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Abstract—Neural Radiance Fields (NeRF) have been gaining
attention as a significant form of 3D content representation.
With the proliferation of NeRF-based creations, the need for
copyright protection has emerged as a critical issue. Although
some approaches have been proposed to embed digital wa-
termarks into NeRF, they often neglect essential model-level
considerations and incur substantial time overheads, resulting
in reduced imperceptibility and robustness, along with user
inconvenience. In this paper, we extend the previous criteria
for image watermarking to the model level and propose NeRF
Signature, a novel watermarking method for NeRF. We employ a
Codebook-aided Signature Embedding (CSE) that does not alter
the model structure, thereby maintaining imperceptibility and
enhancing robustness at the model level. Furthermore, after op-
timization, any desired signatures can be embedded through the
CSE, and no fine-tuning is required when NeRF owners want to
use new binary signatures. Then, we introduce a joint pose-patch
encryption watermarking strategy to hide signatures into patches
rendered from a specific viewpoint for higher robustness. In
addition, we explore a Complexity-Aware Key Selection (CAKS)
scheme to embed signatures in high visual complexity patches to
enhance imperceptibility. The experimental results demonstrate
that our method outperforms other baseline methods in terms of
imperceptibility and robustness. The source code is available at:
https://github.com/luo-ziyuan/NeRF Signature.

Index Terms—Neural radiance fields, 3D reconstruction, digital
watermarking.

I. INTRODUCTION

N eural Radiance Fields (NeRF) have become an important
form of 3D digital assets. Many NeRFs have been

created and publicly shared. Protecting the copyright of these
created models is crucial to prevent unauthorized misuse and
illegal transactions.

Generally, copyright protection for digital assets can be
achieved through digital watermarking [1]–[3]. Previous wa-
termarking methods are mainly designed for 2D images and
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Fig. 1. The embedding and verification of our NeRF Signature with an
optimizable signature codebook. The NeRF owner first obtains a signature
representation through the signature codebook with a selected secret signature
(➀). Then, the watermarked model is created through element-wise addition
between the signature representation and the original parameters while main-
taining the model structure (➁). After sharing the watermarked model, the
NeRF owner can render specific patches from a specific viewpoint using the
secret key (➂). Finally, the signature can be extracted from these patches by
an extractor (➃).

comply with two common standards [3], [4]: 1) imper-
ceptibility, which ensures that embedded signatures do not
cause significant visual degradation; and 2) robustness, which
requires the reliable extraction of signatures against various
distortions.

Our previously proposed CopyRNeRF [5] is the first attempt
for NeRF watermarking. CopyRNeRF [5] embeds binary sig-
natures into the radiance fields by constructing a watermarked
color representation. Another strategy is to embed a fixed
signature by fine-tuning the original NeRF via an external
module [6], referred to as the fine-tuning pipeline. Due to
the difficulty of extracting embedded signatures from radiance
fields, both pipelines ensure that these signatures are trans-
mitted into every rendered image during volume rendering.
Subsequently, an external signature extractor is used to extract
binary signatures from the rendered images for copyright
verification.

Despite the progress made by the two pipelines, they both
reveal significant limitations. First, the two pipelines rely
on external modules to complete signature embedding and
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extraction. If malicious users access those external modules,
they can easily obtain information related to the embedded
signatures, which can then be used to remove the copyright
information. For example, CopyRNeRF [5] encodes the binary
signatures via separate modules, which can be easily detected
and removed by malicious users. Signature extractors in the
two pipelines may all be utilized by malicious users to detect
and diminish the signatures. Second, the external modules and
the core NeRF model cannot achieve compatibility, making the
signature embedding difficult. To address this issue, CopyRN-
eRF [5] employs several feature fusion strategies, albeit with
high computational costs. The fine-tuning pipeline requires
modifying all parameters of NeRF, which can easily degrade
the model’s quality and compromise the imperceptibility of
watermarks.

