
DNSEXT R. Gieben
Internet-Draft SIDN Labs
Intended status: Experimental W. Mekking
Expires: January 5, 2013 NLnet Labs
 July 04, 2012

 DNS Security (DNSSEC) Authenticated Denial of Existence
 draft-gieben-nsec4-01

Abstract

 The Domain Name System Security (DNSSEC) Extensions introduced the
 NSEC resource record for authenticated denial of existence, and the
 NSEC3 resource record for hashed authenticated denial of existence.
 This document introduces an alternative resource record, NSEC4, which
 similarly provides authenticated denial of existence. It permits
 gradual expansion of delegation-centric zones, just like NSEC3 does.
 With NSEC4 it is possible, but not required, to provide measures
 against zone enumeration.

 NSEC4 reduces the size of the denial of existence response and adds
 Opt-Out to unhashed names.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 5, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Gieben & Mekking Expires January 5, 2013 [Page 1]

Internet-Draft NSEC4 July 2012

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 5
 1.1. Rationale . 5
 1.2. Requirements . 5
 1.3. Terminology . 6

 2. Experimental Status . 6

 3. The NSEC4 Resource Record 7
 3.1. RDATA Fields . 8
 3.1.1. Hash Algorithm . 8
 3.1.2. Flags . 8
 3.1.2.1. Opt-Out Flag 8
 3.1.2.2. Wildcard Flag 8
 3.1.3. Iterations . 9
 3.1.4. Salt Length . 9
 3.1.5. Salt . 9
 3.1.6. Next (Hashed) Owner Name 9
 3.1.7. Type Bit Maps . 9
 3.2. NSEC4 RDATA Wire Format 9
 3.2.1. Type Bit Maps Encoding 10
 3.3. Presentation Format 10
 3.3.1. Examples . 11

 4. The NSEC4PARAM Resource Record 11

 5. Opt-Out . 12

 6. Empty non-terminals . 12

 7. Authoritative Server Considerations 12
 7.1. Zone Signing . 12
 7.2. Zone Serving . 14
 7.2.1. Denial of Wildcard Synthesis Proof 14
 7.2.2. Closest Encloser Proof 14
 7.2.3. Denial of Source of Synthesis Proof 14
 7.2.4. Name Error Responses 15
 7.2.5. No Data Responses 15
 7.2.5.1. QTYPE is not DS 15

Gieben & Mekking Expires January 5, 2013 [Page 2]

Internet-Draft NSEC4 July 2012

 7.2.5.2. QTYPE is DS 16
 7.2.6. Wildcard Answer Responses 16
 7.2.7. Wildcard No Data Responses 16
 7.2.8. Referrals to Unsigned Subzones 17
 7.2.9. Responding to Queries for NSEC4 Only Owner Names . . . 17
 7.2.10. Server Response to a Run-Time Collision 17
 7.3. Secondary Servers . 17
 7.4. Zones Using Unknown Hash Algorithms 18
 7.5. Dynamic Update . 18

 8. Validator Considerations 18
 8.1. Responses with Unknown Hash Types 18
 8.2. Verifying NSEC4 RRs 18
 8.3. Validating Name Error Responses 19
 8.4. Validating No Data Responses 20
 8.5. Validating Wildcard Answer Responses 20
 8.6. Validating Wildcard No Data Responses 20
 8.7. Validating Referrals to Unsigned Subzones 21

 9. Resolver Considerations 22
 9.1. NSEC4 Resource Record Caching 22
 9.2. Use of the AD Bit . 22

 10. Special Considerations . 22
 10.1. Domain Name Length Restrictions 22
 10.2. DNAME at the Zone Apex 22
 10.3. Iterations value . 22
 10.4. More Special Considerations 23

 11. IANA Considerations . 23

 12. Security Considerations 24

 13. Acknowledgements . 24

 14. Changelog . 24
 14.1. 01 . 24
 14.2. 00 . 25

 15. References . 25
 15.1. Informative References 25
 15.2. Normative References 25

 Appendix A. List of Hashed Owner Names 26

 Appendix B. Example Zones . 27
 B.1. Hashed Denial of Existence 27
 B.2. Identity Function . 27

Gieben & Mekking Expires January 5, 2013 [Page 3]

Internet-Draft NSEC4 July 2012

 B.3. SHA1 Hashing . 28

 Appendix C. Example Responses 29
 C.1. Name Error . 30
 C.2. No Data Error . 31
 C.3. Referral to an Opt-Out Unsigned Zone 31
 C.4. Wildcard Expansion . 32
 C.5. Wildcard No Data Error 33

Gieben & Mekking Expires January 5, 2013 [Page 4]

Internet-Draft NSEC4 July 2012

1. Introduction

1.1. Rationale

 Hashed authenticated denial of existence proofs frequently hinge on
 the closest encloser proof (Section 7.2.1 and 8.3 of [RFC5155]).
 When validating a hashed denial of existence response, a validator
 must deny or assert the presence of a next closer name and a wildcard
 name. A validator can derive these names from the closest encloser.

 This is why most of the denial of existence responses with NSEC3
 contain three records:

 1. A record which matches the closest encloser, this tells the
 validator what the (unhashed) name of the closest encloser is;

 2. A record which covers or matches the next closer, to deny or
 assert the existence of the next closer name. The validator
 needs to know the closest encloser to construct the next closer
 name;

 3. A record which covers or matches the wildcard, to deny or assert
 wildcard synthesis. The validator needs to know the closest
 encloser to construct the source of synthesis.

 This document presents a new record, NSEC4, that is similar to NSEC3,
 but differs in the following ways:

 o It provides a new way to deny the existence of the wildcard, by
 introducing the Wildcard flag (described in Section 3.1.2.2).
 This bit makes the third record, from the list above, redundant;

 o It allows for unhashed records, by introducing an Identity
 function (described in Section 3.1.1).

 With NSEC4 you will need a maximum of two records for any denial of
 existence response, saving one record and accompanying signature(s)
 compared to NSEC3.

 By defining an Identity function, we also fold back NSEC into NSEC4
 and add Opt-out to unhashed names. With this change we collapse NSEC
 and NSEC3 into one new record to leave only one form of authenticated
 denial of existence in the DNS.

1.2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

Gieben & Mekking Expires January 5, 2013 [Page 5]

Internet-Draft NSEC4 July 2012

 document are to be interpreted as described in [RFC2119].

1.3. Terminology

 The reader is assumed to be familiar with the basic DNS and DNSSEC
 concepts described in [RFC1034], [RFC1035], [RFC4033], [RFC4034],
 [RFC4035], and subsequent RFCs that update them: [RFC2136],
 [RFC2181], [RFC2308] and [RFC5155].

 Furthermore, the same terminology is used throughout this document as
 is described in Section 1.3 from [RFC5155], with the following
 changes:

 Original owner name: the owner name corresponding to a hashed owner
 name if hashing is used. Or the owner name as-is if no hashing is
 used.

 Opt-Out NSEC4 RR: an NSEC4 RR that has the Opt-Out flag set to 1.

 Wildcard NSEC4 RR: an NSEC4 RR that has the Wildcard flag set to 1.

 Opt-Out zone: a zone with at least one Opt-Out NSEC4 RR.

 Base32: the "Base 32 Encoding with Extended Hex Alphabet" as
 specified in [RFC4648]. Note that trailing padding characters
 ("=") are not used in the NSEC4 specification.

 To cover: an NSEC4 RR is said to "cover" a name if the (hashed) name
 or (hashed) next closer name falls between the owner name of the
 NSEC4 RR and the next (hashed) owner name of the NSEC4. In other
 words, if it proves the nonexistence of the name, either directly
 or by proving the nonexistence of an ancestor of the name.

