ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration dormakaba International Holding GmbH

Publisher Institut Bauen und Umwelt e.V. (IBU)

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-DOR-20220206-CBA11-EN

Issue date 29.11.2022 Valid to 28.11.2027

Mortise Lock - DL Series 2xxx-9xxx dormakaba

www.ibu-epd.com | https://epd-online.com

(Managing Director Institut Bauen und Umwelt e.V.)

General Information

Mortise Lock - DL Series 2xxx-9xxx dormakaba Programme holder Owner of the declaration dormakaba International Holding GmbH IBU - Institut Bauen und Umwelt e.V. DORMA Platz 1 Hegelplatz 1 10117 Berlin 58256 Ennepetal Germany Germany **Declaration number** Declared product / declared unit EPD-DOR-20220206-CBA11-EN 1 Mortise Lock (1 piece) of the DL 9xxx Series, consisting of the following - one (1) mortise lock DL 91925 - one (1) closed case - one (1) forend - product packaging This declaration is based on the product category rules: Building Hardware products, 01.08.2021 This declaration is a specific product declaration for the Mortise Lock - DL (PCR checked and approved by the SVR) Series 9xxx manufactured at production facility DKF7. The production site is located in China. The underlying life cycle assessment is based on the entire life cycle of this specific mortise lock series. The EPD is also Issue date applicable for the Mortise Lock - DL Series 8xxx, 7xxx, 5xxx, 4xxx, 3xxx, 2xxx. Data represents the year 2022. 29.11.2022 The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. Valid to 28.11.2027 The EPD was created according to the specifications of EN 15804+A2. In the following, the standard will be simplified as EN 15804. Verification The standard EN 15804 serves as the core PCR Independent verification of the declaration and data according to ISO 14025:2011 X internally externally Dipl.-Ing. Hans Peters (Chairman of Institut Bauen und Umwelt e.V.) Dr.-Ing. Wolfram Trinius,

(Independent verifier)

Product

Product description/Product definition

dormakaba Mortise Lock - DL Series 2xxx-9xxx for timber and steel doors. DL Series locks are a complementary series of the SIS size locks.

A range of mechanically operated locks for doors in buildings. A complete range of high-quality products and functional reliablity.

With the use of high-grade materials, precise production techniques and a comprehensive quality management system, all dormakaba locks meet demanding technical specifications. Locks are supplied complete with fixing screws.

For the use and application of the product the respective national provisions at the place of use apply. dormakaba locks are subject to strict quality requirements and are tested and certified according to:

• EN 12209

Application

dormakaba DL locks Series locks can be used universally on standard doors by changing the latch handing. Moreover they offer their precision by a simple, compatible assembling in standard door cuts.

As well as for applications with increased security requirements.

dormakaba DL Series locks are as well fire-tested and RISE-approved.

Technical Data

The Mortise Lock - DL Series 8xxx-9xxx fullfils following technical properties:

Technical data	DL 803	DL 909	DL 919	DL 912	DL 9190	DL 9192	DL 91925	DL 9195	DL 9197	DL 9097
Latch			•		•		•	•		
Locking latch										
Cylinder latch										
Dogging										
Dead bolt										
Hook bolt			•					•		
2-function lock										
EN 179 - Escape									•	
EN 179 - ReEntry										
Cylinder rotation	360°	360°	360°	360°	360°	360°	360°	360°	360°	360°

The following technical data are applicable for DL Series 7xxx:

Technical data	DL 700	DL 7100	DL 710	DL 7200	DL 7007	DL 7107	DL 712	DL 7110	DL 719	DL 7207	DL 7307
Latch			70-2				•	•	•	•	70.2
Locking latch					•						•
Cylinder latch	•	•		•	•					•	
Dogging	B/K/B	B/K/B	B/K/B	B/K/B	B/K/B	B/K/B					
Dead bolt								•			
Hook bolt											
2-function lock											
EN 179 - Escape					•	•				•	•
EN 179 - ReEntry											
Cylinder rotation	90°	90°	90°	90°	90°	90°	90°	90°	90°	90°	90°