Furthermore, fast training and rendering speed are important
trends in the evolution of NeRF [7]–[9]. For the fine-tuning
pipeline, when the NeRF owner needs to update the em-
bedded signatures, the NeRFs should undergo another round
of fine-tuning. This can result in inconvenience for users
and incur extra costs in terms of fine-tuning time. Though
CopyRNeRF [5] can address this issue by including all the
potential signatures in the training phase, it stores information
containing all signatures in the external MLP-based modules.
This vast amount of information significantly increases the
burden on the training process for signature embedding. The
additional burdens may significantly undermine their usability
and practicability.

One reason for the above limitations is that these methods
primarily focus on the two standards at the image level. The
ignorance of requirements at the core model level leads to poor
performance in model compatibility, computational efficiency,
and signature flexibility. Therefore, in addition to guaranteeing
the two standards on rendered images, the modules used for
signature embedding and extraction should not alter the core
structures of NeRF and should remain resilient to malicious
attacks. Furthermore, efficiency and convenience should be
considered in the envisioned framework for practical deploy-
ment and real-world applications.

To achieve the above goals, we have the following consider-
ations. First, considering the needs of practical application, we
put convenience and efficiency of the envisioned framework
foremost. The training process should be quick and efficient,
and the NeRF owners should be able to flexibly update
signatures, without requiring further fine-tuning. Second, the
use of external modules during signature embedding and
extraction should be minimized. Minimizing the number of
external modules diminishes the potential for malicious attacks
and ensures minor alterations to core NeRF models. Third,
if some external modules are unavoidable, we propose to
apply those unavoidable modules in a more encrypted manner
to achieve higher model-level robustness. Then, even when
malicious users access those unavoidable modules, it is still
difficult to directly obtain the copyright signatures.

Our previous work, CopyRNeRF [5], allows model owners
to update signatures without requiring another round of fine-
tuning. If we can mitigate the challenges such as model-
level threats and computational burdens brought by external

modules, such convenience can better benefit the users. To
achieve this goal, we propose the NeRF Signature. Our first
design is to employ a Codebook-aided Signature Embedding
(CSE). Unlike CopyRNeRF [5], which relies on separate
modules incompatible with core NeRF models, our CSE can
add signature representations from an optimizable signature
codebook directly with a portion of the NeRF model. The
direct integration with the NeRF parameters fundamentally
reduces potential vulnerabilities where malicious users could
detect and remove external watermarking modules. Compared
to the fine-tuning pipeline, only a portion of the NeRF model
is utilized for embedding, minimizing interruptions to the
information stored in NeRFs. Second, considering a binary
signature with Nb bit, such an optimizable signature codebook
can represent all 2Nb potential signatures for embedding,
by accumulating the representations of each individual bit.
When new signatures are required, NeRF owners can acquire
signature representations using this codebook and directly
add them to the NeRF parameters for embedding without
the need for fine-tuning. This efficient representation signifi-
cantly reduces the computational burden compared to previous
methods that need to store signature information in external
modules. Third, as the signature extractor is unavoidable for
signature retrieval within the common digital watermarking
framework [1], [10], [11], we propose a joint pose-patch
encryption watermarking strategy to ensure that the signature
can only be extracted from specific patches within a specific
view, using a pose key and a patch key. Therefore, even if the
extractor is accessed by malicious users, the secret signature
can not be obtained without knowledge of the actual pose key
and patch key. Lastly, to further enhance the imperceptibility
of the watermarking, we explore a Complexity-Aware Key
Selection (CAKS) scheme to select patches with high visual
complexity as the embedded areas.

As outlined in Fig. 1, once the codebook has been opti-
mized, in the embedding stage, the NeRF owner can embed
any desired binary signatures with a specific length into the
model. In the verification stage, the NeRF owner can extract
the hidden signature using the secret key. Throughout this
entire procedure, the structure of the watermarked model
remains identical to that of the to-be-protected model, ensuring
it remains indistinguishable at the model level.

