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1. Introduction 

There is an increasing interest in subscores in educational testing because 

subscores have potential benefits in remedial and instructional application 

(Sinharay, Puhan, & Haberman, 2011).  Users of score reports are interested in 

receiving information on examinees’ performances on subsections of an 

achievement test.  These scores “typically are referred to as ‘subscale scores,’ 

‘subtest scores,’ or more generically, ‘subscores (Ferrara & DeMauro, 2006, p. 

583).’”  

However, among these current subscore research reports, few address the 

following issues.  First, in most research, the number of subscores, the number of 

items in each subscore domain and the item types in each domain are already 

fixed according to the classification produced by test developers and content 

experts.  Thus, the distinct domains defining subscores may not be clearly defined 

in a technical psychometric sense.  Also, little information may be provided to 

show there are enough items in each domain to support reporting useful scores.  

Moreover, it may not be clear why particular types of items are grouped together 

within each domain.  Finally, there are few discussions of how to link and equate 

test forms when reporting subscores.   

In order to fill in the above gaps and to explore solutions to the questions, this 

research applied multidimensional item response theory to report subscores for a 

large-scale international English language test – the Pearson Test of English 

Academic (PTEA).  Different statistical and psychometric methods were used to 

analyze the dimension structure, the clusters for reporting subscores, and to link 

individual test forms to provide comparable and reliable subscores.  This research 

is a follow-up study of Reckase and Xu. (2014), which demonstrates a subscore 

structure for PTEA.   
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2. Data Description 

This study used data from 36,938 examinees, 954 items, and 164 test forms from 

over 165 countries.  Those with the largest number of examinees included China, 

India, the United States, Japan, South Korea, Australia, the United Kingdom, 

Hong Kong, Taiwan and Canada.  Unfortunately, even though this is a large data 

set, the number of examinees responding to each test form was lower than 

desired for stable estimation of the parameters of a MIRT model.  Therefore, 

individual form data were used to check the generalizability of results obtained 

from a large set of common items across forms.  The large set of common items 

was used to identify an overall dimensional structure that was checked against 

the dimensional structure of individual forms.   

In order to have sufficient data for stable estimation of MIRT model parameters, 

the most frequently used 100 items over all test forms were selected for analysis.  

One problem with this approach was that the most frequently used 100 items did 

not have the same distribution over item types as a full test form.  The use of the 

most frequently used 100 items had both advantages and disadvantages.  The 

advantage was getting very stable estimates of model parameters and good 

evidence of the dimensional structure of the item types that were present.  Often 

there were numerous items of a particular type in this data set.  The 

disadvantage was that the results from the analysis might not represent results to 

be expected from operational test forms.  For that reason, the results obtained for 

the most frequently used 100 items were checked with analyses of the four most 

frequently used test forms.   

Of the 164 test forms, four were found to have sufficient data for the 

multidimensional analyses.  The minimum sample size for the four forms was 

432.   Thus, the analysis data consisted of five data sets. The first data set is the 

100 items with highest frequencies of use.  This was used to obtain results that 

could generalize across all test forms.  The second to fifth data sets are from the 

four test forms with highest frequencies of administration.  These were used to 

confirm the results from the 100 most frequently used items and to check the 

consistency of findings across forms.  Table 1 provides the number of examinees 

and items within each data set.   

 

Table 1: Number of examinees and number of items for the five analysis data sets 

 

  

Data Sets Number of Examinees Number of Items 

Dataset 1 F100  36938 100 
Dataset 2 Form F1 448 65 
Dataset 3 Form F2 438 53 
Dataset 4 Form F3 437  69 
Dataset 5 Form F4 432  66 
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3. Methodologies and Results 

Simulated data sets were designed according to the real data sets formats to 

replicate the exact missingness pattern and the item scores.  Furthermore, both 

dichotomous and polytomous items with low frequencies for particular score 

categories were recoded so that item parameters could be calibrated using 

multidimensional item response models.  Also, results from different software 

analysis packages were compared to validate the efficiency and accuracy for 

further analyses using both real and simulated data sets with missingness 

recovery skills.   

3.1 Analyses of the data structure 

Parallel analyses were applied to the eigenvalues among the 100 most frequently 

used items to identify the dimensional structure across all data sets.  The whole 

procedure was achieved pair-wise to account for the missing data across different 

forms. For comparison purpose, random data sets were generated with the same 

proportion of item scores for each item, individual item scores were removed to 

exactly match with the pattern of missing values in the real data sets.  Then, the 

eigenvalues from the generated data set were extracted from the inter-item 

correlations.  This process was replicated 100 times to yield distributions of the 

eigenvalues from the randomly generated data sets.  The results showed that 

either a seven or eight dimensional structure can be used to explain the relations 

among the data sets.  Figure 1 presents the eigenvalues for the real PTEA data 

and 100 replications of random simulated data.   