The DL Series 2xxx-5xxx has below technical properties:

Technical data	DL 502	DL 41974	DL 31974	DL 21070-30.5	DL 21070-35.0
Latch		•	•		•
Locking latch					
Cylinder latch					
Dogging					
Dead bolt	•				
Hook bolt					
2-function lock					
EN 179 - Escape					
EN 179 - ReEntry					
Cylinder rotation	360°				

Performance data of the product with respect to its characteristics in accordance with the relevant technical provision which can be applied are mentioned above.

Base materials/Ancillary materials

The material composition of the Mortise lock - DL Series 9xxx is the following:

Name	Value	Unit
Stainless Steel	29	%
Steel	54,5	%
Zinc	14	%
Plastic	0,5	%
Paper	2	%
Total	100	%

The product includes partial articles which contain substances listed in the Candidate List of *REACH* Regulation 1907/2006 / EC (date: 14.06.2023) exceeding 0.1 percent by mass: no.

The Candidate List can be found on the *ECHA* website address:

https: echa.europa.eu/de/home.

Reference service life

dormakaba Mortise Lock - DL Series 2xxx-9xxx is certified according to *EN 12209* up to 200.000 cycles of use. Under normal conditions and depending on cycle frequency, door weight and environmental conditions a duration of 15 years can be secured.

LCA: Calculation rules

Declared Unit

The declared unit is 1 piece of the product: Mortise Lock - DL 9xxx Series

Name	Value	Unit
Declared unit	1	piece/product
Mass of declared Product	0.769	kg

System boundary

The type of EPD is according to *EN 15804*: "cradle to gate with options, modules C1–C4, and module D". The following modules are declared: A1-A3, C1-C4, D and additional modules: A4 + A5

Production - Module A1-A3

The product stage includes:

— A1, raw material extraction, processing and mechanical treatments, processing of secondary material input (e.g. recycling processes),

- A2, transport to the manufacturer,
- A3, manufacturing and assembly

including provision of all materials, products and energy, as well as waste processing up to the end-of waste state.

Construction stage - Modules A4-A5

The construction process stage includes:

- A4, transport to the building site;
- A5, installation into the building;

including provision of all materials, products and energy, as well as waste processing up to the end-of waste state or disposal of final residues during the construction process stage.

End-of-life stage- Modules C1-C4 and D

The end-of-life stage includes:

- C1, de-construction, demolition:
- C2, transport to waste processing;
- C3, waste processing for reuse, recovery and/or recycling;
- C4, disposal;

including provision and all transport, provision of all materials, products and related energy and water use. Module D (Benefits and loads beyond the system boundary) includes:

— D, recycling potentials, expressed as net impacts and benefits.

Geographic Representativeness

Land or region, in which the declared product system is manufactured, used or handled at the end of the product's lifespan: Europe

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account.

LCA: Scenarios and additional technical information

Characteristic product properties of biogenic carbon Information on describing the biogenic Carbon Content at factory gate

Name	Value	Unit
Biogenic carbon content in accompanying	0.006	kg
packaging		С

Additional technical information for the declared modules.

Transport to the building site (A4)

Name	Value	Unit
Litres of fuel (per 1kg)	0.00276	l/100km
Transport distance via truck (from habor to dormakaba logistic centre)	300	km
Capacity utilisation (including empty runs)	55	%
Transport distance via truck (for scaling)	100	km
Transport distance via ship	13.000	km

The product is transported via truck and ship. The product is stored in the dormakaba logistic centre in Sweden. The main distribution region is Scandinavia and the Baltic States with the calculated transport distances. In order to allow scaling to a specific point of installation 100 km is declared as well.

Installation into the building (A5)

Name	Value	Unit
Waste packaging (paper)	0.01552	kg
Waste packaging (plastic)	0.0018	kg

Reference service life

Name	Value	Unit
Life Span according to the manufacturer	15	а

End of life (C1-C4)

C1: The product dismantling from the building is done manually without environmental burden.