 To match: When a hash algorithm is defined, an NSEC4 RR is said to
 "match" a name if the owner name of the NSEC4 RR is the same as
 the hashed owner name of that name. When no hash algorithm
 (Identity function) is defined, an NSEC4 RR is said to "match" a
 name if the name and the owner name of the NSEC4 RR are equal.

 Identity function: Perform no hashing. Leave the name as-is.

2. Experimental Status

 This document describes an EXPERIMENTAL extension to DNSSEC. It
 interoperates with non-experimental DNSSEC using the technique
 described in [RFC4955]. This experiment is identified with the
 following private algorithm (using algorithm PRIVATEDNS):

Gieben & Mekking Expires January 5, 2013 [Page 6]

Internet-Draft NSEC4 July 2012

 o Algorithm "5.nsec4.nlnetlabs.nl.", is an alias for algorithm 5,
 RSASHA1.

 Servers wishing to sign and serve zones that utilize NSEC4 MUST sign
 the zone with this private algorithm and MUST NOT use any other
 algorithms.

 Resolvers MUST NOT apply NSEC4 validation described in this document
 unless a response contains RRSIGs created with this private
 algorithm.

3. The NSEC4 Resource Record

 The NSEC4 RR provides authenticated denial of existence for DNS
 RRsets.

 The NSEC4 RR lists RR types present at the original owner name of the
 NSEC4 RR. It includes the next (hashed) owner name in the canonical
 order of the zone. The complete set of NSEC4 RRs in a zone indicates
 which RRSets exist for the original owner name of the RR and form a
 chain. This information is used to provide authenticated denial of
 existence for DNS data. To provide protection against zone
 enumeration, the owner names used in the NSEC4 RR can be
 cryptographic hashes of the original owner name prepended as a single
 label to the name of the zone. The NSEC4 RR indicates which hash
 function (if any) is used to construct the hash, which salt is used,
 and how many iterations of the hash function are performed over the
 original owner name.

 The hashing technique is the same as with NSEC3 and is described in
 Section 5 of [RFC5155]. NSEC3 creates hashes for empty non-
 terminals, NSEC4 does the same, even when the Identity function is in
 use.

 (Hashed) owner names of unsigned delegations may be excluded from the
 chain. An NSEC4 RR whose span covers an owner name or next closer
 name of an unsigned delegation is referred to as an Opt-Out NSEC4 RR
 and is indicated by the presence of a flag.

 If hashing is in use, the owner name for the NSEC4 RR is the base32
 encoding of the hashed owner name prepended as a single label to the
 name of the zone.

 The type value for the NSEC4 RR is [TBD].

 The NSEC4 RR RDATA format is class independent and is described
 below.

Gieben & Mekking Expires January 5, 2013 [Page 7]

Internet-Draft NSEC4 July 2012

 The class MUST be the same as the class of the original owner name.

 The NSEC4 RR SHOULD have the same TTL value as the SOA minimum TTL
 field. This is in the spirit of negative caching [RFC2136].

3.1. RDATA Fields

 The NSEC4 RDATA has many similarities with the NSEC3 RDATA, but there
 are differences:

 o There is an extra flag bit reserved to indicate whether wildcard
 synthesis is possible (e.g. does a wildcard domain name exist that
 is immediately descending from the original owner name?);

 o The hash length does not need to be stored, as all domain names
 are stored as domain names, not raw hashes.

 [MM: Hash length is one byte. In general, NSEC3 is used in TLD
 zones. Those domain names are relatively short (on average 3
 characters (5 bytes wireformat), so in that case NSEC3 RRs become 4
 bytes longer.]

3.1.1. Hash Algorithm

 [RFC5155] defines the NSEC3 hash algorithm registry. Hash algorithm
 0 is reserved. For NSEC4 we define hash algorithm 0 to be the
 Identity function, meaning that no hashing is used.

3.1.2. Flags

 The Flags field is identical to the Flags field as defined in
 [RFC5155]. This specification adds a new flag, the Wildcard Flag.

3.1.2.1. Opt-Out Flag

 Like the Opt-Out Flag defined in Section 3.1.2.1 of [RFC5155].

3.1.2.2. Wildcard Flag

 The Wildcard Flag indicates whether there is wildcard synthesis
 possible (e.g. does a wildcard domain name exist that is immediately
 descending from the original owner name of the NSEC4?).

 If the Wildcard flag is set, wildcard synthesis is possible.

 If the Wildcard flag is clear, wildcard synthesis is not possible.

Gieben & Mekking Expires January 5, 2013 [Page 8]

Internet-Draft NSEC4 July 2012

3.1.3. Iterations

 Like the Iterations field defined in Section 3.1.3 of [RFC5155].

3.1.4. Salt Length

 Like the Salt Length field defined in Section 3.1.4 of [RFC5155].

3.1.5. Salt

 Like the Salt field defined in Section 3.1.5 of [RFC5155].

3.1.6. Next (Hashed) Owner Name

 The Next Owner Name field contains the next owner name that exists in
 the definition of Section 2.2.3 of [RFC4592].

 The field contains the next owner name in the canonical ordering of
 the zone, as explained in Section 6.1 of [RFC4034].

 A sender MUST NOT use DNS name compression on the Next Owner Name
 field when transmitting an NSEC4 RR.

 Owner names of RRsets for which the given zone is not authoritative
 (such as glue records) MUST NOT be listed in the Next Owner Name,
 unless at least one authoritative RRset exists at the same owner
 name.

3.1.7. Type Bit Maps

 Like the Type Bit Maps field defined in Section 3.1.8 of [RFC5155].

3.2. NSEC4 RDATA Wire Format

 The RDATA of the NSEC4 RR is as shown below.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Hash Alg. | Flags | Iterations |
 +-+
 | Salt Length | Salt /
 +-+
 / Next (Hashed) Owner Name /
 +-+
 / Type Bit Maps /
 +-+

Gieben & Mekking Expires January 5, 2013 [Page 9]

Internet-Draft NSEC4 July 2012

 Hash Algorithm is a single octet. If Hash Algorithm is zero
 (Identity function), the Iterations field, the Salt Length field and
 the Salt field MUST be ignored.

 Flags field is a single octet. The following one-bit flags are
 defined:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | |W|O|
 +-+-+-+-+-+-+-+-+

 o O - Opt-Out flag

 o W - Wildcard flag

 Iterations is represented as a 16-bit unsigned integer, with the most
 significant bit first.

 Salt Length is represented as an unsigned octet. Salt Length
 represents the length of the Salt field in octets. If the value is
 zero, the following Salt field is omitted.

 Salt, if present, is encoded as a sequence of binary octets. The
 length of this field is determined by the preceding Salt Length
 field.

 If Hash Algorithm is not zero, the Next (Hashed) Owner Name is a
 base32 encoded domain name of the hashed next owner name prepended as
 a single label to the name of the zone. If Hash Algorithm is zero it
 is a plain domain name.

 The Type Bit Maps encode the existing types at the original owner
 name that matches the NSEC4 RR.

3.2.1. Type Bit Maps Encoding

 The encoding of the Type Bit Maps field is the same as that used by
 the NSEC and NSEC3 RR, described in [RFC4034], as well as in
 [RFC5155].

3.3. Presentation Format

 The presentation format of the RDATA portion is as follows:

 o The Hash Algorithm field is represented as an unsigned decimal
 integer. The value has a maximum of 255.

