ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration dormakaba International Holding GmbH

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-DOR-20220260-CBA1-EN

 Issue date
 29.11.2022

 Valid to
 28.11.2027

EL 301 Series Sliding Door Operator dormakaba

www.ibu-epd.com | https://epd-online.com

General Information

dormakaba

Programme holder

IBU – Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany

Declaration number

EPD-DOR-20220260-CBA1-EN

This declaration is based on the product category rules:

Drive systems for automatic doors and gates, 11.2017 (PCR checked and approved by the SVR)

Man Poten

loud Wails

Issue date

29.11.2022

Valid to

28.11.2027

Dipl. Ing. Hans Peters (chairman of Institut Bauen und Umwelt e.V.)

Dr. Alexander Röder

(Managing Director Institut Bauen und Umwelt e.V.))

EL 301 Series - Sliding Door Operator

Owner of the declaration

dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany

Declared product / declared unit

1 piece of the product: EL 301 Series - sliding door operator, consisting of the following items:

- EL 301 profiles
- EL 301 drive components, consisting of motor, controller, power supply
- EL 301 belt drive components
- EL 301 accesssories battery pack and lock
- EL301 carrier components
- additional mechanical components
- packaging

Scope:

This EPD refers to a specific automatic sliding door operator EL 301 series produced by dormakaba. The production site is located in Hallam, Australia. The material and energy flows were taken into consideration accordingly.

The year of data collection is 2022.

The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

The EPD was created according to the specifications of *EN 15804+A2*. In the following, the standard will be simplified as *EN 15804*.

Verification

The standard *EN 15804* serves as the core PCR Independent verification of the declaration and data according to *ISO 14025:2011*

internally

x externally

Dr.-Ing. Wolfram Trinius (Independent verifier)

Product

Product description/Product definition

The dormakaba EL 301 automatic door operator is engineered to control and operate bi-parting and single slide framed and frameless glass sliding doors.

Features

- Total door weight to 300 kg
- Made In Australia
- Integrated uninterruptible power supply (UPS) system
- Smart lock technology

For the placing on the market the following legal provisions apply:

- Australian Standard AS5007
- Endurance testing clause 4.4.1.1. and 4.4.2
 by NATA accredited facility.
- 2011/65/EU ROHS3 Directive

Application

The dormakaba EL 301 automatic door operator is a proven performer in airports, shopping centres, supermarkets, hotels, hospitals, financial institutions, sports stadiums and many other commercial sites.

The following parameter are applicable for single and double-leaf doors:

Single-panel sliding door

Maximum door width: 3000 mmMaximum door weight: 300 kg

Double leaf sliding door

Maximum door width: 1500 mm
 Maximum door weight: 150 kg

Technical Data

The technical data of the EL 301 are as follows:

Constructional data

Name	Value	Unit		
Height	240	mm		
Installation depth	152	mm		
Opening speed maximum	50	cm/s		
Closing speed maximum	40	cm/s		
Hold open time maximum	60	S		
Supply voltage, frequency maximum	60	Hz		
Power consumption	175	W		
Class of protection	20	IP		

Product in accordance with:

Australian Standard AS5007

Delivery status:

The declared EL301 series sliding door operator includes the profiles, drive, belt drive, carrier, battery pack and lock, mechanical components and packaging with a weight of 73,14 kg.

Components	Absolute	Percentage
Average EL 301 Operator	71,71 kg	98,05%
Average Packaging	1,43 kg	1,95%
Total	73,14 kg	100%

Base materials/Ancillary materials

The EL 301 automatic sliding door operator comprises the following components including packaging:

Components	Percentage
Aluminium elements	57,60%
Steel elements	19,00%
Zinc elements	0,35%
Plastic elements	2,05%
Electronic elements	13,13%
Batteries	5,93%
Paper	1,94%
Total	100,00%

The product contains partial articles which contain substances listed in the Candidate List of *REACH Regulation 1907/2006/EC* (date: 10.06.2022) exceeding 0.1 percentage by mass: yes

- Lead (Pb): 7439-92-1 (CAS-No) is used in the brass alloy. The concentration of lead in the alloy does not exceed 4%(by mass).
- The drive system is battery-powered (lead accumulator).

Reference service life

The life cycle of the EL 301 series is about 10 years, depending on the application and frequency of use. Regular maintenance is advised to ensure the life expectancy of 10 years. For repairs or renewals, suitable spare parts are available. The EL 301 is tested and certified to 1,000,000 cycles according to AS 5007 NATA accredited.

