
data	model

/**
	*	A	wrapper	for	[ContractState]	containing	additional	platform-level	state	information.
	*	This	is	the	definitive	state	that	is	stored	on	the	ledger	and	used	in	transaction	
outputs
	*/
data	class	TransactionState<out	T	:	ContractState>(
								/**	The	custom	contract	state	*/
								val	data:	T,
								/**	Identity	of	the	notary	that	ensures	the	state	is	not	used	as	an	input	to	a	
transaction	more	than	once	*/
								val	notary:	Party)	{
				...
}

NotaryChangeFlow

https://docs.corda.net/releases/release-M9.2/index.html
https://docs.corda.net/releases/release-M9.2/key-concepts-core-types.html#composite-keys


@Suspendable
fun	changeNotary(originalState:	StateAndRef<ContractState>,
																	newNotary:	Party):	StateAndRef<ContractState>	{
				val	flow	=	NotaryChangeFlow.Instigator(originalState,	newNotary)
				return	subFlow(flow)
}

Timestamp

https://docs.corda.net/releases/release-M9.2/merkle-trees.html
https://docs.corda.net/releases/release-M9.2/_static/corda-technical-whitepaper.pdf




HTTP Links of URL: https://docs.corda.net/releases/release-M9.2/key-concepts-consensus-notaries.html

Client IP: 192.99.56.22 

http://schema.org/Article

https://discourse.corda.net

https://github.com/snide/sphinx_rtd_theme

http://slack.corda.net

http://sphinx-doc.org/

https://readthedocs.org

https://www.google-analytics.com/analytics.js



API reference: Kotlin / JavaDoc

Discourse Forums

Slack

Flow framework

B Consensus and notaries
Consensus mod;
Notary

CorDapp b:

The exampl

e administration

fran
Brief introduction to th
Node Explorer

vork permissioning

isi
ntract test
ontracts

testing

APl tutoria

ning a notary ser

Interest rat

Load testing
anetwork

>cumentati
Further notes on Kotlin

Docs » Consensus and notaries View page source

Consensus and notaries

Anotary is a service that provides transaction ordering and timestamping.

Notaries are expected to be composed of multiple mutually distrusting parties who use a
standard consensus algorithm. Notaries are identified by and sign with Composite Keys.
Notaries accept transactions submitted to them for processing and either return a signature
over the transaction, or a rejection error that states that a double spend attempt has occurred

Corda has “pluggable’ notary services to improve privacy, scalability, legal-system compatibility
and algorithmic agility. The platform currently provides validating and non-validating notaries,
and a distributed RAFT implementation.

Consensus model

The fundamental unit of consensus in Corda is the state. Consensus can be divided into two
parts:

1. Consensus over state validity - parties can reach certainty that a transaction is accepted by
the contracts pointed to by the input and output states, and has all the required signatures.
This is achieved by parties independently running the same contract code and validation logic
(as described in data model )

2. Consensus over state uniqueness - parties can reach certainty the output states createdina
transaction are the unique successors to the input states consumed by that transaction (in
other words - an input state has not been previously consumed)

The current model s still a work in progress and everything described in this article can and
is likely to change

Notary

Anotary is an authority responsible for attesting that for a given transaction, it has not signed
another transaction consuming any of the same input states. Every state has an appointed
notary:

data class TransactionState<out T : ContractStates(
val data: T,

val notary: Party) {

Transactions are signed by a notary to ensure their input states are valid (apart from issue
transactions, containing no input states). Furthermore, when using a validating notary, a
transaction is only valid if all its dependencies are also valid.

The notary is alogical concept and can itself be a distributed entity, potentially a cluster
maintained by mutually distrusting parties

When the notary is requested to sign a transaction, it either signs it, attesting that the outputs
are the unique successors of the inputs, or provides conflict information for any input state that
has been consumed by another transaction it has already signed. In doing so, the notary provides
the point of finality in the system. Until the notary signature is obtained, parties cannot be sure
that an equally valid, but conflicting, transaction will not be regarded as confirmed. After the
signature is obtained, the parties know that the inputs to this transaction have been uniquely
consumed by this transaction. Hence, it is the point at which we can say finality has occurred.

Multiple notaries

More than one notary can exist in a network. This gives the following benefits:

« Custom behaviour. We can have both validating and privacy preserving Notaries - parties
can make a choice based on their specific requirements.