Gieben & Mekking Expires January 5, 2013 [Page 10]

Internet-Draft NSEC4 July 2012

 o The Flags field is represented as an unsigned decimal integer.
 The value has a maximum of 255.

 o The Iterations field is represented as an unsigned decimal
 integer. The value is between 0 and 65535, inclusive.

 o The Salt Length field is not represented.

 o The Salt field is represented as a sequence of case-insensitive
 hexadecimal digits. Whitespace is not allowed within the
 sequence. The Salt field is represented as "-" (without the
 quotes) when the Salt Length field has a value of 0.

 o The Next (Hashed) Owner Name field is represented as a domain
 name.

 o The Type Bit Maps field is represented as a sequence of RR type
 mnemonics. When the mnemonic is not known, the TYPE
 representation as described in Section 5 of [RFC3597] MUST be
 used.

3.3.1. Examples

 NSEC record:

 example. NSEC a.example NS SOA RRSIG DNSKEY NSEC

 The same data shown as an NSEC3 record:

 3msev9usmd4br9s97v51r2tdvmr9iqo1.example. NSEC3 1 0 0 - (
 6cd522290vma0nr8lqu1ivtcofj94rga
 NS SOA RRSIG DNSKEY NSEC3PARAM)

 As an NSEC4 record with Identity function:

 example. NSEC4 0 0 0 - a.example. NS SOA RRSIG DNSKEY NSEC4 NSEC4PARAM

 And as an NSEC4 record with SHA1 hashing:

 3msev9usmd4br9s97v51r2tdvmr9iqo1.example. NSEC4 1 0 0 - (
 6cd522290vma0nr8lqu1ivtcofj94rga.example.
 NS SOA RRSIG DNSKEY NSEC4PARAM)

4. The NSEC4PARAM Resource Record

 Exactly like NSEC3PARAM described in Section 5 of [RFC5155], except
 the type code used [TBD] is that of NSEC4PARAM.

Gieben & Mekking Expires January 5, 2013 [Page 11]

Internet-Draft NSEC4 July 2012

5. Opt-Out

 This specification adds Opt-Out as described in Section 6 of
 [RFC5155]. Because of the Identity function, this allows for Opt-Out
 being used with unhashed names. A similar method is described in
 [RFC4956], but with NSEC4 we can reuse the Opt-Out bit from the Flags
 field.

6. Empty non-terminals

 With NSEC3, every empty non-terminal will have a NSEC3 record. This
 is mentioned in [RFC5155], for instance in section 7.1, the second
 bullet point:

 Each empty non-terminal MUST have a corresponding NSEC3 RR, unless
 the empty non-terminal is only derived from an insecure delegation
 covered by an Opt-Out NSEC3 RR.

 This is a crucial difference with respect to NSEC, where no such
 provision exists.

 With NSEC4 we unify NSEC and NSEC3 and consequently, each empty non-
 terminal will get an NSEC4 record (see Section 7.1, the 6th bullet).
 Furthermore, NSEC4 represents the next owner name as a domain name,
 like NSEC, while NSEC3 represents the next name as an unmodified
 binary hash value.

 Due to these changes, we can revert back to canonical ordering for
 NSEC4. This greatly simplifies the comparison code, because there is
 only one ordering mechanism.

7. Authoritative Server Considerations

7.1. Zone Signing

 Zones using NSEC4 must satisfy the same properties as described in
 Section 7.1 of [RFC5155], with NSEC3 replaced by NSEC4.

 In addition, for each original owner name that has a wildcard domain
 name immediately descending from the original owner name, the
 corresponding NSEC4 RR MUST have the Wildcard bit set in the Flags
 field.

 The following steps describe one possible method of proper
 construction of NSEC4 RRs.

Gieben & Mekking Expires January 5, 2013 [Page 12]

Internet-Draft NSEC4 July 2012

 1. Select the hash algorithm and the values for salt and
 iterations;

 2. For each unique original owner name in the zone add an NSEC4 RR;

 * If Opt-Out is being used, owner names of unsigned delegations
 MAY be excluded;

 * The owner name of the NSEC4 RR is either the hash of the
 original owner name, prepended as a single label to the zone
 name, or is equal to the original owner name if Identity
 function is used;

 * The Next Owner Name field is left blank for the moment;

 * If Opt-Out is being used, set the Opt-Out bit to one.

 3. For collision detection purposes, if hashing is used, optionally
 keep track of the original owner name with the NSEC4 RR. Create
 an additional NSEC4 RR corresponding to the original owner name
 with the asterisk label prepended. Mark this NSEC4 RR as
 temporary;

 4. If the original owner name is a wildcard domain name (Section
 2.1.1. of [RFC4592]), mark the NSEC4 to be an NSEC4 RR that is
 matching a wildcard;

 5. For each RRSet at the original owner name, set the corresponding
 bit in the Type Bit Maps field;

 6. Additional NSEC4 RRs need to be added for every empty non-
 terminal between the apex and the original owner name. If
 hashing is used, optionally keep track of the original owner
 names of these NSEC4 RRs and create temporary NSEC4 RRs for
 wildcard collisions in a similar fashion to step 3;

 7. Sort the set of NSEC4 RRs into canonical order.

 8. Combine NSEC4 RRs with identical owner names by replacing them
 with a single NSEC4 RR with the Type Bit Maps field consisting
 of the union of the types represented by the set of NSEC4 RRs.
 If hashing is used and the original owner name was tracked, then
 collisions may be detected when combining, as all of the
 matching NSEC4 RRs should have the same original owner name. If
 a hash collision is detected, then a new salt has to be chosen,
 and the signing process is restarted. Discard any possible
 temporary NSEC4 RRs;

Gieben & Mekking Expires January 5, 2013 [Page 13]

Internet-Draft NSEC4 July 2012

 9. In each NSEC4 RR, insert the next (hashed) owner name by using
 the domain name of the next NSEC4 RR in canonical order. The
 next (hashed) owner name of the last NSEC4 RR in the zone
 contains the value of the (hashed) owner name of the first NSEC4
 RR in canonical order.

 If the NSEC4 is marked to be matching a wildcard, find the NSEC4
 that matches the closest encloser. Set the Wildcard bit in the
 Flags field of that NSEC4;

 10. Finally, add an NSEC4PARAM RR with the same Hash Algorithm,
 Iterations, and Salt fields to the zone apex.

7.2. Zone Serving

 This specification modifies DNSSEC-enabled DNS responses generated by
 authoritative servers. In particular, it replaces the use of NSEC or
 NSEC3 RRs in such responses with NSEC4 RRs.

7.2.1. Denial of Wildcard Synthesis Proof

 Instead of wasting a whole denial of existence RR to deny a wildcard,
 we have introduced a bit in the Flags field of the NSEC4 RR that
 indicates whether wildcard synthesis was possible because there
 exists a wildcard domain name immediately descending from the
 original owner name.

 The Denial of Wildcard Synthesis proof consists of one NSEC4 RR, that
 matches some domain name, and that has the Wildcard bit clear.

 Note that without much knowledge of the original owner name, this
 proof is not really useful. In particular, we don’t know if this is
 the wildcard synthesis that we are looking for. This changes if we
 combine this proof with the closest encloser proof.

7.2.2. Closest Encloser Proof

 For some NSEC4 responses, namely Name Error Response (Section 7.2.4)
 and Referrals to Unsigned Subzones (Section 7.2.8), a proof of the
 closest encloser is required. This is a proof that some ancestor of
 the QNAME is the closest encloser of QNAME. The proof is described
 in Section 7.2.1 of [RFC5155], and is the same for NSEC4.

7.2.3. Denial of Source of Synthesis Proof

 The denial of wildcard synthesis proof combined with the closest
 encloser proof results in a denial of source of synthesis proof. The
 source of synthesis is defined in [RFC4592] as the wildcard domain

Gieben & Mekking Expires January 5, 2013 [Page 14]

Internet-Draft NSEC4 July 2012

 name immediately descending from the closest encloser.