LCA: Calculation rules

Declared Unit

The declared unit is 1 piece of the product: EL 301 Series Sliding Door Operator

Declared unit

Deciared anne										
Name	Value	Unit								
Declared unit	1	pce.								
Mass (total system) (excl. packaging)	73,14	kg								

System boundary

The type of EPD is: cradle-to-gate with options, modules C1–C4, and module D (A1–A3 + C + D and additional modules: A4 + A5 + B6)

Production - Module A1-A3

The product stage includes:

- A1, raw material extraction, processing and mechanical treatments, processing of secondary material input (e.g. recycling processes),
- A2, transport to the manufacturer,
- A3, manufacturing and assembly including provision of all materials, products and energy, as well as waste processing up to the end-of waste state.

Construction stage - Modules A4-A5

The construction process stage includes:

- A4, transport to the building site;
- A5, installation into the building;

including provision of all materials, products and energy, as well as waste processing up to the end-of waste state or disposal of final residues during the construction process stage.

Use stage - Module B6

The use stage related to the operation of the building includes:

- B6, operational energy use

End-of-life stage- Modules C1-C4 and D

The end-of-life stage includes:

- C1, de-construction, demolition:
- C2, transport to waste processing;
- C3, waste processing for reuse, recovery and/or recycling;
- C4, disposal;

including provision and all transport, provision of all materials, products and related energy and water use.

Module D (Benefits and loads beyond the system boundary) includes:

— D, recycling potentials, expressed as net impacts and benefits.

Comparability

End of life (C1-C4)

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account.

Background database: GaBi, SP40.

LCA: Scenarios and additional technical information

Characteristic product properties Information on biogenic carbon

Information on describing the Biogenic Carbon Content at factory gate

Name	Value	Unit
Biogenic Carbon Content in product	0.18	kg C
Biogenic Carbon Content in accompanying packaging	0.52	kg C

The following technical scenario information is required for the declared modules

Transport from the gate to the site (A4)

Transport from the gate to the one	(/~~/)	
Name	Value	Unit
Litres of fuel (per 1 kg)	0.00276	I/100km
Capacity utilisation (including empty runs)	55	%
Transport distance via medium truck	100	km

Transport distance is declared for a distance of 100km by truck in order to allow scaling to a specific point of installation.

Installation into the building (A5)

Name	Value	Unit
Waste packaging (paper and plastic)	1.42	kg

Name	Value	Unit
Recycling	67.9	kg
Energy recovery	1.27	kg
Landfilling	2.58	kg
Transport to waste management	50	km

The product is disassembled in a recycling process. Material recycling is then assumed for the metals, electronics and electromechanics. The plastic components are assumed to be incinerated with energy recovery. Minor proportions of residues arising from the recycling process are landfilled. Region for the End of Life is: Global.

Reuse, recovery and/or recycling potentials (D), relevant scenario information

The collection rate is 100 %.

Reference service life

Name	Value	Unit
Life Span according to the	10	a
manufacturer	10	a

Operational energy use (B6)

The use stage is declared for 10 years

· · · · · · · · · · · · · · · · · · ·											
Name	Value	Unit									
Electricity consumption for 1 year	93.84	kWh									
Days per year in use	365	days									
On mode per day	1	h									
ldle mode per day	7	h									
Off mode per day	16	h									
On mode power	67,2	W									
Idle mode power	7,7	W									
Off mode power	8,5	W									

LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; ND = MODULE OR INDICATOR NO	то
DECLARED: MNR = MODULE NOT RELEVANT)	

PRODUCT STAGE		CONSTRUCTI ON PROCESS STAGE			USE STAGE				EN	D OF LI	FE STA		BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES			
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A 1	A2	А3	A4	A 5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Х	Х	Х	Х	Х	ND	ND	MNR	MNR	MNR	Х	ND	Х	Х	Х	Х	X

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 piece EL 301 Sliding Door Operator