 

Figure 1: Plot of the eigenvalues for the real data and 100 replications of random data 

 

The combination of exploratory and confirmatory factor analyses further 

confirmed the seven-dimensional structure of the 100 most frequently used 

items.  The discrimination item parameters for the multidimensional item 

response theory models were calibrated and applied to run hierarchical clustering 

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

10

15

20

25

30

35

40

45

Factor Number

E
ig

e
n
v
a
lu

e
s



 

4 

 

analysis for the 100 most frequently used items.  The results indicate that six 

distinct clusters can be identified.  Moreover, among these six clusters, five 

distinct clusters consist of unique collections of item types and one cluster is 

composed of a mix of three different item types.  These six major clusters were 

labeled according to the conceptual representation of factors in the language 

ability domain defined by Carroll (1993, p.147).  They are: (1) Cloze, (2) 

Listening, Oral Production (3) Listening, Writing (4) Oral Production, (5) Phonetic 

Coding, Spelling, and 6) Pronunciation, Word Recognition.    

The reference composite for a set of test items is a mathematical derivation of the 

line in the multidimensional space that represents the unidimensional scale 

defined by a set of items (Wang, 1986).  This scale is the one that would be 

obtained if the items were analyzed using a unidimensional item response theory 

model.  The reference composites were computed for each of the clusters of items 

identified by the cluster analysis procedure.  They represent the distinct 

subscores that can be supported by the set of items.  Table 2 gives the angles in 

degrees between each reference composite line and the coordinate axes in seven-

dimensional space for each cluster of the 100 item set.   

Table 2: Angles between the Reference Composites and the Coordinate Axes in 

Seven-Dimensional Space for Six Clusters in Form F100 

PhonCo: Phonetic Coding 

Clusters Axis1 Axis2 Axis3 Axis4 Axis5 Axis6 Axis7 

Cloze 45.69 89.52 79.76 60.11 81.40 71.56 70.66 
Listening, Oral Production 62.26 45.85 76.85 83.69 86.88 71.89 68.45 
Listening, Writing 64.52 51.62 50.19 84.59 86.78 89.67 85.04 
Oral Production  57.89 61.54 74.17 87.09 74.80 67.17 63.87 
PhonCo, Spelling 65.21 64.92 78.77 67.52 62.93 69.21 69.09 
Pronunciation, Word Recognition 77.56 73.13 64.07 55.31 65.60 72.97 71.77 

  

The results in Table 2 show that the reference composite lines tend to match one 

of the coordinate axes in the multidimensional θ-space.  For example, the Cloze 

cluster has a reference composite line that is closest to the Dimension 1 

coordinate axis – its angle with the axis is 45.69°.  Also, the Listening and Oral 

Production cluster has a reference composite line that is closest to Dimension 2 

coordinate axis, since its angle with the axis is 45.85º.  The same relationship can 

be observed for the reference composites of the other clusters as well.  Thus, 

each cluster defines a unique dimension corresponding to a particular language 

ability and aligns with a coordinate axis in the solution.  Based on these results, it 

is clear that there exist multiple dimensions in the data that may be related to 

important language constructs.  

The next stage of the analysis focused on determining whether the constructs 

identified in the most frequently used 100 items would also appear in individual 

test forms.  To investigate this, each of the test forms with the highest frequency 

of use was analyzed in the same way as the 100 most frequently used items.  

Because of the smaller sample size and smaller number of items, it was expected 

that these analyses would be less stable than the analysis of the 100 items, but 

the same basic pattern of results should be evident.  The number of clusters 

identified for the 100 items with highest frequencies (Form F100), Forms F1, F2, 

F3, and F4 are 6, 6, 6, 6, 6, and 8, respectively. Figure 2 shows the eight clusters 
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of Form F4.  The results showed that Form F1 and Form F3 have very similar 

dimension structures.  Most of the forms share some of the constructs with the 

100 item set, but not all of them.  That is not surprising because the 100 most 

frequently used items did not include all of the item types.  It appears Form F2, 

Form F3, and Form F4 show strong multidimensional parallelism and share some 

of the constructs with the 100 item set. 

 

Figure 2. Clusters from Form F4 

 

3.2 Linking of multiple test forms 

We selected Form F100 as the base form, since it was extracted based on the 

sorted data with highest frequencies across all forms and all examinees. Forms 

F100 and Form F1 have 16 common items, which were distributed on six common 

subdomains C1 – C6.  Form F1 has 65 items in total.  Among those uncommon 

items, which are 47 items = 65 – 16, we found the items that have item types 

exactly the same as those in the six common constructs.  We ran both 

exploratory and confirmatory factor analyses to determine the loadings of the 

uncommon items on subdomains.  However, the estimation of item parameters 

for these common items using multidimensional item response model did not 

converge well.  It might be due to the fact that there were few common items 

between the two forms.  It could also be due to the facts that the data set has a 

mix of dichotomous and polytomous items.  Table 3 lists the number of common 

items among five data sets.  

Table 3: Common items between pairs of the 100 items and four test forms 

 100 Items F1 F2 F3 

F1 16    
F2 14 3   
F3 25 1 6  
F4 21 21 0 2 

 



 

6 

 

Table 3 shows that there is a small number of common items between individual 

forms and the base form – F100.  Alternative methods were applied to link test 

forms with multiple subdomains.   