« Load balancing. Spreading the transaction load over multiple notaries will allow higher
transaction throughput in the platform overall

« Low latency. Latency could be minimised by choosing a notary physically closer the
transacting parties

Changing notaries

Atransaction should only be signed by a notary if all of its input states point to the same notary.
In cases where a transaction involves states controlled by multiple notaries, the states first have

to be repointed to the same notary. This is achieved by using a special type of transaction whose

sole output state is identical to its sole input state except for its designated notary. Ensuring that
allinput states point to the same notary is the responsibility of each involved party (it is another
condition for an output state of the transaction to be valid)

To change the notary for an input state, use the NotaryChangeFLow . For example:

@suspendable
fun changeNotary (originalstate: StateAndRef<Contractstates,
newNotary: Party): StateAndRef<Contractstates {
val flow = NotaryChangeFlow. Instigator(originalstate, newNotary)
return subFLow(flow)

The flow will

1. Construct a transaction with the old state as the input and the new state as the output
Obtain signatures from all participants (a participant is any party that is able to consume this
state in a valid transaction, as defined by the state itself)

Obtain the old notary signature

Record and distribute the final transaction to the participants so that everyone possesses the
new state

Eventually, changing notaries will be handled automatically on demand.

N

»ow

Validation

One of the design decisions for a notary is whether or not to validate a transaction before
acceptingit.

If a transaction is not checked for validity, it opens the platform to “denial of state" attacks,
where anyone can build an invalid transaction consuming someone else’s states and submit it to
the notary to get the states “blocked”. However, if the transaction is validated, this requires the
notary to be able to see the full contents of the transaction in question and its dependencies.
This is an obvious privacy leak

The platform is flexible and currently supports both validating and non-validating notary
implementations - a party can select which one to use based on its own privacy requirements.

In the non-validating model, the “denial of state” attack is partially alleviated by requiring the
calling party to authenticate and storing its identity for the request. The conflict information
returned by the notary specifies the consuming transaction ID along with the identity of the
party that had created the transaction. If the conflicting transaction is valid, the current one
is aborted; if not, a dispute can be raised and the input states of the conflicting invalid
transaction are “un-committed” (via a legal process).

At present, all notaries can see the entire contents of a submitted transaction. A future piece
of work will enable the processing of Transaction tear-offs, thus providing data hiding of
sensitive information.

Timestamping

Anotary can also act as a timestamping authority, verifying the transaction timestamp
command.

For a timestamp to be meaningful, its implications must be binding on the party requesting it. A
party can obtain a timestamp signature in order to prove that some event happened before, on,
or after a particular point in time. However, if the party is not also compelled to commit to the
associated transaction, it has a choice of whether or not to reveal this fact until some point in the
future. As a result, we need to ensure that the notary either has to also sign the transaction
within some time tolerance, or perform timestamping and notarisation at the same time, which is
the chosen behaviour for this model.

There will never be exact clock synchronisation between the party creating the transaction and
the notary. This is not only due to physics, network latencies, etc. but also because between
inserting the command and getting the notary to sign there may be many other steps, like
sending the transaction to other parties involved in the trade, or even requesting human sign-off.
Thus the time observed by the notary may be quite different to the time observed by the party
creating the transaction.

For this reason, times in transactions are specified as time windows, not absolute times. Ina
distributed system there can never be “true time", only an approximation of it. Time windows can
be open-ended (i.e. specify only one of “before” and “after") or they can be fully bounded. If a
time window needs to be converted to an absolute time (e.g. for display purposes), there is a
utility method on Tinestanp to calculate the mid point.

In this way, we express the idea that the true value of the fact “the current time” is actually
unknowable. Even when both before and after times are included, the transaction could have
occurred at any point between those two timestamps. Here, “occurrence” could mean the
execution date, the value date, the trade date etc ... The notary doesn't care what precise
meaning the timestamp has to the contract.

By creating a range that can be either closed or open at one end, we allow all of the following
facts to be modelled:

« This transaction occurred at some point after the given time (e.g. after a maturity event)
« This transaction occurred at any time before the given time (e.g. before a bankruptcy event)
« This transaction occurred at some point roughly around the given time (e.g. on a specific day)

It is assumed that the time feed for a notary is GPS/NaviStar time as defined by the atomic
clocks at the US Naval Observatory. This time feed is extremely accurate and available
globally for free.

