov(u,v) = fxy(z,y)-|J]|

where J, the Jacobian, is the matrix given by

Oz O
| Ou Ov
TSl o
ou Ov

Example: This method can be quite abstract, so we've
provided an example below to demonstrate how the
Jacobian transformation works.

Suppose that we have X and Y such that

fX,Y('ray) = exp(—m - y)axay > 07

and that we want to find the joint density of

X
U=X+Y,V=——.
TS XY
Then, to find @,%,@and @,we need to find X
w Ov’ Ou v

and Y in terms of U and V. In this case,

X=UV, andY =U - UV.

10

We also need to find the range of U and V. Since
X,Y > 0 is the only restriction, U >0and 0 <Y < 1.

- |

|[J| =] —uv —u(l —v)| =u.

So we have that

1—wv

and hence

So the joint density is
fov(u,v) =exp(—z —y)u
=wuexp(—u),u>0,0<v <1

Alternate approach

We can also find fy(u) by first calculating the CDF
Fy(u) =P(U < u) and then differentiating.

Sums of Independent Random Variables
Convolution formula

Suppose X and Y are independent continuous variables
with density functions fx(x) and fy (y). Then
Z = X +Y has the density

fz(z) = /jo fx (@) fy (2 — x)dx.

MGTF approach

Recall that if X and Y independent random variables
with moment generating functions mx and my. Then

mx1y (u) = mx (uw)my (u).
This is often useful for deriving the distributions for
sums of independent random variables due to the
uniqueness of moment generating functions.

Useful properties of common distributions

Many common distributions are additive in a way.
Suppose (X;)i=12,..n is an independent sequence of
random variables. Take Y = Y | X, their sum.

If Xz ~ N(N’lv 01'2)7 then Y ~ N(Z?:l i Z?:l 022
If X; ~Exp(\), then Y ~ Gamma(n, A).

).

If X; ~ Gamma(w;, 3), then

Y ~ Gamma(d ., o, B).

If X; ~ Poisson()\;), then Y ~ Poisson(>_1" ; \;).
If X; ~ Bernoulli(p), then Y ~ Binomial(n, p).

If X; ~ Binomial(n;, p), then
Y ~ Binomial(}"7"_; n;,p).



Convergence of Random Variables

Some Definitions
Convergence in distribution

We say a sequence of random variables X1, X5, ...
convergences in distribution to a random variable X if

lim Fx, (z) = Fx(x),

n—oo

for every z. This is often denoted as X, LIS

Convergence in probability

A sequence of random variables X1, X5, ... convergences
in probability to a random variable X if, for all € > 0,

lim P(|X, — X| >¢) =0.

n—oo
This is often denoted as X, 2 x

Almost sure convergence

A sequence of random variables X1, X, ...
almost surely to a random variable X if:

P( )=1.

This is often denoted as X,, — X.

CONVETGENCES

lim X, =X

n—oo

Convergence implications

The types of convergence are related as follows:

X, X — X, 5 X — X, 5L x.

Central Limit Theorem

Suppose that Xq,...,X,, are i.i.d. random variables
with a common mean ;1 = E(X;) and variance
0% = Var(X;) < co. For each n > 1,let X = 13" | X;.
Then _

Xn — K

NG 4 N(0,1).

Law of Large Numbers
Weak Law of Large Numbers

Let X1, X5,..., X, be a sequence of independent
random variables each with mean p and finite variance
o2. Then the sample mean will converge in probability
to the true mean:

s P

X, — p.
This implies that as the sample size increases, the
sample mean will more likely be closer to the true mean.

11

Strong Law of Large Numbers

The strong law of large numbers is the same but
stricter, as the convergence happens almost surely. i.e.

X, 22 e
Applications of the CLT

General applications

We can often use the CLT to estimate probabilities
associated with the sample mean of a distribution.

e Given i.i.d. random variables Xi,...,X,, X with

mean g and variance o2, write Z = j(/?/ﬁ for

Z ~N(0,1).
e Then write

- X—pn r—p
P X<r)=P <
x<n=r(Tt<ik)
r—H
=P(Z< .
(2<57)

e You can then use the normal probability tables or
R to estimate P(Z < r) for any r.

Normal approximation to the Binomial
distribution

Suppose X ~ Bin(n,p), then

X —np

= 4 N0,1).
np(l —p)

Delta Method

The Delta Method gives us a way to find the
distribution of any function of an MLE.

If
Xn—0 4

ol

and g is a differentiable function in a neighbourhood of
0, and ¢'(0) # 0, then

9(Xn) —g(0)

ag'(0)/v/n

Extended Delta Method

The Delta Method doesn’t work when ¢’(f) = 0. In that
case we find the first k such that g*)(#) # 0. Then

9(Xn) —9(0)

(/v/n)*
for Z ~ N(0,1).

