
Mohammadmahdi.amini@nordnet.se

Nordnet has designed and implemented a modern scalable secure challenge-response based authentication method.
This method allows Nordnet customers to use their smartphone as a safe key holder which eliminates the need for
sharing any credentials with Nordnet servers. This authentication method, which uses RSA cryptography with long keys
and large space SHA hash function, has been widely used in 3 Scandinavian countries without any security incidents.

1

Challenge-response
authentication

Keep it all public, except the key!

Abstract

Use case:

Customers1 want to login to Nordnet (web and mobile application)
without sharing any form of credentials with anyone, including
Nordnet.

The product of that login is something akin to a session (or an access
token) using which the customer should be able to use all Nordnet
services (after authorization of course).

Customer is not interested in using any 3rd party services during the
login process. So the whole login process must be handled using
Nordnet’s web and/or mobile application.

Security requirements:

• No credential sharing: Customers don’t want to share any
 credentials with Nordnet. So symmetric cryptography and
 password based login can not be used. Asymmetric cryptography,
 however, allows the parties to keep their private keys (credentials)
 to themselves.

• Identification: Nordnet needs to get an identification claim from
 the customer SSN for example.

• Authentication: Nordnet needs to make sure to log the right
 customer in and validate the identification claim they make. So
 Nordnet needs to make sure the claimed identity is owned by the
 one claiming it.

• Integrity: The information sent from the customer, must be kept
 intact before being received by Nordnet.

• Non replayable: No one should be able to replay the
 communication between the customer and Nordnet in order to
 login again.

• Available: The only prerequisites to use this authentication
 method is having an internet connection, a smartphone and an
 installation of Nordnet mobile application. The method should
 work regardless of conditions like time. Also, it should be able to
 handle all Nordnet daily logins in terms of load, and even more.

UX requirements:

• Customers do not want to be asked for any identifiers, like
 username, during login.

• Customers want to be able to login to Nordnet web and mobile
 applications using this method.

• Customers want to use their smartphone as the credential holder.

• Customers want to be the only one who can use their credentials
 even though their phone might be used by someone else. So
 a passcode or biometric protection must be required to be able to
 use the credentials.

• Upon explicit request or misuse, the credentials must be
 invalidated.

Solution:

Asymmetric challenge-response authentication:
In simple terms, the authentication server sends a challenge to the
customer. The customer should respond to that challenge correctly
and quickly. The response will be checked using a previously
established shared understanding. Also, no challenge will be sent
twice and no response will be accepted more than once. So there are
two phases involved in this authentication method.

1 In this document words customer and client are used almost interchangeably.
When we say ”Nordnet gets an SSO from a customer”, it means that the
customer’s SSO will be communicated to Nordnet through a software client
(Nordnet web or mobile application).

2

A. Enrollment phase:

a) Establish a verified customer identifier (CID) like SSN.

b) Generate a random device identifier (DID) for the customer's
 (key holder) device.

c) Generate a public key (PUKC) and private key (PRKC) pair on
 the customer's device. This key pair must be of a long enough
 length and low enough lifetime. Also, PRKC must be protected by
 a passcode or biometric check (face/fingerprint).

d) Send CID, DID and PUKC to the authentication server.

e) Authentication server keeps track of the combination above in a
 durable data store. Each device can have only one record in this
 data store.

B. Login phase:

a) Customer sends a login request to the authentication server.

b) Authentication server sends a nonce back. This nonce will
 expire in 30 seconds. The authentication server should keep
 track of produced nonces in a durable data store.

c) Customer constructs a message (Mlogin) including the nonce
 and DID.

d) Customer generates a hash (Hash(Mlogin)) from Mlogin using a
 hash function with large enough state space.

e) Customer sings the hash value using PRKC. Here the customer
 needs to present PRKC-Pass or pass the biometric check. The
 result is Sign(Hash(Mlogin)).

f) Customer sends the signed value alongside the Mlogin to the
 authentication server.

g) Authentication server extracts the nonce from Mlogin. It should be
 checked against the data store for existence and also lifetime. If the
 nonce still exists and is valid, we can be sure that the message
 hasn't been seen before. Otherwise, the login should fail
 right away.

h) Authentication server extracts DID from Mlogin. Then use it to
 find the corresponding PUKC. Now PUKC is used to verify the
 signature (decrypt Sign(Hash(Mlogin)) in addition to
 getting access to Hash(Mlogin). If the verification goes well, the
 authentication of the message has been achieved which means
 that we have established who is trying to login.