Also see section 7 of the Technical white paper which covers this topic in significantly more
depth.

© Previous Next©

Sphinx theme Read the Docs




Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 13972846748170250624 (0xc1e986160da8e980)
    Signature Algorithm: sha512WithRSAEncryption
        Issuer: O=Free TSA, OU=Root CA, CN=www.freetsa.org/emailAddress=busilezas@gmail.com, L=Wuerzburg, ST=Bayern, C=DE
        Validity
            Not Before: Mar 13 01:52:13 2016 GMT
            Not After : Mar  7 01:52:13 2041 GMT
        Subject: O=Free TSA, OU=Root CA, CN=www.freetsa.org/emailAddress=busilezas@gmail.com, L=Wuerzburg, ST=Bayern, C=DE
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
                Public-Key: (4096 bit)
                Modulus:
                    00:b6:02:8e:0e:30:32:f1:11:10:d9:64:cd:a9:4b:
                    9d:02:78:e1:94:2a:e9:13:aa:a5:99:07:cd:a6:97:
                    93:99:5b:d9:ac:7e:33:ba:d9:fe:37:04:da:1c:01:
                    a9:8d:21:af:e3:f5:91:a5:9d:70:67:70:51:67:99:
                    8f:50:16:72:2e:0a:b4:62:b2:1f:43:91:71:d2:cf:
                    cc:45:93:f3:73:5a:f7:94:a5:ab:31:1f:6c:01:0c:
                    78:98:de:33:d7:5c:45:10:ee:76:f4:bd:1d:14:98:
                    cf:17:d3:03:f0:6a:5d:d9:f7:96:cc:6c:a9:b6:57:
                    a5:6f:e3:ea:4f:ef:be:7c:e6:b6:a1:8d:3e:35:a3:
                    0c:ee:5f:f1:70:d1:cf:39:a3:33:d3:fd:a8:96:4d:
                    22:db:68:5b:29:e5:61:be:89:0f:0a:a8:45:87:3b:
                    2e:84:ab:26:ab:83:9f:fe:8f:ad:e9:d2:3b:b3:1e:
                    61:d2:73:cc:9b:88:06:49:18:5f:ab:ec:fa:05:34:
                    60:0a:ba:90:1b:61:4e:2e:85:45:82:de:a2:22:6f:
                    c1:9c:d7:df:52:be:d5:0d:87:77:cd:99:88:c0:53:
                    a3:fc:7d:c3:28:7a:06:8a:4f:f1:2b:71:3c:d9:80:
                    36:66:e9:55:38:54:56:ff:38:f8:02:98:cf:6b:93:
                    85:6e:92:24:77:4a:66:cf:1c:dd:11:c2:f8:ef:d8:
                    52:03:d7:45:8b:25:66:4b:13:ed:63:9c:de:d4:ff:
                    81:13:d6:cc:53:53:d2:72:94:73:c3:c3:07:15:7c:
                    72:2a:a5:b5:dd:0b:fb:2d:6c:38:b1:b9:37:49:c8:
                    81:ec:60:02:6d:08:95:1b:38:24:bd:71:ba:cb:ce:
                    47:3a:eb:d6:36:f0:b9:18:b4:a2:c8:ff:46:94:f0:
                    74:57:af:2d:6f:1c:f8:25:54:d1:77:0f:d7:9f:f5:
                    d3:14:dc:d1:04:cd:dc:ab:c9:41:38:05:6d:fc:f0:
                    17:e7:eb:85:72:fd:52:f7:01:44:f1:88:da:05:f5:
                    82:3f:58:dd:06:29:7e:73:87:be:d2:d7:72:c1:3d:
                    a8:26:66:01:04:5f:e4:12:dd:70:98:6c:0c:98:7b:
                    a7:34:4b:90:37:38:75:16:d2:58:e7:88:5b:51:f8:
                    96:8b:7f:26:01:21:3b:c4:cb:4c:85:f8:ff:0b:84:
                    af:6a:98:83:37:cd:fb:81:86:8f:7e:cf:31:dc:a6:
                    71:6d:7e:c2:dd:80:2c:16:72:62:9e:5c:00:52:cb:
                    35:7d:d2:9a:af:c4:3f:61:5b:3b:1f:f9:d4:e1:ce:
                    08:c7:1c:73:e1:fe:bb:7d:c5:6a:33:62:13:29:e9:
                    ed:6c:23
                Exponent: 65537 (0x10001)
        X509v3 extensions:
            X509v3 Basic Constraints: 
                CA:TRUE
            X509v3 Key Usage: critical
                Digital Signature, Non Repudiation, Certificate Sign, CRL Sign
            X509v3 Subject Key Identifier: 
                FA:55:0D:8C:34:66:51:43:4C:F7:E7:B3:A7:6C:95:AF:7A:E6:A4:97
            X509v3 Authority Key Identifier: 
                keyid:FA:55:0D:8C:34:66:51:43:4C:F7:E7:B3:A7:6C:95:AF:7A:E6:A4:97
                DirName:/O=Free TSA/OU=Root CA/CN=www.freetsa.org/emailAddress=busilezas@gmail.com/L=Wuerzburg/ST=Bayern/C=DE
                serial:C1:E9:86:16:0D:A8:E9:80