The key contributions of this paper are:

1) a novel watermarking method for NeRF with a
Codebook-aided Signature Embedding (CSE). This em-
bedding allows NeRF owners to embed desired signa-
tures without altering the structure of the NeRF, thereby
maintaining convenience while enhancing imperceptibil-
ity and robustness at the model level.

2) a joint pose-patch encryption watermarking strategy,
which can embed signatures into patches rendered from
a specific viewpoint to ensure the robustness of NeRF
watermarking.

3) a Complexity-Aware Key Selection (CAKS) scheme,
which can ensure the information is embedded into
patches with high visual complexity to further strengthen
imperceptibility.
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Compared with CopyRNeRF [5], our NeRF Signature dif-
fers in the following key aspects. First, instead of using
separate modules that are incompatible with core NeRF mod-
els, our method employs CSE to directly integrate signature
representations into the NeRF model without structural modifi-
cations. Second, while CopyRNeRF [5] stores complete signa-
ture information in external MLP-based modules, our method
utilizes an optimizable signature codebook that efficiently
represents signatures by accumulating bit-wise representations,
significantly reducing storage and computational costs. Third,
our method introduces additional security measures including
the joint pose-patch encryption watermarking strategy and
CAKS scheme. These features can prevent unauthorized sig-
nature extraction and ensure effective watermarking.

II. RELATED WORK

A. Neural Radiance Fields (NeRF)

NeRF [12] is a revolutionary method that has emerged to
provide high-quality scene representation by fitting a neural
radiance field to a set of RGB images with corresponding
poses. Vanilla NeRF involves querying a deep MLP model
millions of times [13], leading to slow training and rendering
speeds. Some research efforts have tried to speed up this
process by using more efficient sampling schemes [14]–
[16], while some have attempted to apply improved data
structures to represent the objects or scenes [7], [8], [17]–
[19]. Besides, to improve the NeRF training on low-quality
images, enhancements have been made to handle degradation,
such as blurring [20]–[23], lowlight [24], and reflection [25],
[26]. NeRF has been applied to a broader range of scenarios,
including indoor scene reconstruction [27]–[30], human body
modeling [31], [32], and 3D segmentation [33]–[35]. Recently,
3D Gaussian Splatting [36] has made significant progress in
3D scene representation, demonstrating its effectiveness in
various domains including object reconstruction [37], [38],
medical applications [39], [40], and avatar creation [41]–[43].
As NeRF-based 3D assets gain popularity among creators,
protecting the copyright of these assets has become crucial.

B. Digital watermarking for 2D images

2D digital watermarking is used for image verification,
authenticity, and traceability. Initial 2D watermarking methods
hide data in the least significant parts of image pixels [44].
Alternatively, some techniques embed data in transformed
domains [45]–[47]. Recently, deep learning techniques have
shown significant advancements in information hiding in im-
ages [1], [4], [10], [48], [49]. HiDDeN [1] is one of the
first deep image watermarking methods that employ deep
encoder-decoder networks to achieve superior performance
compared to traditional approaches. UDH [3] proposes a
universal deep hiding architecture to achieve cover-agnostic
watermark embedding. From then on, many methods have
focused on more robust watermark embedding and extraction
under distortion conditions, such as JPEG compression [50],
screen recapture [51]–[54], and combinations of several dis-
tortions [55]. Besides the encoder-decoder paradigm, some

invertible networks have also been used for digital water-
marking [56], [57]. Recently, methods have been proposed
to watermark the generative content [58]. However, those 2D
digital watermarking methods cannot be directly applied to
protect the copyright of 3D models [5].

C. Digital watermarking for 3D models

Early 3D watermarking approaches [59]–[61] rely on
Fourier or wavelet analysis on triangular or polygonal meshes
to encode messages into model frequencies. However, these
techniques take much time to work as the number of points
in the model increases. Later approaches [62]–[65] suggest
putting watermarks into the least significant bits and the
most significant bits of vertex coordinates. Recently, some
studies [66]–[68] have explored the feasibility of deep neural
networks for 3D watermarking. Yoo et al. [69] propose to
embed messages in 3D meshes and extract them from 2D
renderings. Although neural networks are commonly present
in NeRF, watermarking methods designed for neural net-
works [49], [70]–[72] cannot be directly applied to NeRF
watermarking.