Core Indicator	Unit	A1-A3	A4	A5	В6	C1	C2	СЗ	C4	D
GWP-total	[kg CO ₂ -Eq.]	5.31E+2	6.40E-1	2.02E+0	9.42E+2	0.00E+0	3.11E-1	4.30E+0	1.31E-1	-2.78E+2
GWP-fossil	[kg CO ₂ -Eq.]	5.33E+2	6.11E-1	6.30E-2	9.41E+2	0.00E+0	2.98E-1	3.23E+0	1.30E-1	-2.77E+2
GWP-biogenic	[kg CO ₂ -Eq.]	-2.70E+0	2.80E-2	1.96E+0	8.46E-1	0.00E+0	1.40E-2	1.07E+0	4.44E-4	-8.52E-1
GWP-luluc	[kg CO ₂ -Eq.]	3.85E-1	1.46E-5	3.38E-5	2.25E-1	0.00E+0	7.08E-6	1.89E-4	3.74E-4	-4.10E-2
ODP	[kg CFC11-Eq.]	3.74E-9	6.46E-17	3.68E-16	4.30E-12	0.00E+0	3.14E-17	1.71E-15	4.82E-16	-2.07E-9
AP	[mol H+-Eq.]	2.72E+0	6.12E-4	5.65E-4	4.52E+0	0.00E+0	2.98E-4	6.91E-4	9.33E-4	-1.22E+0
EP-freshwater	[kg P-Eq.]	7.18E-4	1.31E-7	7.18E-8	4.38E-4	0.00E+0	6.37E-8	2.72E-7	2.23E-7	-1.39E-4
EP-marine	[kg N-Eq.]	3.68E-1	1.95E-4	2.04E-4	9.67E-1	0.00E+0	9.48E-5	1.60E-4	2.40E-4	-1.46E-1
EP-terrestrial	[mol N-Eq.]	4.01E+0	2.00E-3	3.00E-3	1.06E+1	0.00E+0	1.00E-3	3.00E-3	3.00E-3	-1.58E+0
POCP	[kg NMVOC-Eq.]	1.15E+0	5.51E-4	5.40E-4	2.69E+0	0.00E+0	2.68E-4	4.44E-4	7.27E-4	-4.71E-1
ADPE	[kg Sb-Eq.]	2.35E-2	1.83E-8	5.80E-9	6.31E-5	0.00E+0	8.93E-9	2.37E-8	1.17E-8	-1.20E-2
ADPF	[MJ]	6.77E+3	8.67E+0	6.40E-1	1.04E+4	0.00E+0	4.22E+0	1.65E+0	1.71E+0	-3.88E+3
WDP	[m³ world-Eq deprived]	8.11E+1	1.00E-3	2.50E-1	3.57E+2	0.00E+0	5.83E-4	4.28E-1	1.40E-2	-1.42E+1

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Caption Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential

RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 piece EL 301 Sliding Door Operator

Indicator	Unit	A1-A3	A4	A5	В6	C1	C2	C3	C4	D
PERE	[MJ]	2.40E+3	2.70E-2	1.71E+1	1.59E+3	0.00E+0	1.30E-2	1.30E+1	2.24E-1	-1.76E+3
PERM	[MJ]	2.96E+1	0.00E+0	-1.70E+1	0.00E+0	0.00E+0	0.00E+0	-1.26E+1	0.00E+0	0.00E+0
PERT	[MJ]	2.43E+3	2.70E-2	1.17E-1	1.59E+3	0.00E+0	1.30E-2	4.18E-1	2.24E-1	-1.76E+3
PENRE	[MJ]	6.74E+3	8.68E+0	8.55E-1	1.04E+4	0.00E+0	4.22E+0	3.78E+1	1.71E+0	-3.88E+3
PENRM	[MJ]	3.63E+1	0.00E+0	-2.15E-1	0.00E+0	0.00E+0	0.00E+0	-3.61E+1	0.00E+0	0.00E+0
PENRT	[MJ]	6.78E+3	8.68E+0	6.40E-1	1.04E+4	0.00E+0	4.22E+0	1.65E+0	1.71E+0	-3.88E+3
SM	[kg]	4.53E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
RSF	[MJ]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
NRSF	[MJ]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
FW	[m³]	6.03E+0	4.90E-5	6.00E-3	5.01E+0	0.00E+0	2.39E-5	1.00E-2	4.30E-4	-3.16E+0

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; PENRE = Use of renewable primary energy resources; PENRE = Use of non-renewable primary energy escources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 piece EL 301 Sliding Door Operator