            X509v3 CRL Distribution Points: 

                Full Name:
                  URI:http://www.freetsa.org/root_ca.crl

            X509v3 Certificate Policies: 
                Policy: TSA-CPS
                  CPS: http://www.freetsa.org/freetsa_cps.html
                  CPS: http://www.freetsa.org/freetsa_cps.pdf
                  User Notice:
                    Explicit Text: FreeTSA trusted timestamping Software as a Service (SaaS)

            Authority Information Access: 
                OCSP - URI:http://www.freetsa.org:2560

    Signature Algorithm: sha512WithRSAEncryption
         68:af:7e:bf:93:85:62:ef:4c:eb:3b:58:0b:e2:fa:f6:cc:35:
         a2:67:72:96:2f:3d:95:90:1f:a5:63:0c:87:d0:91:98:98:4c:
         e8:a0:6a:33:f8:a9:c2:82:ed:9f:1c:b1:1a:c6:c2:3e:17:10:
         8e:e4:ef:ce:6f:b2:94:de:95:c1:33:26:22:55:72:55:22:ca:
         61:97:1d:4a:3b:7f:78:25:0d:fb:8d:4a:ee:c0:fb:19:59:b1:
         64:10:05:20:b9:c1:0e:64:c6:26:62:e4:ad:4d:0a:ba:e2:29:
         8f:c9:48:fc:4e:99:e8:d9:e6:b8:fd:be:44:04:12:1e:c7:c1:
         42:2e:ac:b2:c9:d7:32:8e:07:39:6e:60:b4:f3:bb:80:3a:d4:
         a5:55:c8:0f:ef:b5:3f:85:e7:76:4a:0a:9f:b4:af:c3:99:f4:
         cd:2f:5f:bf:58:71:05:c6:08:1c:f3:d0:53:37:b6:bb:7d:1b:
         01:0b:74:9f:48:88:c9:12:f3:69:6b:a1:b6:90:2d:77:b7:df:
         c0:46:c0:4a:0c:c1:ec:4f:8d:18:5e:2d:a5:5d:fb:7b:c2:a2:
         03:6c:62:19:24:6a:4f:99:dd:bb:6f:1f:82:93:98:f3:b8:03:
         dc:0a:d9:0d:cb:59:be:f4:c2:7c:77:40:4b:99:04:3b:78:27:
         18:67:99:11:52:c3:99:f1:2c:bf:c4:c6:25:ad:c0:96:35:5a:
         e4:4e:34:21:00:ec:51:7a:50:2e:2f:06:f9:40:b8:d4:35:99:
         bb:c1:15:4f:8a:e7:61:a0:b0:d5:55:fb:4a:13:91:d4:f3:42:
         0a:f8:db:f1:2f:2d:7d:db:9d:77:dc:e1:53:78:04:07:4a:f1:
         75:e4:f2:d6:d5:5b:34:b5:d6:f7:dc:bd:d3:17:30:af:56:48:
         0d:4c:0c:ff:14:3f:9e:83:bc:15:18:66:d0:ba:0f:0b:bd:c4:
         7f:e2:78:64:17:6b:bd:6c:1a:b8:5d:f3:25:ed:f7:77:88:9b:
         c4:47:1b:f3:fa:73:e5:6c:c5:91:e8:b1:60:cd:a7:b0:78:6a:
         1e:c0:4a:c3:b2:4f:a2:e2:8d:5d:19:e5:e4:80:04:d5:e1:66:
         a8:3c:82:ec:6f:d5:4f:b3:85:eb:af:71:33:a8:5b:52:de:46:
         db:52:44:e1:c3:4a:e8:d3:6e:71:2f:9f:ce:0d:49:3d:7d:3e:
         dd:58:6c:61:98:e3:ec:3e:6e:96:34:6f:41:7a:c9:f2:21:e0:
         af:f3:3a:8f:6a:0b:1e:f4:c0:23:63:0b:76:ad:aa:8d:91:43:
         38:25:ec:c4:1c:49:a5:b9:8b:18:1c:7d:a3:0e:99:7a:b9:54:
         c7:3c:2c:d8:05:af:da:99
-----BEGIN CERTIFICATE-----
MIIH/zCCBeegAwIBAgIJAMHphhYNqOmAMA0GCSqGSIb3DQEBDQUAMIGVMREwDwYD
VQQKEwhGcmVlIFRTQTEQMA4GA1UECxMHUm9vdCBDQTEYMBYGA1UEAxMPd3d3LmZy
ZWV0c2Eub3JnMSIwIAYJKoZIhvcNAQkBFhNidXNpbGV6YXNAZ21haWwuY29tMRIw