CopyRNeRF [5] is the first method to watermark a NeRF.
However, its long training time hinders its practicality in
real-world scenarios. StegaNeRF [73] proposes to embed
steganographic information within NeRF. In this method,
the detector holds the most hidden information, which can
make the information vulnerable to leaks, reducing its overall
robustness. WateRF [6] leverages a fine-tuning technique for
watermarking NeRFs, but it is limited to embedding just one
signature following each fine-tuning process.

III. PRELIMINARIES

We briefly introduce NeRF [12] and CopyRNeRF [5] in this
section. NeRF [12] uses MLPs to map the 3D location x 2 R3

and viewing direction d 2 R2 to a density value � 2 R+ and
a color value c 2 R3:

�(x) = f� (x(x); ��) ; (1)

c(x;d) = fc (x(x); d(d); �c) ; (2)

where �� and �c are the parameters of MLPs for representing
density and color, respectively. x and d are the fixed posi-
tional encoding functions for location and viewing direction,
respectively. The volumetric rendering equation is used to
obtain the color in 2D images:

C(r) =

Z tf

tn

T (t)�(r(t))c(r(t);d)dt; (3)

T (t) = exp(�
Z t

tn

�(r(s))ds); (4)

where r(t) is a ray from a camera viewpoint, and C(r) is the
expected color of the ray r(t). The near and far integral bounds
are denoted as tn and tf , respectively. In practice, a numerical
quadrature is used to approximate integral in Equation (3).

Given a to-be-watermarked NeRF with optimized �� and �c,
and a signature m, CopyRNeRF [5] builds the watermarked
color representation relying on a number of MLPs to replace
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the original color in Equation (2). It first generates the color
feature field and signature feature field as follows:

zc(x;d) = gc(c(x;d); x(x); d(d); �); (5)

zm = gm(m;�); (6)

where � and � are the parameters of the color feature encoder
and signature feature encoder, respectively. Then, the water-
marked color representation can be generated via a feature
fusion module that integrates both the color feature field and
the signature feature field as follows:

cm(x;d) = gf (zc(x;d); zm; ) + c(x;d); (7)

where  is the parameter of the feature fusion module. In
CopyRNeRF [5], the color feature encoder, signature feature
encoder, and feature fusion module are all implemented using
MLPs. The density in Equation (1) is kept unchanged for better
rendering quality. Finally, a CNN-based extractor is used to
retrieve the predicted signature from the rendered image.

IV. PROPOSED METHOD

As outlined in Fig. 2, we first construct a signature codebook
to generate signature representation by representing each bit
separately. Then, we incorporate the signature representation
into the original NeRF by employing a straightforward addi-
tion operation through a Codebook-aided Signature Embed-
ding (CSE), which results in a watermarked representation
that retains the integrity of the original structure. During the
verification, the signature can be extracted using a secret key,
which indicates particular views and patches. Our method
can achieve a high degree of imperceptibility and robustness
at both the image level and model level. Additionally, the
optimized signature codebook can take any binary signatures
with length Nb as the input to generate the corresponding
signature representations, which allows the NeRF owner to
flexibly embed any desired signatures in the NeRF.

A. Threat model

We first briefly describe the threat model considered in our
work. NeRF watermarking aims to embed a specific signature
into the NeRF without undermining the information within the
NeRF, enabling the NeRF owner to identify if a given NeRF
is embedded with this signature from the rendered images.
Meanwhile, the malicious user may attempt to evade copyright
verification by removing watermarks from the shared NeRF
using image-level and model-level manipulations. As shown
in Fig. 3, our threat model includes two agents, a NeRF owner
and a malicious user, that act sequentially.
� NeRF owner (embedding stage): The NeRF owner can

generate protected NeRF through the watermarking algo-
rithm. The watermarking algorithm should not degrade
the quality of images rendered by NeRF and should not
leave any visible marks.