 The Denial of Source of Synthesis proof consists of (up to) two NSEC4
 RRs, the same that constructed the closest encloser proof:

 o an NSEC4 RR that matches the closest encloser, and that has the
 Wildcard bit clear in the Flags field;

 o an NSEC4 RR that covers the next closer name to the closest
 encloser.

 The first NSEC4 RR essentially proves that the encloser exists, and
 that no wildcard synthesis at the encloser is possible. The second
 NSEC4 RR proves that the encloser is the closest, thus the denial of
 the wildcard synthesis is the denial of the source of synthesis.

7.2.4. Name Error Responses

 If the zone does not contain any RRsets matching QNAME either exactly
 or via wildcard name expansion, then the name server must include
 proof that:

 o there is no exact match for QNAME;

 o the zone contains no RRsets that would match QNAME via wildcard
 name expansion.

 With NSEC, the server includes in the response an NSEC RR that covers
 QNAME, and an NSEC RR that covers the wildcard RR at the closest
 encloser.

 With NSEC3, the server includes in the response an NSEC3 RR that
 covers the next closer, an NSEC3 RR that covers the wildcard RR at
 the closest encloser, and an NSEC3 RR that matches the closest
 encloser.

 To prove the nonexistence of QNAME with NSEC4, the server MUST
 include a denial of source of synthesis proof. This collection of
 (up to) two NSEC4 RRs proves both that QNAME does not exist and that
 a wildcard that could have matched QNAME also does not exist.

7.2.5. No Data Responses

7.2.5.1. QTYPE is not DS

 When a NODATA response needs to be returned, it is safe to say that
 QNAME exists. Similar to NSEC and NSEC3, server MUST include the
 NSEC4 RR that matches QNAME. This NSEC4 RR MUST NOT have the bits

Gieben & Mekking Expires January 5, 2013 [Page 15]

Internet-Draft NSEC4 July 2012

 corresponding to either the QTYPE or CNAME set in its Type Bit Maps
 field.

7.2.5.2. QTYPE is DS

 Because of Opt-Out, the response can be different when QTYPE is DS.
 If no NSEC4 RR matches QNAME, the server MUST return a closest
 provable encloser proof for QNAME. The NSEC4 RR that covers the next
 closer name MUST have the Opt-Out bit set.

 Note that we do not need to ensure the denial of source of synthesis
 proof, because a DS RRset next to a wildcard is meaningless (Section
 4.6, [RFC4592]).

7.2.6. Wildcard Answer Responses

 If the zone does not contain any RRsets matching QNAME, but there is
 wildcard name expansion possible then the name server must include
 proof that the wildcard match was valid. This proof is accomplished
 by proving that QNAME does not exist and that the closest encloser of
 QNAME and the immediate ancestor of the wildcard are equal.

 Both with NSEC and NSEC3, the server includes in the response an NSEC
 RR that covers the next closer. It is not necessary to return a RR
 that matches the closest encloser, as the existence of this closest
 encloser is proven by the presence of the expanded wildcard in the
 response.

 To prove that the wildcard name expansion was valid with NSEC4, the
 server MUST include in the response an NSEC4 RR that covers the next
 closer. For the same reasons as with NSEC and NSEC3, it is not
 necessary to return a RR that matches the closest encloser.

7.2.7. Wildcard No Data Responses

 With NSEC, the server includes in the response an NSEC RR that
 matches the wildcard, in addition to the NSEC RR that covers the next
 closer. The NSEC RR does not have the bits corresponding to QTYPE or
 CNAME set in its Type Bit Maps field.

 Again, with NSEC3, the server includes in the response an NSEC3 RR
 that matches the wildcard, in addition to the NSEC3 RR that covers
 the next closer. The NSEC3 RR does not have the bits corresponding
 to QTYPE or CNAME set in its Type Bit Maps field. Besides that, an
 NSEC3 RR that matches the closest encloser is included, because there
 was no expanded wildcard in the response that can be used to
 determine the closest encloser.

Gieben & Mekking Expires January 5, 2013 [Page 16]

Internet-Draft NSEC4 July 2012

 [RFC5155] already notes that the closest encloser to QNAME must be
 the immediate ancestor of the wildcard RR, which is also defined in
 [RFC4592]. A closest encloser proof is not necessitated.

 To prove the wildcard no data response with NSEC4, the server MUST
 include in the response an NSEC4 RR that matches the wildcard, and an
 NSEC4 RR that covers the next closer. The closest encloser can be
 derived from the NSEC4 RR that matches the wildcard. From that, the
 next closer can be derived.

7.2.8. Referrals to Unsigned Subzones

 If there is an NSEC4 RR that matches the delegation name, then that
 NSEC4 RR MUST be included in the response. The DS and CNAME bit in
 the type bit maps of the NSEC4 RR must not be set (by definition).

 If the zone is Opt-Out, then there may not be an NSEC4 RR
 corresponding to the delegation. In this case, the closest provable
 encloser proof MUST be included in the response. The included NSEC4
 RR that covers the next closer name for the delegation MUST have the
 Opt-Out flag set to one.

 Note that with the Identity function, the NSEC4 RR that matches the
 closest provable encloser does not need to be included in the
 response, as it can be derived from the NSEC4 that covers the next
 closer name.

7.2.9. Responding to Queries for NSEC4 Only Owner Names

 When NSEC4 hashing is in effect the paradox (NSEC4 records deny their
 own existence) described in Section 7.2.8 of [RFC5155] is back. When
 the Identity function is used, there is no paradox. In light of
 this, queries for the NSEC4 resource type are handled in the same way
 as normal queries. Resolvers initiating these queries SHOULD
 disregard any information learned from the returned NSEC4 records.

7.2.10. Server Response to a Run-Time Collision

 The same considerations as described in Section 7.2.9 of [RFC5155]
 for NSEC3 apply to NSEC4.

7.3. Secondary Servers

 The same considerations as described in Section 7.3 of [RFC5155] for
 NSEC3 and NSEC3PARAM apply to NSEC4 and NSEC4PARAM.

Gieben & Mekking Expires January 5, 2013 [Page 17]

Internet-Draft NSEC4 July 2012

7.4. Zones Using Unknown Hash Algorithms

 The same considerations as described in Section 7.4 of [RFC5155] for
 NSEC3 apply to NSEC4.

7.5. Dynamic Update

 A zone signed using NSEC4 may accept dynamic updates [RFC2136].
 However, NSEC4 introduces some special considerations for dynamic
 updates.

 Adding and removing names in a zone MUST account for the creation or
 removal of empty non-terminals, similar to [RFC5155], Section 7.5.

 The presence of Opt-Out in a zone means that some additions or
 removals of unsigned delegations of names will not require changes to
 the NSEC4 RRs in a zone. The same considerations as in [RFC5155],
 Section 7.5 for NSEC3 apply for NSEC4.

 The presence of Opt-Out in a zone means that when adding or removing
 NSEC4 RRs, the value of the Opt-Out flag that should be set in new or
 modified NSEC4 RRs is ambiguous. Servers SHOULD follow the set of
 basic rules to resolve the ambiguity, as described in [RFC5155],
 Section 7.5.

 Adding and removing wildcard names in a zone MUST account for the
 setting or clearing of the Wildcard bit in the Flags field:

 o When adding a wildcard name, the NSEC4 RR that matches the
 immediate parent of the wildcard MUST set the Wildcard bit in the
 Flags field;

 o When deleting a wildcard name, the NSEC4 RR that matches the
 immediate parent of the wildcard MUST clear the Wildcard bit in
 the Flags field.

8. Validator Considerations

8.1. Responses with Unknown Hash Types

 A validator MUST ignore NSEC4 RRs with unknown hash types. The
 practical result of this is that responses containing only such NSEC4
 RRs will generally be considered bogus.