EAYDVQQHEwlXdWVyemJ1cmcxDzANBgNVBAgTBkJheWVybjELMAkGA1UEBhMCREUw
HhcNMTYwMzEzMDE1MjEzWhcNNDEwMzA3MDE1MjEzWjCBlTERMA8GA1UEChMIRnJl
ZSBUU0ExEDAOBgNVBAsTB1Jvb3QgQ0ExGDAWBgNVBAMTD3d3dy5mcmVldHNhLm9y
ZzEiMCAGCSqGSIb3DQEJARYTYnVzaWxlemFzQGdtYWlsLmNvbTESMBAGA1UEBxMJ
V3VlcnpidXJnMQ8wDQYDVQQIEwZCYXllcm4xCzAJBgNVBAYTAkRFMIICIjANBgkq
hkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAtgKODjAy8REQ2WTNqUudAnjhlCrpE6ql
mQfNppeTmVvZrH4zutn+NwTaHAGpjSGv4/WRpZ1wZ3BRZ5mPUBZyLgq0YrIfQ5Fx
0s/MRZPzc1r3lKWrMR9sAQx4mN4z11xFEO529L0dFJjPF9MD8Gpd2feWzGyptlel
b+PqT+++fOa2oY0+NaMM7l/xcNHPOaMz0/2olk0i22hbKeVhvokPCqhFhzsuhKsm
q4Of/o+t6dI7sx5h0nPMm4gGSRhfq+z6BTRgCrqQG2FOLoVFgt6iIm/BnNffUr7V
DYd3zZmIwFOj/H3DKHoGik/xK3E82YA2ZulVOFRW/zj4ApjPa5OFbpIkd0pmzxzd
EcL479hSA9dFiyVmSxPtY5ze1P+BE9bMU1PScpRzw8MHFXxyKqW13Qv7LWw4sbk3
SciB7GACbQiVGzgkvXG6y85HOuvWNvC5GLSiyP9GlPB0V68tbxz4JVTRdw/Xn/XT
FNzRBM3cq8lBOAVt/PAX5+uFcv1S9wFE8YjaBfWCP1jdBil+c4e+0tdywT2oJmYB
BF/kEt1wmGwMmHunNEuQNzh1FtJY54hbUfiWi38mASE7xMtMhfj/C4SvapiDN837
gYaPfs8x3KZxbX7C3YAsFnJinlwAUss1fdKar8Q/YVs7H/nU4c4Ixxxz4f67fcVq
M2ITKentbCMCAwEAAaOCAk4wggJKMAwGA1UdEwQFMAMBAf8wDgYDVR0PAQH/BAQD
AgHGMB0GA1UdDgQWBBT6VQ2MNGZRQ0z357OnbJWveuaklzCBygYDVR0jBIHCMIG/
gBT6VQ2MNGZRQ0z357OnbJWveuakl6GBm6SBmDCBlTERMA8GA1UEChMIRnJlZSBU
U0ExEDAOBgNVBAsTB1Jvb3QgQ0ExGDAWBgNVBAMTD3d3dy5mcmVldHNhLm9yZzEi
MCAGCSqGSIb3DQEJARYTYnVzaWxlemFzQGdtYWlsLmNvbTESMBAGA1UEBxMJV3Vl
cnpidXJnMQ8wDQYDVQQIEwZCYXllcm4xCzAJBgNVBAYTAkRFggkAwemGFg2o6YAw
MwYDVR0fBCwwKjAooCagJIYiaHR0cDovL3d3dy5mcmVldHNhLm9yZy9yb290X2Nh
LmNybDCBzwYDVR0gBIHHMIHEMIHBBgorBgEEAYHyJAEBMIGyMDMGCCsGAQUFBwIB
FidodHRwOi8vd3d3LmZyZWV0c2Eub3JnL2ZyZWV0c2FfY3BzLmh0bWwwMgYIKwYB
BQUHAgEWJmh0dHA6Ly93d3cuZnJlZXRzYS5vcmcvZnJlZXRzYV9jcHMucGRmMEcG
CCsGAQUFBwICMDsaOUZyZWVUU0EgdHJ1c3RlZCB0aW1lc3RhbXBpbmcgU29mdHdh
cmUgYXMgYSBTZXJ2aWNlIChTYWFTKTA3BggrBgEFBQcBAQQrMCkwJwYIKwYBBQUH
MAGGG2h0dHA6Ly93d3cuZnJlZXRzYS5vcmc6MjU2MDANBgkqhkiG9w0BAQ0FAAOC
AgEAaK9+v5OFYu9M6ztYC+L69sw1omdyli89lZAfpWMMh9CRmJhM6KBqM/ipwoLt
nxyxGsbCPhcQjuTvzm+ylN6VwTMmIlVyVSLKYZcdSjt/eCUN+41K7sD7GVmxZBAF
ILnBDmTGJmLkrU0KuuIpj8lI/E6Z6NnmuP2+RAQSHsfBQi6sssnXMo4HOW5gtPO7
gDrUpVXID++1P4XndkoKn7Svw5n0zS9fv1hxBcYIHPPQUze2u30bAQt0n0iIyRLz
aWuhtpAtd7ffwEbASgzB7E+NGF4tpV37e8KiA2xiGSRqT5ndu28fgpOY87gD3ArZ
DctZvvTCfHdAS5kEO3gnGGeZEVLDmfEsv8TGJa3AljVa5E40IQDsUXpQLi8G+UC4
1DWZu8EVT4rnYaCw1VX7ShOR1PNCCvjb8S8tfdudd9zhU3gEB0rxdeTy1tVbNLXW
99y90xcwr1ZIDUwM/xQ/noO8FRhm0LoPC73Ef+J4ZBdrvWwauF3zJe33d4ibxEcb
8/pz5WzFkeixYM2nsHhqHsBKw7JPouKNXRnl5IAE1eFmqDyC7G/VT7OF669xM6hb
Ut5G21JE4cNK6NNucS+fzg1JPX0+3VhsYZjj7D5uljRvQXrJ8iHgr/M6j2oLHvTA
I2MLdq2qjZFDOCXsxBxJpbmLGBx9ow6ZerlUxzws2AWv2pk=
-----END CERTIFICATE-----