Name	Value	Unit
Collected separately waste type	0.753	kg
Recycling	0.752	kg
Energy recovery	0.0006	kg
Landfilling	-	kg

The product is disassembled in a recycling process. Material recycling is then assumed for the metals. The plastic components are assumed to be incinerated with energy recovery.

Region for the End of Life is: EU.

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Name	Value	Unit
------	-------	------

The collection rate is 100 %.

LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; ND = MODULE OR INDICATOR NOT DECLARED; MNR = MODULE NOT RELEVANT)

Product stage				_	ruction s stage			L	Jse stag	je			E	End of li	ife stage	Э	Benefits and loads beyond the system boundaries
	Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
Ī	A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
	Х	Х	Х	Х	Х	MND	MND	MNR	MNR	MNR	MND	MND	Х	Х	Х	Х	X

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 piece Mortise Lock - DL Series 2xxx-9xxx									
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
GWP-total	kg CO ₂ eq	2.69E+00	6E-02	2.7E-02	0	3E-03	2E-03	0	-1.74E+00
GWP-fossil	kg CO ₂ eq	2.72E+00	5.8E-02	5E-03	0	3E-03	2E-03	0	-1.74E+00
GWP-biogenic	kg CO ₂ eq	-2.69E-02	1E-03	2.1E-02	0	1.44E-04	3.55E-08	0	4E-03
GWP-luluc	kg CO ₂ eq	4.3E-03	1.29E-06	6.21E-07	0	7.43E-08	8.62E-08	0	-2E-03
ODP	kg CFC11 eq	1.88E-13	5.81E-18	6.27E-18	0	3.29E-19	7.69E-19	0	-2.09E-15
AP	mol H ⁺ eq	1.18E-02	1E-03	6.98E-06	0	3.12E-06	2.72E-07	0	-7E-03
EP-freshwater	kg P eq	5.04E-06	1.29E-08	1.14E-09	0	6.68E-10	1.23E-10	0	-1.98E-06
EP-marine	kg N eq	2.18E-03	3.27E-04	2.41E-06	0	9.94E-07	6.12E-08	0	-1E-03
EP-terrestrial	mol N eq	1.9E-02	4E-03	3.15E-05	0	1.11E-05	1.24E-06	0	-1.2E-02
POCP	kg NMVOC eq	5.52E-03	9.13E-04	6.41E-06	0	2.81E-06	1.69E-07	0	-4E-03
ADPE	kg Sb eq	4.7E-04	1.61E-09	9.43E-11	0	9.36E-11	1.06E-11	0	-1.79E-04
ADPF	MJ	3.3E+01	7.61E-01	9E-03	0	4.4E-02	7.07E-04	0	-1.95E+01
WDP	m ³ world eq deprived	7.92E-01	1.09E-04	3E-03	0	6.12E-06	1.56E-04	0	-4.8E-01

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential)

RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 piece Mortise Lock - DL Series 2xxx-9xxx

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
PERE	MJ	8.48E+00	2E-03	1.88E-01	0	1.4E-04	1.84E-04	0	-3.18E+00
PERM	MJ	1.86E-01	0	-1.86E-01	0	0	0	0	0
PERT	MJ	8.67E+00	2E-03	2E-03	0	1.4E-04	1.84E-04	0	-3.18E+00
PENRE	MJ	3.3E+01	7.62E-01	8.6E-02	0	4.4E-02	2.2E-02	0	-1.96E+01
PENRM	MJ	9.8E-02	0	-7.7E-02	0	0	-2.1E-02	0	0
PENRT	MJ	3.31E+01	7.62E-01	9E-03	0	4.4E-02	7.07E-04	0	-1.96E+01
SM	kg	3.26E-01	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0
FW	m ³	2.8E-02	4.43E-06	7.54E-05	0	2.5E-07	3.73E-06	0	-1.9E-02