N(0,1),

45 N(0,1),

d



Distributions Arising from a
Normal Sample

x2-distribution

For independent random variables
(Xi)i=1,2,..n. ~N(0,1),

i X7 ~ X (n),
1=1

referred to as a 2 distribution with n degrees of
freedom.

t-distribution
For independent Y, Z ~ N(0,1) and Z ~ x2,

Y

7/1/ ~ty,_1,

referred to as a t-distribution with v — 1 degrees of
freedom.

Key Results

Let X1,..., X, be a random sample from the N(u, o?)
distribution. Then, where

X1+ Xo+...+ X,
n

X:

is the sample mean, and

1 < -
S = Xi_X27
X n—lizzl( )

is the sample standard deviation, we have that
X —p
a7 =~ tn-1.
Sx/vn

and

(n—1)5%
M X

g
Quantiles and CDF Values for the
t-distribution and y?-distribution

Quantiles and CDF values for the t-distribution and
x2-distribution can be found using the quantile and
CDF tables for each of the distributions, which are
generally formatted the same as normal probability and
quantile tables.

To use the t-distribution tables, you can use the fact
that the t-distribution is symmetric. Note that the
x2-distribution is not symmetric.



Part IT
Basic Statistical
Inference

Parameter Estimation

Let X1,..., X, ~ fx(x;0), then an estimator 0 for 6 is
a real valued function of X4,..., X,. Since the
estimator is a function of random variables, it is a
random variable itself with density function f;.

Properties of Estimators

1. Bias
The bias of 6 is given by
bias() = E() — 6.
If E(A) = 6 then 6 is said to be unbiased.

2. Standard Error

The standard error of  is the standard deviation
se() = 1/ Var(f).

3. Mean Squared Error

The mean squared error allows us to combine the bias
and standard error into a single measure that gives us
an indication of the quality of an estimator:

MSE() = E{(6 — 6)*}
= bias(0)? + Var()

Let élA and 92 be two estimators of 6, then él is better
than 6y (with respect to the MSE) if

MSE(6;) < MSE(6s).

4. Consistency

An estimator 6 is consistent if #,, converges to 6 as the
sample size n increases, i.e.

0, = 0.
An easy way to check that an unbiased estimator is

consistent is to show that its variance decreases to 0 as
n — oo.

5. Asymptotic Normality

The estimator 6 is asymptotically normal if

—0 d
w0) = N(0,1).

13

Methods of Parameter Estimation

Method of Moments Estimation

Let z1...,x, be observations from the model
f(x;0q,...,0k) containing k parameters.

1. Form a system of k equations that equates the
moments of fx

2. Solve simultaneously to obtain the estimators

Maximum Likelihood Estimation

Let xy ..., x, be observations from PDF f(z) = f(x;0)
depending on a parameter 6.

The likelihood function £ is a function of 8 given by

n

L(0) = f(x150) -+ f(wn; 0) = [] f(2:;0)

i=1
and the log-likelihood function of 6 is
2(0) = In{L(0)}.
The mazimum likelihood estimate of 6 is the choice
0 = 0 that maximises £(6).

It can usually be determined by setting the derivative of
the log-likelihood function to zero and solving as in the
case of a univariate optimisation problem.

Properties of the MLE

1. Consistency: 055 0.

2. Invariance: If g is a continuous and injective

function, then g(6) is the MLE of g(6).

3. Asymptotic normality:

>
)

n

a
) — N(0,1).

Fisher Score and Information

The Fisher score is defined as
Sn(0) = £,(0)
and the Fisher information is defined as
1,(0)

1. EgS,(0) =0

= —Eol" (6).

2. VargS,(0) = I,,(0)



Variance of the MLE

For (X1, X5, ..., X,,) a random sample and 6,, the MLE
of 6,

I,.(0)Varg(6,) —— 1.

So for large enough n,

\/ Varg(0) = se(0) ~ (I,,(0)) 2.

Cramer Rao Lower Bound

If 6, = 9(X1,...,X,) is an unbiased estimator of §, then

~ 1
> .
Varg(0) > 7.0
Thus,
L
I1,(0)

is called the Cramer-Rao lower bound on the variance of
an unbiased estimator.

Since the inverse of the Fisher information is the
asymptotic variance of the MLE, a consequence of this
is that the MLE is asymptotically optimal.

Delta Method for MLEs

The Delta Method gives us a way to find the
distribution of any function of an MLE.

If
-4 N(0,1),

V()

and ¢ is a differentiable function in a neighbourhood of
6, and ¢'(0) # 0, then

<
—~
)
—

>
3
~—

Example: For any MLE,
0, — 62
V(g(6n))

-4 N(0,1),

where V(6,,) ~ 201 (0) ~ 20, 1;(6,,).
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Multivariate MLEs

For a model with multiple parameters

0 = (01,04, ...,0;), the Fisher information matrix is
given by
E(Hy1) ... E(Hi,)
1n(0) = —E(H) = — : : ;

where H is the Hessian matrix (for those who have
studied MATH2011/2111) and

82

H=—
9idj

1(0;x1,...,2,).

Multivariate Delta Method

Let g be a function of the parameter § = (61,...,0%).