  

    
    
      
        
          


          
             R3 Corda
          

          
          

          
            
            
              
                release-M9.2
              

            
          

          

  
    
    
    
  




          


API reference: Kotlin/ JavaDoc


Discourse Forums


Slack



        


        
          
            
            
                Getting started



		What’s included?


		Getting set up


		Troubleshooting


		Running the demos


		CLI vs IDE





Key concepts



		Overview


		Corda ecosystem


		Data model


		Core types


		Financial model


		Flow framework


		Consensus and notaries
		Consensus model


		Notary
		Multiple notaries


		Changing notaries








		Validation


		Timestamping








		Vault


		Security model





CorDapps



		CorDapp basics


		The example CorDapp





The Corda node



		Object Serialization


		Client RPC


		Networking and messaging


		Persistence


		Node administration


		Node configuration


		The Corda plugin framework


		Brief introduction to the node services


		Node Explorer


		Network permissioning





Tutorials



		Writing a contract


		Writing a contract using clauses


		Writing a contract test


		Upgrading Contracts


		Integration testing


		Client RPC API tutorial


		Building transactions


		Writing flows


		Writing flow tests


		Running a notary service


		Using a notary service


		Writing oracle services


		Using attachments


		Event scheduling





Other



		Network Simulator


		Clauses


		Transaction tear-offs





Component library



		Contract catalogue


		Interest rate swaps





Appendix



		Load testing


		What is a corda network?