8.2. Verifying NSEC4 RRs

 A validator MUST ignore the undefined bits (0-5) in the Flags field
 of NSEC4 RRs.

Gieben & Mekking Expires January 5, 2013 [Page 18]

Internet-Draft NSEC4 July 2012

 A validator MAY treat a response as bogus if the response contains
 NSEC4 RRs that contain different values for hash algorithm,
 iterations, or salt from each other for that zone.

8.3. Validating Name Error Responses

 A validator MUST verify that there is a closest encloser for QNAME
 present in the response. A validator MUST verify that the Wildcard
 bit is clear in the Flags field of the NSEC4 RR that matches the
 closest encloser.

 Note: In denial of existence responses, the Wildcard flag will
 never be set. Setting the bit indicated that wildcard synthesis
 is possible at the closest encloser. Obviously, that contradicts
 with the denial of existence of the query name. Nevertheless, a
 validator must verify that the Wildcard bit is clear. If a
 validator fails to check the bit, it is vulnerable to replay
 attacks. For example, if you do not check the Wildcard Flag in
 the example.com NSEC4 (but *.example.com does exist), an attacker
 can use the record to deny names that would otherwise match the
 wildcard name.

 In order to find the closest encloser, the validator MUST find the
 longest name, X, such that X is an ancestor of QNAME that is matched
 by an NSEC4 RR present in the response.

 One possible algorithm for finding the closest encloser is as
 follows:

 1. Set SNAME=QNAME;

 2. If there is an NSEC4 RR in the response that matches SNAME, then
 we have found the closest encloser;

 3. Truncate SNAME by one label from the left, go to step 2.

 Once the closest encloser has been discovered, the validator MUST
 check that the NSEC4 RR that has the closest encloser as the original
 owner name is from the proper zone. The DNAME type bit MUST NOT be
 set and the NS type bit MUST be clear if the SOA type bit is clear.

 If this is not the case, it would be an indication that an attacker
 is using them to falsely deny the existence of RRs for which the
 server is not authoritative.

 In addition, the validator MUST verify that there is an NSEC4 RR that
 covers the next closer name.

Gieben & Mekking Expires January 5, 2013 [Page 19]

Internet-Draft NSEC4 July 2012

8.4. Validating No Data Responses

 If QTYPE is not DS, a validator MUST verify that an NSEC4 RR that
 matches QNAME is present and that both the QTYPE and the CNAME type
 are not set in its Type Bit Maps field.

 Note that this test also covers the case where the NSEC4 RR exists
 because it corresponds to an empty non-terminal, in which case the
 NSEC4 RR will have an empty Type Bit Maps field.

 If QTYPE is DS, and there is an NSEC4 RR that matches QNAME present
 in the response, then that NSEC4 RR MUST NOT have the bits
 corresponding to DS and CNAME set in its Type Bit Maps field.

 If there is no such NSEC4 RR, then the validator MUST verify that
 there is a closest provable encloser for QNAME present in the
 response. The closest provable encloser is found in a similar way as
 the closest encloser. In addition, the validator MUST verify that
 there is an NSEC4 RR that covers the next closer name and has the
 Opt-Out bit set.

8.5. Validating Wildcard Answer Responses

 The verified wildcard answer RRSet in the response provides the
 validator with a closest encloser for QNAME. The validator can do so
 by checking the label count in the RRSIG and the number of labels in
 the answer’s owner name.

 The validator MUST verify that there is an NSEC4 RR that covers the
 next closer name to QNAME is present in the response. This proves
 that QNAME itself did not exist and that the correct wildcard was
 used to generate the response.

8.6. Validating Wildcard No Data Responses

 The validator MUST verify that there is an NSEC4 RR present in the
 response that matches the source of synthesis.

 In order to find the source of synthesis, the validator MUST find the
 longest name, X, such that X is an ancestor of QNAME and that *.X is
 matched by a NSEC4 RR present in the response.

 One possible algorithm for finding the source of synthesis is as
 follows:

 1. Set SNAME=QNAME;

Gieben & Mekking Expires January 5, 2013 [Page 20]

Internet-Draft NSEC4 July 2012

 2. Truncate SNAME by one label from the left. This is a candidate
 for the closest encloser;

 3. Set WNAME to be SNAME with the asterisk label prepended:
 WNAME=*.SNAME;

 4. If there is an NSEC4 RR in the response that matches WNAME, then
 we have found the source of synthesis, with SNAME being the
 closest encloser;

 5. Go to step 2.

 The validator does not need to check that the closest encloser is
 from the proper zone. The authoritative server returned an NSEC4
 that matches the source of synthesis. According to [RFC6672], this
 proves that the server did not encounter a referral (step 3b of the
 server algorithm [RFC1035]), nor did it encounter a DNAME (step 3c of
 the server algorithm [RFC1035]).

 Now that the validator knows the source of synthesis and thus the
 closest encloser, it can derive the next closer name. The validator
 MUST verify that there is an NSEC4 RR that covers the next closer
 name to QNAME, is present in the response.

 Note that, because the response included an NSEC4 that matches the
 source of synthesis, we know that there exists data in the zone below
 the closest encloser. Therefore, the closest encloser cannot be a
 delegation, nor can there exists a DNAME RRset at the closest
 encloser.

 [MM: As an additional check, the validator can verify if the NSEC4
 matching the closest encloser has the Wildcard Flag set.]

8.7. Validating Referrals to Unsigned Subzones

 The delegation name in a referral is the owner name of the NS RRSet
 present in the authority section of the referral response.

 If there is an NSEC4 RR present in the response that matches the
 delegation name, then the validator MUST ensure that the NS bit is
 set and that the DS bit is not set in the Type Bit Maps field of the
 NSEC4 RR. The validator MUST also ensure that the NSEC4 RR is from
 the correct (i.e., parent) zone. This is done by ensuring that the
 SOA bit is not set in the Type Bit Maps field of this NSEC4 RR.

 Note that the presence of an NS bit implies the absence of a DNAME
 bit, so there is no need to check for the DNAME bit in the Type Bit
 Maps field of the NSEC4 RR.

Gieben & Mekking Expires January 5, 2013 [Page 21]

Internet-Draft NSEC4 July 2012

 If there is no NSEC4 RR present that matches the delegation name,
 then the validator MUST verify that there is a closest provable
 encloser for the delegation name. In addition, the validator MUST
 verify that there is an NSEC4 RR that covers the next closer name and
 has the Opt-Out bit set.

9. Resolver Considerations

9.1. NSEC4 Resource Record Caching

 The same considerations as described in Section 9.1 of [RFC5155] for
 NSEC3 apply to NSEC4.

9.2. Use of the AD Bit

 The same considerations as described in Section 9.2 of [RFC5155] for
 NSEC3 apply to NSEC4.

10. Special Considerations

10.1. Domain Name Length Restrictions

 The same considerations as described in Section 10.1 of [RFC5155]
 apply.

10.2. DNAME at the Zone Apex

 The DNAME specification in Section 3 of [RFC6672] has a ’no-
 descendants’ limitation. If a DNAME RR is present at node N, there
 MUST be no data at any descendant of N.

 [RFC5155] updates the DNAME specification to allow NSEC3 and RRSIG
 types at descendants of the apex regardless of the existence of DNAME
 at the apex.

 This document updates the DNAME specification to also allow NSEC4
 types at descendants of the apex regardless of the existence of DNAME
 at the apex.

10.3. Iterations value

 Like Section 10.3 in [RFC5155], but we recommend to read
 [Schaeffer10] as it shows that a lower iterations value is also
 acceptable. The research shows that that the half performance count
 for validators is roughly 150 to 600, depending on the key size. For
 authoritative servers the half performance count is around 100
 iterations.