Indicator	Unit	A1-A3	A4	A5	В6	C1	C2	C3	C4	D
HWD	[kg]	1.51E-5	8.42E-10	9.57E-10	1.69E-6	0.00E+0	4.10E-10	5.80E-9	2.60E-8	-2.13E-5
NHWD	[kg]	1.15E+2	8.87E-4	6.40E-2	2.69E+0	0.00E+0	4.32E-4	3.40E-1	8.58E+0	-6.90E+1
RWD	[kg]	3.61E-1	9.32E-6	3.35E-5	2.00E-3	0.00E+0	4.53E-6	6.46E-5	1.94E-5	-4.20E-1
CRU	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
MFR	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	6.11E+1	0.00E+0	0.00E+0
MER	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
EEE	[MJ]	0.00E+0	0.00E+0	3.06E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
EET	[MJ]	0.00E+0	0.00E+0	5.56E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy

RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional: 1 piece EL 301 Sliding Door Operator

Indicator	Unit	A1-A3	A4	A5	В6	C1	C2	С3	C4	D
PM	[Disease Incidence]	2.89E-5	3.22E-9	3.14E-9	4.60E-5	0.00E+0	1.57E-9	7.97E-9	1.16E-8	-1.78E-5
IRP	[kBq U235- Eq.]	6.81E+1	1.00E-3	5.00E-3	2.53E-1	0.00E+0	6.48E-4	6.00E-3	2.00E-3	-8.45E+1
ETP-fw	[CTUe]	2.45E+3	6.15E+0	3.03E-1	1.43E+3	0.00E+0	2.99E+0	6.31E-1	9.75E-1	-1.41E+3
HTP-c	[CTUh]	2.95E-7	1.16E-10	1.61E-11	8.40E-8	0.00E+0	5.63E-11	5.50E-11	1.45E-10	-6.10E-8
HTP-nc	[CTUh]	7.09E-6	4.94E-9	7.09E-10	3.09E-6	0.00E+0	2.41E-9	5.12E-9	1.59E-8	-1.92E-6
SQP	[-]	1.12E+3	2.20E-2	1.70E-1	9.75E+2	0.00E+0	1.10E-2	4.92E-1	3.56E-1	-1.19E+2

PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index Caption

Disclaimer 1 - for the indicator IRP

This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 - for the indicators ADPE, ADPF, WDP, ETP-fw, HTP-c, HTP-nc, SQP The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

References

Standards

AS 5007

AS 5007-2007

Powered doors for pedestrian access and egress

ISO 14025

DIN EN ISO 14025:201110, Environmental labels and declarations — Type III environmental declarations -Principles and procedures

Further References

2011/65/EU ROHS3 Directive

Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

IBU 2021

6

General Instructions for the EPD programme of Institut Bauen und Umwelt e.V. Version 2.0, Berlin: Institut Bauen und Umwelt e.V., 2021. www.ibu-epd.com

GaBi ts software

Sphera Solutions GmbH

Gabi Software System and Database for Life Cycle Engineering 1992-2020 Version 10.0.0.71 University of Stuttgart Leinfelden-Echterdingen

GaBi ts documentation

GaBi life cycle inventory data documentation (https://www.gabisoftware. com/support/gabi/gabidatabase-2020-lci-documentation/).

LCA-tool dormakaba

LCA tool, ENS (drive system) LCA tool no.: IBU-DOR-202108-LT1-EN Developed by Sphera Solutions GmbH.

PCR Part A

PCR - Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Re-port according to EN 15804+A2:2019, Version 1.0, Institut Bauen und Umwelt e.V., www.ibu-epd.com.

PCR Part B

PCR - Part B: Requirements on the EPD for Building Hardware product, version 1.2, Institut Bauen und Umwelt e.V., www.ibu-epd.com, 2020.

Publisher

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany

Tel +49 (0)30 3087748- 0 Fax +49 (0)30 3087748- 29 info@ibu-epd.com Mail Web www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany

+49 (0)30 - 3087748- 0 Tel +49 (0)30 - 3087748 - 29 Fax Mail info@ibu-epd.com Web www.ibu-epd.com

Author of the Life Cycle **Assessment**

Sphera Solutions GmbH Hauptstraße 111- 113 70771 Leinfelden-Echterdingen Germany

+49 711 341817-0 +49 711 341817-25 Fax Mail info@sphera.com Web www.sphera.com

Tel

Owner of the Declaration

dormakaba International Holding DORMA Platz 1 58256 Ennepetal Germany

Tel +49 2333 793-0 Fax +49 2333 793-4950 Mail info.de@dormakaba.com Web www.dormakaba.com