		Secure coding guidelines


		Release process


		Release notes


		Changelog


		Code style guide


		Building the documentation


		Further notes on Kotlin


		Publishing Corda


		Working with the Corda Demo on Azure Marketplace





Glossary



		Glossary






            
          
        

      

    

    

      
      
        
        R3 Corda
      


      
      
        
          

 




  
    		Docs »


      
    		Consensus and notaries


      		
        
          
             View page source
          
        
      


  


  



          
           
            
  
Consensus and notaries¶


A notary is a service that provides transaction ordering and timestamping.


Notaries are expected to be composed of multiple mutually distrusting parties who use a standard consensus algorithm.
Notaries are identified by and sign with Composite Keys. Notaries accept transactions submitted to them for processing
and either return a signature over the transaction, or a rejection error that states that a double spend attempt has occurred.


Corda has “pluggable” notary services to improve privacy, scalability, legal-system compatibility and algorithmic agility.
The platform currently provides validating and non-validating notaries, and a distributed RAFT implementation.



Consensus model¶


The fundamental unit of consensus in Corda is the state. Consensus can be divided into two parts:



		Consensus over state validity – parties can reach certainty that a transaction is accepted by the contracts pointed
to by the input and output states, and has all the required signatures. This is achieved by parties independently running
the same contract code and validation logic (as described in data model)


		Consensus over state uniqueness – parties can reach certainty the output states created in a transaction are the
unique successors to the input states consumed by that transaction (in other words – an input state has not been previously
consumed)






Note


The current model is still a work in progress and everything described in this article can and is likely to change







Notary¶


A notary is an authority responsible for attesting that for a given transaction, it has not signed another transaction
consuming any of the same input states. Every state has an appointed notary:


/**
 * A wrapper for [ContractState] containing additional platform-level state information.
 * This is the definitive state that is stored on the ledger and used in transaction outputs
 */
data class TransactionState<out T : ContractState>(
        /** The custom contract state */
        val data: T,
        /** Identity of the notary that ensures the state is not used as an input to a transaction more than once */
        val notary: Party) {
    ...
}






Transactions are signed by a notary to ensure their input states are valid (apart from issue transactions, containing no input states).
Furthermore, when using a validating notary, a transaction is only valid if all its dependencies are also valid.



Note


The notary is a logical concept and can itself be a distributed entity, potentially a cluster maintained by mutually distrusting parties




When the notary is requested to sign a transaction, it either signs it, attesting that the outputs are the unique
successors of the inputs, or provides conflict information for any input state that has been consumed by another transaction
it has already signed. In doing so, the notary provides the point of finality in the system. Until the notary signature
is obtained, parties cannot be sure that an equally valid, but conflicting, transaction will not be regarded as confirmed.
After the signature is obtained, the parties know that the inputs to this transaction have been uniquely consumed by this transaction.
Hence, it is the point at which we can say finality has occurred.



Multiple notaries¶


More than one notary can exist in a network. This gives the following benefits:



		Custom behaviour. We can have both validating and privacy preserving Notaries – parties can make a choice based
on their specific requirements.


		Load balancing. Spreading the transaction load over multiple notaries will allow higher transaction throughput in
the platform overall


		Low latency. Latency could be minimised by choosing a notary physically closer the transacting parties








Changing notaries¶


A transaction should only be signed by a notary if all of its input states point to the same notary.
In cases where a transaction involves states controlled by multiple notaries, the states first have to be repointed to the same notary.
This is achieved by using a special type of transaction whose sole output state is identical to its sole input state except for its designated notary.
Ensuring that all input states point to the same notary is the responsibility of each involved party
(it is another condition for an output state of the transaction to be valid)


To change the notary for an input state, use the NotaryChangeFlow. For example:


@Suspendable
fun changeNotary(originalState: StateAndRef<ContractState>,
                 newNotary: Party): StateAndRef<ContractState> {
    val flow = NotaryChangeFlow.Instigator(originalState, newNotary)
    return subFlow(flow)
}






The flow will:



		Construct a transaction with the old state as the input and the new state as the output


		Obtain signatures from all participants (a participant is any party that is able to consume this state in a valid transaction, as defined by the state itself)


		Obtain the old notary signature


		Record and distribute the final transaction to the participants so that everyone possesses the new state






Note


Eventually, changing notaries will be handled automatically on demand.