Gieben & Mekking Expires January 5, 2013 [Page 22]

Internet-Draft NSEC4 July 2012

10.4. More Special Considerations

 Appendix C of [RFC5155] clarifies specific behavior and explains more
 special considerations for implementations, regarding salting and
 hash collisions. These considerations for NSEC3 also apply to NSEC4.

11. IANA Considerations

 Although the NSEC4 and NSEC4PARAM RR formats include a hash algorithm
 parameter, this document does not define a particular mechanism for
 safely transitioning from one NSEC4 hash algorithm to another. When
 specifying a new hash algorithm for use with NSEC4, a transition
 mechanism MUST also be defined.

 This document updates the IANA registry "DOMAIN NAME SYSTEM
 PARAMETERS" (http://www.iana.org/assignments/dns-parameters) in sub-
 registry "TYPES", by defining two new types. Section 3 defines the
 NSEC4 RR type [TBD]. Section 4 defines the NSEC4PARAM RR type [TBD].

 This document possibly updates the IANA registry "DNS SECURITY
 ALGORITHM NUMBERS -- per [RFC4035]"
 (http://www.iana.org/assignments/dns-sec-alg-numbers).

 This document creates a new IANA registry for NSEC4 flags. This
 registry is named "DNSSEC NSEC4 Flags". The initial contents of this
 registry are:

 0 1 2 3 4 5 6 7
 +----+----+----+----+----+----+----+----+
 | | | | | | |Wild|Opt-|
 | | | | | | |card|Out |
 +----+----+----+----+----+----+----+----+

 bit 6 is the Wildcard flag.

 bit 7 is the Opt-Out flag.

 bits 0 - 5 are available for assignment.

 Assignment of additional NSEC4 Flags in this registry requires IETF
 Standards Action [RFC5226].

 This document creates a new IANA registry for NSEC4PARAM flags. This
 registry is named "DNSSEC NSEC4PARAM Flags". The initial contents of
 this registry are:

Gieben & Mekking Expires January 5, 2013 [Page 23]

Internet-Draft NSEC4 July 2012

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | | | | | | | | 0 |
 +---+---+---+---+---+---+---+---+

 bit 7 is reserved and must be 0.

 bits 0 - 6 are available for assignment.

 Assignment of additional NSEC4PARAM Flags in this registry requires
 IETF Standards Action [RFC5226].

 Finally, this document creates a new IANA registry for NSEC4 hash
 algorithms. This registry is named "DNSSEC NSEC4 Hash Algorithms".
 The initial contents of this registry are:

 0 is the Identity function.

 1 is SHA-1.

 2-255 Available for assignment.

 Assignment of additional NSEC4 hash algorithms in this registry
 requires IETF Standards Action [RFC5226].

12. Security Considerations

 This document does not introduce any new security issues beyond those
 already discussed in [RFC4033], [RFC4034], [RFC4035] and [RFC5155].

13. Acknowledgements

 This document would not be possible without the help of Ed Lewis, Roy
 Arends, Wouter Wijngaards, Karst Koymans, Mohan Parthasarathy, Marco
 Davids, Esther Makaay and Antoin Verschuren.

 This document was produced using the xml2rfc tool ([RFC2629]) and
 Pandoc2rfc ([Gieben11]).

14. Changelog

14.1. 01

 o Clarification throughout the text (Mohan Parthasarathy);

 o Add section about empty non-terminals in NSEC, NSEC3 and NSEC4;

Gieben & Mekking Expires January 5, 2013 [Page 24]

Internet-Draft NSEC4 July 2012

 o Rename Zero hashing to Identity function.

 o No need for different ordering mechanisms: canonical ordering
 only.

 o Remove section on validator algorithm (already explained in
 RFC4035).

14.2. 00

 o Initial document.

15. References

15.1. Informative References

 [Gieben11] Gieben, R., "Pandoc2RFC", September 2011,
 <https://github.com/miekg/pandoc2rfc/>.

 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML",
 RFC 2629, June 1999.

 [RFC4592] Lewis, E., "The Role of Wildcards in the Domain
 Name System", RFC 4592, July 2006.

 [RFC6672] Rose, S. and W. Wijngaards, "DNAME Redirection in
 the DNS", RFC 6672, June 2012.

15.2. Normative References

 [GiebenMekking11] Gieben, R. and W. Mekking, "Authenticated Denial
 of Existence in the DNS", January 2012, <http://
 www.sidn.nl/fileadmin/docs/PDF-files_UK/
 wp-2011-0x01-v2.pdf>.

 [RFC1034] Mockapetris, P., "Domain names - concepts and
 facilities", STD 13, RFC 1034, November 1987.

 [RFC1035] Mockapetris, P., "Domain names - implementation
 and specification", STD 13, RFC 1035,
 November 1987.

 [RFC2119] Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119,
 March 1997.

 [RFC2136] Vixie, P., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS

Gieben & Mekking Expires January 5, 2013 [Page 25]

Internet-Draft NSEC4 July 2012

 UPDATE)", RFC 2136, April 1997.

 [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, July 1997.

 [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, March 1998.

 [RFC3597] Gustafsson, A., "Handling of Unknown DNS Resource
 Record (RR) Types", RFC 3597, September 2003.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D.,
 and S. Rose, "DNS Security Introduction and
 Requirements", RFC 4033, March 2005.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D.,
 and S. Rose, "Resource Records for the DNS
 Security Extensions", RFC 4034, March 2005.

 [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D.,
 and S. Rose, "Protocol Modifications for the DNS
 Security Extensions", RFC 4035, March 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64
 Data Encodings", RFC 4648, October 2006.

 [RFC4955] Blacka, D., "DNS Security (DNSSEC) Experiments",
 RFC 4955, July 2007.

 [RFC4956] Arends, R., Kosters, M., and D. Blacka, "DNS
 Security (DNSSEC) Opt-In", RFC 4956, July 2007.

 [RFC5155] Laurie, B., Sisson, G., Arends, R., and D. Blacka,
 "DNS Security (DNSSEC) Hashed Authenticated Denial
 of Existence", RFC 5155, March 2008.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for
 Writing an IANA Considerations Section in RFCs",
 BCP 26, RFC 5226, May 2008.

 [Schaeffer10] Schaeffer, Y., "NSEC3 Hash Performance",
 March 2010, <http://www.nlnetlabs.nl/downloads/
 publications/nsec3_hash_performance.pdf>.

Appendix A. List of Hashed Owner Names

 The following owner names are used in this document. The hashed
 names are hashed with SHA1 using an empty salt and zero iterations.

Gieben & Mekking Expires January 5, 2013 [Page 26]

Internet-Draft NSEC4 July 2012

 +-----------------+----------------------------------+
 | Original Name | Hashed Name |
 +-----------------+----------------------------------+
 | example. | 3msev9usmd4br9s97v51r2tdvmr9iqo1 |
 | a.example. | 6cd522290vma0nr8lqu1ivtcofj94rga |
 | ns1.example. | m1o89lfdo9rrf2f8r8ss42d81d09v48m |
 | sd.example. | 831naajdsm14h0md3kip92563ud3saav |
 | ns1.sd.example. | qrsbil3cs97oa4p5fql8dedp6jo0b9a6 |
 | ud.example. | ub8e42kj4s2jdfve6aloo98jdoa425a9 |
 | ns1.ud.example. | 7cuee8ri909f5r365jqr0k6j75thndpi |
 | who.example. | g4s20q3kptookhpt9mgr93k8bfhjs3fd |
 | *.who.example. | ht6ocje68mtm96jpes8olrlbf67jjvdu |
 | b.who.example. | rmv5tauk8nss83vo1st0tp1ps927j71e |
 +-----------------+----------------------------------+

Appendix B. Example Zones

B.1. Hashed Denial of Existence

 This is the unsigned zone we are using for the NSEC4 examples. The
 overall TTL and class are left out for clarity.