The MLE of ¢g(8) is g(@). Then

10 -56) 1, 0.4,
5e(9(0))
where
se(9(8) ~ \/V@O) [ ©)V9(8).
Note that A
52-9(0)
v =|
22-9(0)



Confidence Intervals

A 100(1 — a)% confidence interval for some unknown
parameter 6 is an interval [L, U] such that

P(L<O<U)=1-q.
We can construct a confidence interval whenever we

have an estimator of § whose distribution is known.

Confidence Interval for a Normal
Random Sample

Let X1,..., X, be a random sample from the N(u, o?)
distribution. Then a 100(1 — «)% confidence interval for

o )

Wald Confidence Intervals

The Wald confidence interval gives a confidence interval
for a parameter 0 using its MLE 6. The 100(1 — «)%
confidence interval is

S
NG

X — X+ th11-a/2

S
tnfl,lfa/Zﬁ

(071 — Z1-a/2 Se(é)v 071 + Zl—a/2 Se(é)) )

or, rewritten,

(

On — Zl—a/2 (In(e))_

%>én + Zl—a/2 (In(e))_%

).
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Hypothesis Testing

Null and Alternative Hypothesis

A hypothesis test is a way of testing a hypothesis about
the value of a parameter 6.

In a hypothesis test we formulate two hypotheses, the
null hypothesis Hy and the alternative hypothesis, which
we test against each other.

If the entire parameter space is © (e.g. RT), then we
have
HO 10 S 60

and
H;:0¢€ 06,

for subsets @y, 01 C 6.

Errors

e Type I error corresponds to rejection of the null
hypothesis when it is really true.

e Type II error corresponds to acceptance of the null
hypothesis when it is really false.

Significance level

We want to control the probability of a Type I error to a
level of precision we require.

The probability of making a Type I error is called the
level of the test, or the a-level.

Test statistic

A test statistic T is a function of the observations in a
hypothesis test, often an estimator of the parameter.

Using the test statistic, we conduct our hypothesis using
one of the following methods:

e Rejection region: We observe the value of the
test statistic and if it lies in the rejection region,
we reject the null hypothesis. The rejection region
R needs to satisfy

P(T € R) =

e p-value: We observe the p-value of the test. The
p-value is the probability of obtaining a value of T
more extreme than the value observed.

Illustrative Example: Hypothesis Test for
the Normal Distribution

Suppose X1, Xo, ..., X, ~ N(u,0?) where y and o are
both unknown. Our test statistic is

X — Mo ~t
S/ T

T =



e One-sided test: Two options — Wald Tests

— Hy:p=poand Hy : p> g The Wald test statistic for a parameter 6 with MLE 6 is
+ In this case, since our alternative given by i
hypothesis is that p is large, the test W = AfA ~ N(0,1)
statistic being more extreme than the se(0

observed value means greater than the

observed value e One-sided test:

x The rejection region is — When
H019:90,H129>90,
— Ho
R= {X : S/vn > tl—mn—l} g the rejection region is

where t1_q n—1 is the 100(1 — a)% Rodx. 0 — 6, -7

percentile of the t,,_; distribution. " se(h) tme (e
* The p-value for a observed value of the

test statistic T' =1t = ”S”;\’/L%, where Z and — When

s are the observed mean and standard Hy:0 =00, Hy:0 <0,

deviation respectively, is the rejection region is

T — Ho ~
=P|T > for T ~ t,_1q, -
P < 3/\/ﬁ> o ! R= Xte ?O<Za .
se(0)
which can be determined from the
t-distribution tables. o Two-sided test:
— Hy:p=ppand Hy @ p < po — We have

* The rejection region is

_ ,X*#O
R—{X. S/\/E <to¢,n—1}~

HO:G:GO,leﬂ;éGO.

— The rejection region is

x The p-value is 6—6
R={x:|— AO\ > Z1_aj2)s
T — o se(0)
p=]P’<T< )forthnl.
s/v/n where Z;_, /5 is the 100(1 — «/2)% quantile
e Two-sided test: of N'(0,1).
= Ho:pp=poand Hy:pu# o Likelihood Ratio Tests

* In a two-sided test, the test statistic

Th lised likelihood test fi hypothesis test
being more extreme than the observed © generatised UXEHNood test 1or a HypOthesis 1es

value means greater in magnitude than Hy:0€0, H :0c0O—6,
the observed value.
" L £(6
* The rejection region is has rejection region {T(x) = % < c}, where ¢
co

> depends on the desired size of the test.
R={x: X =ro
. S/\/ﬁ l1—a/2,n—1 ( -

*x The p-value is

Power of a Test

Suppose that we are given the real value of a parameter
_ 0. The power of a test is the probability of rejecting the

T — Ho
p="P <|T| > | s/v/n |> =2P(T > [t]) null hypothesis. We have that

since the t-distribution is symmetric. B(0) =P(X € R;0).

The significance level, or size, of a test a is given by

SUpgee,B(0) < a.
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