Validation¶


One of the design decisions for a notary is whether or not to validate a transaction before accepting it.


If a transaction is not checked for validity, it opens the platform to “denial of state” attacks, where anyone can build an invalid transaction consuming someone else’s states and submit it to the notary to get the states “blocked”.
However, if the transaction is validated, this requires the notary to be able to see the full contents of the transaction in question and its dependencies.
This is an obvious privacy leak.


The platform is flexible and currently supports both validating and non-validating notary implementations – a party can select which one to use based on its own privacy requirements.



Note


In the non-validating model, the “denial of state” attack is partially alleviated by requiring the calling
party to authenticate and storing its identity for the request. The conflict information returned by the notary
specifies the consuming transaction ID along with the identity of the party that had created the transaction. If the
conflicting transaction is valid, the current one is aborted; if not, a dispute can be raised and the input states
of the conflicting invalid transaction are “un-committed” (via a legal process).





Note


At present, all notaries can see the entire contents of a submitted transaction. A future piece of work
will enable the processing of Transaction tear-offs, thus providing data hiding of sensitive information.







Timestamping¶


A notary can also act as a timestamping authority, verifying the transaction timestamp command.


For a timestamp to be meaningful, its implications must be binding on the party requesting it.
A party can obtain a timestamp signature in order to prove that some event happened before, on, or after a particular point in time.
However, if the party is not also compelled to commit to the associated transaction, it has a choice of whether or not to reveal this fact until some point in the future.
As a result, we need to ensure that the notary either has to also sign the transaction within some time tolerance,
or perform timestamping and notarisation at the same time, which is the chosen behaviour for this model.


There will never be exact clock synchronisation between the party creating the transaction and the notary.
This is not only due to physics, network latencies, etc. but also because between inserting the command and getting the
notary to sign there may be many other steps, like sending the transaction to other parties involved in the trade, or
even requesting human sign-off. Thus the time observed by the notary may be quite different to the time observed by the
party creating the transaction.


For this reason, times in transactions are specified as time windows, not absolute times.
In a distributed system there can never be “true time”, only an approximation of it. Time windows can be
open-ended (i.e. specify only one of “before” and “after”) or they can be fully bounded. If a time window needs to
be converted to an absolute time (e.g. for display purposes), there is a utility method on Timestamp to
calculate the mid point.


In this way, we express the idea that the true value of the fact “the current time” is actually unknowable. Even when both before and
after times are included, the transaction could have occurred at any point between those two timestamps. Here,
“occurrence” could mean the execution date, the value date, the trade date etc ... The notary doesn’t care what precise
meaning the timestamp has to the contract.


By creating a range that can be either closed or open at one end, we allow all of the following facts to be modelled:



		This transaction occurred at some point after the given time (e.g. after a maturity event)


		This transaction occurred at any time before the given time (e.g. before a bankruptcy event)


		This transaction occurred at some point roughly around the given time (e.g. on a specific day)






Note


It is assumed that the time feed for a notary is GPS/NaviStar time as defined by the atomic
clocks at the US Naval Observatory. This time feed is extremely accurate and available globally for free.




Also see section 7 of the Technical white paper which covers this topic in significantly more depth.








           

          

          
  
    
      
        Next 
      
      
         Previous
      
    

  

  


  
    
        © Copyright 2016, R3 Limited.

    


  

  Built with Sphinx using a theme provided by Read the Docs. 



        

      


    

  

  


  

    
      
      
      

  

  
  
    
  

  
  
  
  



		www.freetsa.org busilezas@gmail.com
	2019-11-20T15:23:03+0100
	Germany Wuerzburg (Bayern)
	URL screenshot: https://docs.corda.net/releases/release-M9.2/key-concepts-consensus-notaries.html