 $ORIGIN example.
 @ SOA ns1.example. bugs.example. 1 2 3 4 5
 NS ns1.example.
 ns1 A 192.0.2.10
 ;; secure delegation
 sd NS ns1.sd.example.
 DS 33694 253 2 ...
 ns1.sd A 192.0.2.10
 ;; unsecure delegation
 ud NS ns1.ud.example.
 ns1.ud A 192.0.2.10
 *.who TXT "Wildcard"

B.2. Identity Function

 This is the same zone shown with the Identity function. The RRSIG
 Signature field, the DNSKEY Public Key field and the DS Digest field
 are omitted. The RRSIG expiration and inception times are set to
 ".".

Gieben & Mekking Expires January 5, 2013 [Page 27]

Internet-Draft NSEC4 July 2012

 $ORIGIN example.
 @ SOA ns1.example. bugs.example. 1 2 3 4 5
 RRSIG SOA 253 1 300 . . 39824 example. ...
 RRSIG NS 253 1 300 . . 39824 example. ...
 RRSIG DNSKEY 253 1 300 . . 39824 example. ...
 RRSIG NSEC4PARAM 253 1 3600 . . 39824 example. ...
 RRSIG NSEC4 253 1 5 . . 39824 example. ...
 NS ns1.example.
 DNSKEY 256 3 253 ...
 NSEC4PARAM 0 0 0 -
 NSEC4 0 1 0 - (
 ns1.example. NS SOA RRSIG DNSKEY NSEC4 NSEC4PARAM)
 ns1 A 192.0.2.10
 RRSIG A 253 2 300 . . 39824 example. ...
 RRSIG NSEC4 253 2 5 . . 39824 example. ...
 NSEC4 0 1 0 - sd.example. A RRSIG NSEC4
 sd NS ns1.sd.example.
 DS 33694 253 2 ...
 RRSIG DS 253 2 300 . . 39824 example. ...
 RRSIG NSEC4 253 2 5 . . 39824 example. ...
 NSEC4 0 1 0 - who.example. NS DS RRSIG NSEC4
 ns1.sd A 192.0.2.10
 ud NS ns1.ud.example.
 ns1.ud A 192.0.2.10
 who NSEC4 0 3 0 - *.who.example.
 RRSIG NSEC4 253 2 5 . . 39824 example. ...
 *.who TXT "Wildcard"
 RRSIG TXT 253 2 300 . . 39824 example. ...
 RRSIG NSEC4 253 2 5 . . 39824 example. ...
 NSEC4 0 1 0 - example. TXT RRSIG NSEC4

B.3. SHA1 Hashing

 This is the same zone shown with SHA1 hashing.

Gieben & Mekking Expires January 5, 2013 [Page 28]

Internet-Draft NSEC4 July 2012

 $ORIGIN example.
 @ SOA ns1.example. bugs.example. 1 2 3 4 5
 RRSIG SOA 253 1 300 . . 39824 example. ...
 RRSIG NS 253 1 300 . . 39824 example. ...
 RRSIG DNSKEY 253 1 300 . . 39824 example. ...
 RRSIG NSEC4PARAM 253 1 3600 . . 39824 example. ...
 NS ns1.example.
 DNSKEY 256 3 253 ...
 NSEC4PARAM 1 0 0 -
 3msev9usmd4br9s97v51r2tdvmr9iqo1 NSEC4 1 1 0 - (
 831naajdsm14h0md3kip92563ud3saav.example.
 NS SOA RRSIG DNSKEY NSEC4PARAM)
 RRSIG NSEC4 253 2 5 . . 39824 example. ...
 831naajdsm14h0md3kip92563ud3saav NSEC4 1 1 0 - (
 g4s20q3kptookhpt9mgr93k8bfhjs3fd.example.
 NS DS RRSIG)
 RRSIG NSEC4 253 2 5 . . 39824 example. ...
 g4s20q3kptookhpt9mgr93k8bfhjs3fd NSEC4 1 3 0 - (
 ht6ocje68mtm96jpes8olrlbf67jjvdu.example.)
 RRSIG NSEC4 253 2 5 . . 39824 example. ...
 ht6ocje68mtm96jpes8olrlbf67jjvdu NSEC4 1 1 0 - (
 m1o89lfdo9rrf2f8r8ss42d81d09v48m.example.
 TXT RRSIG)
 RRSIG NSEC4 253 2 5 . . 39824 example. ...
 m1o89lfdo9rrf2f8r8ss42d81d09v48m NSEC4 1 1 0 - (
 3msev9usmd4br9s97v51r2tdvmr9iqo1.example.
 A RRSIG)
 RRSIG NSEC4 253 2 5 . . 39824 example. ...
 ns1 A 192.0.2.10
 RRSIG A 253 2 300 . . 39824 example. ...
 sd NS ns1.sd.example.
 DS 33694 253 2 ...
 RRSIG DS 253 2 300 . . 39824 example. ...
 ns1.sd A 192.0.2.10

 ud NS ns1.ud.example.
 ns1.ud A 192.0.2.10
 *.who TXT "Wildcard"
 RRSIG TXT 253 2 300 . . 39824 example. ...

Appendix C. Example Responses

 The examples in this section show response messages using the signed
 zone example in Appendix B.3.

Gieben & Mekking Expires January 5, 2013 [Page 29]

Internet-Draft NSEC4 July 2012

C.1. Name Error

 An authoritative name error. The NSEC4 RRs prove that the name does
 not exist and that there is no wildcard RR that should have been
 expanded.

 ;; Header: QR AA RD RCODE=NXDOMAIN
 ;;
 ;; Question
 a.example. IN A

 ;; Answer
 ;; (empty)

 ;; Authority
 ;; NSEC4 RR that matches the closest encloser (example)
 ;; This NSEC4 also covers the next closer name (a.example)
 ;; H(a.example) = 6cd522290vma0nr8lqu1ivtcofj94rga
 3msev9usmd4br9s97v51r2tdvmr9iqo1.example. NSEC4 1 1 0 - (
 831naajdsm14h0md3kip92563ud3saav.example.
 NS SOA RRSIG DNSKEY NSEC4PARAM)
 3msev9usmd4br9s97v51r2tdvmr9iqo1.example. RRSIG NSEC4 253 2 5 (
 . . 39824 example. ...)
 example. SOA ns1.example. bugs.example. 1 2 3 4 5
 example. RRSIG SOA 253 1 300 . . 39824 example. ...

 The query returns one NSEC4 RR that proves that the requested data
 does not exist and that no wildcard expansion applies. The negative
 response is authenticated by verifying the NSEC4 RR. The
 corresponding RRSIGs indicate that the NSEC4 RRs are signed by an
 "example" DNSKEY of algorithm 253 and with key tag 39824. The
 resolver needs the corresponding DNSKEY RR in order to authenticate
 this answer.

 In the above example, the name "example" hashes to
 "3msev9usmd4br9s97v51r2tdvmr9iqo1". This indicates that this might
 be the closest encloser.

 To prove that "a.example" does not exist, the name is hashed to
 "6cd522290vma0nr8lqu1ivtcofj94rga". The NSEC4 RR also proves that
 next closer name does not exist.

 To prove that the source of synthesis "*.example" does not exist, the
 Wildcard bit at the NSEC4 RR matching the closest encloser is
 inspected. The bit is clear and this shows that the source of
 synthesis does indeed not exist.

Gieben & Mekking Expires January 5, 2013 [Page 30]

Internet-Draft NSEC4 July 2012

C.2. No Data Error

 A No Data Response. The NSEC4 RR proves that the name exists and
 that the requested RR type does not.