� Malicious user: The malicious user obtains the shared
NeRF with watermarks, then tries to evade the verification
by applying manipulations on rendered images or NeRF
parameter. Later, the malicious user uses the NeRF for a

prohibited purpose and claims that the model is his/her
intellectual property.

� NeRF owner (verification stage): The NeRF owner can
extract signatures from their rendered images to verify
whether the given NeRF is embedded with their signa-
tures.

B. Codebook-aided signature embedding

We employ a signature codebook to generate a signature
representation. The signature representation can be directly
added to a portion of the NeRF parameters for signature
embedding, which is called Codebook-aided Signature Em-
bedding (CSE). This additive operation preserves the original
NeRF structure while effectively embedding the watermark.

Specifically, we consider a given NeRF in a more general
form:

[�(x); c(x;d)] = F (x;d; �) ; (8)

where �(x) and c(x;d) are the density value and color value,
respectively, and � is the whole parameters of the NeRF. We
can split the parameters � into two portions. One portion is
�e for signature embedding, and the other portion is �u kept
unchanged. Therefore, the Equation (8) can be rewritten as:

[�(x); c(x;d)] = F (x;d; �e;�u) : (9)

Next, we use a signature codebook to generate the wa-
termarking representation with the same structure as �e.
Our basic idea is to represent each bit of the signature
separately and then sum them up to obtain the final wa-
termarked representation. Therefore, this codebook can be
designed with 2Nb representations to effectively encompass
all 2Nb potential signatures, where Nb is the length of the
binary signatures. This design of the learnable watermarking
codebook ensures compact and efficient representation while
maintaining flexibility for signature updates. The learnable
structure is optimized during training to embed watermarks
while maintaining rendering quality.

In detail, we construct a learnable signature codebook
Gw = fGw(n; k)gNb�1;1

n=0;k=0. Each item in the Gw has the same
structure as �e. For a specific binary signature m, the n-th bit
of m is denoted as m(n). The signature representation Gm is
constructed as:

Gm =

Nb�1X
n=0

Gw(n;m(n)): (10)

Then, the watermarked parameters can be obtained by adding
the original parameters �e to the signature representation
Gm. We can use the watermarked parameters to generate the
watermarked densities and colors as:

[�m(x); cm(x;d)] = F (x;d; �e +Gm;�u) ; (11)

where �m is the watermarked density and cm is the wa-
termarked color. This formulation preserves the structural
integrity of the NeRF as the signature codebook matches the
structure of �e, and the watermark is embedded through direct
addition while keeping �u unchanged.
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Fig. 2. Illustration of our training pipeline. (a) A signature representation Gm is derived through a signature codebook according to the randomly selected
signature m. Subsequently, the watermarked grid G′ is generated by directly adding the signature representation and original grid G through a Codebook-aided
Signature Embedding (CSE). (b) With a specific camera pose represented as pose key T , we obtain an original image and a watermarked image by volumetric
rendering from this pose, utilizing the original grid and the watermarked grid, respectively. A content loss Lcontent is computed by comparing the original
image and watermarked image. (c) After a distortion layer, we use a patch key S to generate Nb patches from the watermarked image. (d) We employ a
signature extractor to extract one bit of signature from each patch. The signature loss Lsignature is obtained by a cross-entropy error. The pose key T and the
patch key S together form a complete key K = fT ;Sg for signature extraction.
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Fig. 3. The threat model considered in our scenario. A NeRF owner generates
the NeRF with signatures, and then the model is shared online. A malicious
user obtains the shared model and spreads it without authorization. Finally,
the NeRF owner can verify whether the model is generated by themselves.

The learnable signature codebook design offers several key
advantages. First, it allows direct integration with NeRF pa-
rameters without requiring separate external modules, reducing
potential vulnerabilities. Second, it achieves high efficiency
in signature representation by accumulating individual bit
representations. Third, NeRF owners can directly obtain new
signature representations from the optimized codebook with-
out additional finetuning.