We then applied the nonorthogonal Procrustes rotation method to obtain four 

different rotation matrices from each individual test form, respectively (Reckase, 

2009).  With the four rotation matrices, we were able to rotate subscores from 

each new form onto the base form.  After obtaining these four rotation matrices, 

we post-multiplied these four matrices by the estimated abilities for examinees in 

each individual form to get the estimates onto common scales.   

In all, there are 11 clusters in the common coordinate system including the 

clusters identified across all five data sets.  The base form was built upon an 11-

dimensional space.  For each individual form, there was a corresponding 11-by-11 

reference composite matrix with rows indicating the 11 clusters and columns the 

number or dimensions.  These four matrices are the augmented matrices with 

additional dummy columns indicating the number of clusters added and the 

dummy rows representing the clusters not generated from a particular individual 

test form.  Each cluster is represented by the corresponding reference composite 

using the cosine of the degree between the reference composite and the 

coordinate axis.   

Table 4 shows the subscores after the rotation from Form F4 to the base form.  

Since there are 432 examinees, only rotated subscores of the first 10 examinees 

were provided.  Clusters 2, 5 and 8 are not originally from Form F4.  For clusters 

that do not belong to a particular form, the rotated subscores are not meaningful 

because they do not represent any constructs that the form was designed to 

measure.  Therefore, we would not recommend to report the subscores for the 

clusters that were not identified in that particular individual form.  In general, the 

values of subscores for these types of clusters can be computed when rotating 

subscores from new form back onto the base form, yet these subscores will not 

provide any meaningful interpretation of examinees’ true abilities.  They just 

represent the numbers in the mathematical calculation.  In other words, they are 

mathematically meaningful, but psychometrically meaningless.   

 

Table 4:  The rotated subscores after non-Procrustes rotation for Form F4 

Examinee 
ID 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 
6 

Cluster 
7 

Cluster 
8 

Cluster 
9 

Cluster 
10 

Cluster 
11 

1 0.39 0.05 0.59 0.23 0.00 -0.24 -0.80 0.00 0.11 0.52 0.14 
2 -0.62 -1.52 1.00 -1.60 0.00 -1.34 -1.29 0.00 -1.70 -1.16 -1.79 
3 2.81 3.43 -1.26 2.92 0.00 1.20 2.32 0.00 3.94 2.33 3.81 
4 2.34 2.93 -1.02 2.18 0.00 0.94 2.10 0.00 3.33 1.24 2.97 
5 0.23 0.30 0.60 0.77 0.00 -0.36 0.03 0.00 0.41 0.96 0.78 
6 2.64 2.53 -1.31 1.95 0.00 1.19 1.83 0.00 2.93 1.53 2.61 
7 2.63 3.03 -1.80 2.51 0.00 1.47 1.83 0.00 3.48 2.15 3.50 
8 2.23 1.83 -1.67 0.78 0.00 1.11 1.35 0.00 2.08 -0.81 1.86 
9 0.34 -0.20 0.10 -0.18 0.00 -0.07 -0.13 0.00 -0.17 -0.68 -0.03 

10 -0.09 -0.42 1.26 -0.44 0.00 -1.47 -1.08 0.00 -0.44 -0.27 -0.28 
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4. Conclusions 

The overall analyses showed there was a consistency of the dimension structure 

across five data sets, indicating the language constructs can be replicated across 

multiple forms.  Therefore, the subscores on the sets of items in these clusters 

provide meaningful differences in English skills for PTEA.       

The analysis of data set – 100 items with highest frequencies across all test forms 

showed a distinct seven-dimensional solution was needed to accurately describe 

the relationships between the test items and the current sample of examinees.  

The analyses of data sets from the other four test forms were consistent with the 

100-item analyses, supporting six to eight dimensions, even though the samples 

were small.   

Moreover, the results for the dimensional analyses clearly show that, even though 

the overall data set is well fit by the unidimensional model, that multiple 

dimensions are still needed to explain the inter-relationships between the 

responses to test items in these data sets.  The largest data set with 100 items 

suggests that seven dimensions are needed to represent the relationships in the 

data, but this data set does not include all of the item types.  That suggests that 

more dimensions might be needed for typical test forms.  Unfortunately, the 

sample sizes for the test forms are too small for detailed multidimensional 

analyses, but the pattern of results across the forms clearly indicates that 

multiple dimensions are needed.  As more data are collected, a common structure 

can be identified.  The analyses of the data on individual forms suggest that six to 

eight dimensions are needed, which is consistent with the analyses of the 100 

most frequently used items.   

This research also applied an innovative linking method to transform each 

individual test form back onto the base form using nonorthogonal-Procrustes 

rotation according to the clusters identified in the dimensionality analyses.   

In conclusion, this study explores the support for the validity of the 

multidimensional structure across multiple test forms when the test was originally 

designed for a unidimensional scoring procedure.  Through the analyses, we can 

support the use of subscores for reporting.  The analyses suggest that six to eight 

dimensions are needed to represent the constructs assessed by the different test 

forms.  Subscores from different test forms can be linked to compare the 

differences among examinees’ ability levels.  It is a pioneer study that 

demonstrates how to report subscores across different test forms in a 

multidimensional structure.   
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