 ;; Header: QR AA RD RCODE=NOERROR
 ;;
 ;; Question
 ns1.example. IN MX

 ;; Answer
 ;; (empty)

 ;; Authority
 example. SOA ns1.example. bugs.example. 1 2 3 4 5
 example. RRSIG SOA 253 1 300 . . 39824 example. ...
 ;; H(ns1.example) = m1o89lfdo9rrf2f8r8ss42d81d09v48m
 m1o89lfdo9rrf2f8r8ss42d81d09v48m.example. NSEC4 1 1 0 - (
 3msev9usmd4br9s97v51r2tdvmr9iqo1.example.
 A RRSIG)
 m1o89lfdo9rrf2f8r8ss42d81d09v48m.example. RRSIG NSEC4 253 2 5 (
 . . 39824 example. ...)

 The query returned an NSEC4 RR that proves that the requested name
 exists ("ns1.example" hashes to "m1o89lfdo9rrf2f8r8ss42d81d09v48m"),
 but the requested RR type does not exist (type MX is absent in the
 type code list of the NSEC4 RR), and was not a CNAME (type CNAME is
 also absent in the type code list of the NSEC4 RR).

C.3. Referral to an Opt-Out Unsigned Zone

 The NSEC4 RRs prove that nothing for this delegation was signed.
 There is no proof that the unsigned delegation exists.

Gieben & Mekking Expires January 5, 2013 [Page 31]

Internet-Draft NSEC4 July 2012

 ;; Header: QR RD RCODE=NOERROR
 ;;
 ;; Question
 a.ud.example. IN MX

 ;; Answer
 ;; (empty)

 ;; Authority
 ud.example. NS ns1.ud.example.

 ;; NSEC4 RR that matches the closest provable encloser (example)
 ;; H(example) = 3msev9usmd4br9s97v51r2tdvmr9iqo1
 3msev9usmd4br9s97v51r2tdvmr9iqo1.example. NSEC4 1 1 0 - (
 831naajdsm14h0md3kip92563ud3saav.example.
 NS SOA RRSIG DNSKEY NSEC4PARAM)
 3msev9usmd4br9s97v51r2tdvmr9iqo1.example. RRSIG NSEC4 253 2 5 (
 . . 39824 example. ...)

 ;; NSEC4 RR that covers the next closer name (ud.example)
 ;; H(ud.example) = ub8e42kj4s2jdfve6aloo98jdoa425a9
 m1o89lfdo9rrf2f8r8ss42d81d09v48m.example. NSEC4 1 1 0 - (
 3msev9usmd4br9s97v51r2tdvmr9iqo1.example.
 A RRSIG)
 m1o89lfdo9rrf2f8r8ss42d81d09v48m.example. RRSIG NSEC4 253 2 5 (
 . . 39824 example. ...)

 ;; Additional
 ns1.ud.example. A 192.0.2.10

 The query returned a referral to the unsigned "ud.example." zone.
 The response contains the closest provable encloser of "ud.example"
 to be "example", since the hash of "ud.example"
 ("ub8e42kj4s2jdfve6aloo98jdoa425a9") is covered by the first NSEC4 RR
 and its Opt-Out bit is set.

C.4. Wildcard Expansion

 A query that was answered with a response containing a wildcard
 expansion. The label count in the RRSIG RRSet in the answer section
 indicates that a wildcard RRSet was expanded to produce this
 response, and the NSEC4 RR proves that no next closer name exists in
 the zone.

Gieben & Mekking Expires January 5, 2013 [Page 32]

Internet-Draft NSEC4 July 2012

 ;; Header: QR AA RD RCODE=NOERROR
 ;;
 ;; Question
 a.b.who.example. IN TXT

 ;; Answer
 a.b.who.example. TXT "Wildcard"
 a.b.who.example. RRSIG TXT 253 2 300 (
 . . 39824 example. ...)

 ;; Authority
 ;; NSEC4 RR that covers the next closer name (b.who.example)
 ;; H(b.who.example) = rmv5tauk8nss83vo1st0tp1ps927j71e
 m1o89lfdo9rrf2f8r8ss42d81d09v48m.example. NSEC4 1 1 0 - (
 3msev9usmd4br9s97v51r2tdvmr9iqo1.example.
 A RRSIG)
 m1o89lfdo9rrf2f8r8ss42d81d09v48m.example. RRSIG NSEC4 253 2 5 (
 . . 39824 example. ...)
 example. NS ns1.example.
 example. RRSIG NS 253 1 300 . . 39824 example. ...

 ;; Additional
 ns1.example. A 192.0.2.10
 ns1.example. RRSIG A 253 2 300 . . 39824 example. ...

 The query returned an answer that was produced as a result of a
 wildcard expansion. The answer section contains a wildcard RRSet
 expanded as it would be in a traditional DNS response. The RRSIG
 Labels field value of 2 indicates that the answer is the result of a
 wildcard expansion, as the "a.b.who.example" name contains 4 labels.
 This also shows that "who.example" exists, so there is no need for an
 NSEC4 RR that matches the closest encloser.

 The NSEC4 RR proves that no closer match could have been used to
 answer this query.

C.5. Wildcard No Data Error

 A No Data Response for a name covered by a wildcard. The NSEC4 RRs
 prove that the matching wildcard name does not have any RRs of the
 requested type and that no closer match exists in the zone.

Gieben & Mekking Expires January 5, 2013 [Page 33]

Internet-Draft NSEC4 July 2012

 ;; Header: QR AA RD RCODE=NOERROR
 ;;
 ;; Question
 a.b.who.example. IN AAAA

 ;; Answer
 ;; (empty)

 ;; Authority
 ;; NSEC4 RR that covers the next closer name (b.who.example)
 ;; H(b.who.example) = rmv5tauk8nss83vo1st0tp1ps927j71e
 m1o89lfdo9rrf2f8r8ss42d81d09v48m.example. NSEC4 1 1 0 - (
 3msev9usmd4br9s97v51r2tdvmr9iqo1.example.
 A RRSIG)
 m1o89lfdo9rrf2f8r8ss42d81d09v48m.example. RRSIG NSEC4 253 2 5 (
 . . 39824 example. ...)
 example. SOA ns1.example. bugs.example. 1 2 3 4 5
 example. RRSIG SOA 253 1 300 . . 39824 example. ...
 ;; NSEC4 RR that matches the wildcard at closest encloser
 ;; H(*.who.example) = ht6ocje68mtm96jpes8olrlbf67jjvdu
 ht6ocje68mtm96jpes8olrlbf67jjvdu.example. NSEC4 1 1 0 - (
 m1o89lfdo9rrf2f8r8ss42d81d09v48m.example.
 TXT RRSIG)
 ht6ocje68mtm96jpes8olrlbf67jjvdu.example. RRSIG NSEC4 253 2 5 (
 . . 39824 example. ...)

 The query returned the NSEC4 RRs that prove that the requested data
 does not exist and shows the types that do exist at the wildcard.

Authors’ Addresses

 R. (Miek) Gieben
 SIDN Labs
 Meander 501
 Arnhem, 6825 MD
 NL

 Phone:
 EMail: miek.gieben@sidn.nl
 URI: https://sidn.nl/

Gieben & Mekking Expires January 5, 2013 [Page 34]

Internet-Draft NSEC4 July 2012

 W. (Matthijs) Mekking
 NLnet Labs
 Science Park 400
 Amsterdam, 1098 XH
 NL

 Phone:
 EMail: matthijs@nlnetlabs.nl
 URI: http://www.nlnetlabs.nl/

Gieben & Mekking Expires January 5, 2013 [Page 35]