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; penergy resources used as raw materials; penergy resources; pener

RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 piece Mortise Lock - DL Series 2xxx-9xxx

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
HWD	kg	1.15E-07	7.44E-11	1.83E-11	0	4.3E-12	2.7E-12	0	-2.13E-07
NHWD	kg	1.86E-01	7.8E-05	1E-03	0	4.53E-06	1.58E-04	0	-8.5E-02
RWD	kg	1.19E-03	8.34E-07	4.44E-07	0	4.76E-08	2.62E-08	0	-2.44E-04
CRU	kg	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	7.46E-01	0	0
MER	kg	0	0	0	0	0	0	0	0
EEE	MJ	6.86E-05	0	4.2E-02	0	0	0	0	0
EET	MJ	1.25E-04	0	8E-02	0	0	0	0	0

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy

RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional: 1 piece Mortise Lock - DL Series 2xxx-9xxx

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
РМ	Disease incidence	1.79E-07	2.07E-08	4.45E-11	0	1.64E-11	3.46E-12	0	-1.26E-07
IR	kBq U235 eq	1.31E-01	1.2E-04	6.36E-05	0	6.79E-06	2.36E-06	0	-2.8E-02
ETP-fw	CTUe	1.43E+01	5.39E-01	4E-03	0	3.1E-02	2.65E-04	0	-8.94E+00
HTP-c	CTUh	3.21E-07	1.01E-11	2.43E-13	0	5.9E-13	2.3E-14	0	-1.23E-09
HTP-nc	CTUh	8.76E-08	4.59E-10	1.45E-11	0	2.52E-11	2.33E-12	0	1.55E-07
SQP	SQP	9.43E+00	2E-03	2E-03	0	1.14E-04	2.12E-04	0	-1.77E+00

PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index

Disclaimer 1 – for the indicator "Potential Human exposure efficiency relative to U235". This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure or radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 – for the indicators "abiotic depletion potential for non-fossil resources", "abiotic depletion potential for fossil resources", "water (user) deprivation potential, deprivation-weighted water consumption", "potential comparative toxic unit for ecosystems", "potential comparative toxic unit for humans – cancerogenic", "Potential comparative toxic unit for humans – not cancerogenic", "potential soil quality index". The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high as there is limited experience with the indicator.

References

EN 12209

EN 12209:2003 Building hardware – locks and latches – mechanically operated locks, latches and locking plates – requirements and methods

EN 15804

EN 15804+A2:2019+AC:2021, Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products.

ISO 14025

DIN EN ISO 14025:201110, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.

REACH

Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)

Further References

IBU 2021

General Instructions for the EPD programme of Institut Bauen und Umwelt e.V.; Version 2.0, Berlin: Institut Bauen und Umwelt e.V., 2021. www.ibu-epd.com

GaBi

Sphera Solutions GmbH Gabi Software System and Database for Life Cycle Engineering 1992-2020 Version 10.0.0.71 University of Stuttgart Leinfelden-Echterdingen

GaBi ts documentation

GaBi life cycle inventory data documentation (https://www.gabi-software.com/support/gabi/gabidatabase- 2020-lci-documentation/).

LCA-tool dormakaba

LCA tool DHW. LCA-Tool No.: IBU-DOR-202104-LT1-EN. Developed by Sphera Solutions GmbH

PCR Part A

PCR – Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Re-port according to EN 15804+A2:2019, Version 1.0, 2020, Institut Bauen und Umwelt e.V., www.ibu-epd.com.

PCR Part B

PCR – Part B: Requirements on the EPD for Building Hardware product, version 08/2021, Institut Bauen und Umwelt e.V., www.ibu-epd.com.

Publisher

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Author of the Life Cycle Assessment

Sphera Solutions GmbH Hauptstraße 111- 113 70771 Leinfelden-Echterdingen +49 711 341817-0 info@sphera.com www.sphera.com

Owner of the Declaration

dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany +49 2333 793-0 info.de@dormakaba.com www.dormakaba.com