i) Now the authentication server creates its own version of the hash
 value using Mlogin (Hashserver(Mlogin)). If Hashserver(Mlogin) is
 equal to the Hash(Mlogin) gained from signature verification, the
 integrity of the message is also verified.

j) Now the authentication server can send an access token to the
 customer as a sign of successful login.

k) Regardless of the result of the login process, any nonce visited
 by the authentication server, should be wiped from the data store
 (considered invalid for future login attempts). This satisfies the non
 replayable security requirement. The wipe of nonce is better done
 at the end of step g.

Mohammadmahdi.amini@nordnet.se

Login phase happy flow pseudo code:

Client side:

Get a nonce from authentication server
Mlogin = CID + DID + nonce
hash = Hash(Mlogin)
signature = Encrypt(hash, PRKC)
request = signature + Mlogin

Send request to authentication server

Server side:

{signature, Mlogin} = request
{CID, DID, nonce} = Mlogin

NonceDataStore.isValid(nonce) ?= TRUE
PUKC = KeyDataStore.fetchPublicKey(DID)
Hashclient = Decrypt(signature, PUKC)
Hashserver = Hash(Mlogin)
Hashclient ?= Hashserver

return access token (login succeed)

Challenge-response
authentication

3

Nordnet implementation:

Here we review some of the notable implementation details which
were decided in the context of Nordnet needs.

Enrollment:
The customer needs to install the Nordnet application on a
smartphone. Which results in an installation identifier (InsID). InsID
is unique per application installation so it can be used as DID. Using
InsID, rather than some other more stable identifiers like a MAC
address, helps with preserving privacy of customers. This phone, and
the installed Nordnet application, act as the key holder.

In order to establish a valid CID, the customer needs to login to the
Nordnet application using a different login method. In Scandinavian
countries at least one 3rd party (called eId) exists which provides
secure digital authentication. When a customer logs in to Nordnet
using an eId, Nordnet gets a SSN which can be used to find the
corresponding CID from the Nordnet customer database. Using
these 3rd parties to verify the identity of the customer during
enrollment is equivalent to signing a SSL certificate using a more
well known (root) certificate in public key infrastructure. Basically we
need to rely on a chain of trust and add our link to the chain.

During enrollment a pair of 4096 bit RSA keys with a lifetime of 2
years (for now) are created and saved in a key store. The key store
provided by Android and IOS promises no leakage of keys
outside the phone.

Both Android and IOS allow for protecting the access to those
keys using a pass code and/or biometric checks. Excessive failed
attempts to access those keys, results in them being automatically
wiped from the phone.

Also, customers can use the Nordnet website to remove/invalidate
any of the keys they have enrolled. They can see a list of phone
names from which they can choose one to be invalidated.

Login:
After establishing an enrollment and communicating a public key
with the Nordnet backend, a customer can use the aforementioned
device (installation) to login to Nordnet web and mobile applications.

Nordnet relies on two nonces, signing nonce and login nonce, as
challenge. Both of them are short lived standard randomly produced
UUIDs.

Login nonce has been introduced to support login to the Nordnet web
application using the Nordnet mobile application.

When a user tries to login to the Nordnet web application, the login
nonce is not exposed to the mobile application. In fact, login nonce
won't leave the web browser at all.

The signing nonce, as the name suggests, is signed by the Nordet
mobile application (key holder). When logging into the Nordnet web
application, signing nonce is communicated to the Nordnet mobile
application using a QR code which can be scanned using the
customer's smartphone camera.

The QR code shown on the Nordnet web application changes
every 3 seconds to avoid over the shoulder and social engineering
attacks. This means that the Nordnet web application requests a new
challenge every 3 seconds.

Using login nonce before signing nonce is signed, results in a failure.
The hashing function used (so far) is SHA-256.

During the login phase, when everything checks out, the Nordnet
backend will generate a JWT (access token). This JWT is sent back
to the Nordnet web or mobile application as a sign of successful
login.

Anyone who provides a valid login nonce, will get a JWT for the
customer who has signed the corresponding signing nonce. The
design of the login flow is such that these two people are almost
impossible to be different.

Mohammadmahdi.amini@nordnet.se

Challenge-response
authentication