The final 2D images are obtained through the standard
volumetric rendering as follows:

Cm(r) =

Z tf

tn

T (t)�m(r(t))cm(r(t);d)dt; (12)

where T (t) is with the same definitions as their counterparts
in Equation (4).

As shown in Fig. 2, we illustrate an example of using
Instant-NGP [8] as the NeRF structure. Instant-NGP [8] ap-

plies a grid-based data structure to speed up the training and
rendering. We regard the grid parameters as �e for signature
embedding, and the other parameters are kept unchanged.
More details can be found in Section IV-H.

Our method fully embeds the information into the NeRF
parameters without using additional modules. Since the water-
marking representation has the same structure as the original
parameters �e, and they are integrated through addition, the
structure of the NeRF remains unchanged. Therefore, mali-
cious users cannot easily detect and remove the watermarks,
which can guarantee higher model-level imperceptibility and
robustness of our watermarking scheme.

C. Joint pose-patch encryption watermarking

Considering the extractor is unavoidable for signature ex-
traction, we propose a joint pose-patch encryption watermark-
ing strategy to apply it in a more encrypted manner for higher
robustness. In our proposed approach, the signature is hidden
in some patches from a particular perspective, with the camera
pose and the patch locations regarded as the secret key. The
NeRF owner should use this secret key to embed signatures
in particular areas, and then use the same key to extract
the signatures from these patches. Therefore, even when the
extractor is accessed by malicious users, the signature should
not be easily obtained by them because they are not aware of
the actual key.

In our settings, one bit of signature can be extracted from
each rendered patch. We express the camera pose as a camera-
to-world transformation matrix T = [Rjt] 2 SE(3), where
R 2 SO(3) and t 2 R3 denote the camera rotation and
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Fig. 4. The CAKS scheme of our method. First, the NeRF owner chooses a
camera pose as the pose key T and generates an image from this pose (➀).
The rendered image is then uniformly divided into patches (➁). Subsequently,
certain patches are discarded based on the grayscale values calculated by Y (�)
(➂). Following that, patches with low complexity values are discarded using
the complexity estimator V (�) (➃). Finally, the NeRF owner randomly selects
Nb patches as the final selection, and the positions of these patches form the
patch key S (➄).

translation, respectively. We refer to the pose key as the camera
pose T . We indicate the rendered patches from the camera
pose as an ordered list S = f(xn; yn)gNb�1

n=0 , where (xn; yn)
is the coordinates of the center point for the n-th patch, and
Nb is length of the to-be-hidden binary signatures. We refer to
the ordered list S as the patch key. Finally, we can represent
the complete key by gathering the pose key and patch key as
K = fT ;Sg. With the known patch size of h�w, Nb patches
can be uniquely determined through the key K.

With the secret key K, the NeRF owner can use a regular
CNN-based extractor to retrieve the signatures hidden in the
patches. First, to render the n-th patch from the specific camera
pose, we shoot h � w rays according to the pose key T
and patch key S. Then, we apply the volumetric rendering
according to Equation (12) to obtain each pixel color in the
patch. Formally, we define a rendering operator R to obtain
Nb patches from the secret key as follows:

P = R(�;K); (13)

where P = fPngNb�1
n=0 denotes the ordered list composed of

Nb rendered patches obtained from NeRF with parameter �
using the secret key K. Finally, the patches are fed into a CNN-
based extractor to obtain the predicted signature as follows:

m̂(n) = fm(Pn; �m); n = 0; 1; � � � ; Nb � 1; (14)

where m̂(n) indicates the n-th bit of the predicted signature
m̂, and �m is the parameter of the CNN-based extractor. We
can simplify the above equation as follows:

m̂ = fm(P; �m); (15)

where P is the collection of all rendered patches.

D. Complexity-aware key selection scheme

To further enhance the imperceptibility of watermarking, we
propose a Complexity-Aware Key Selection (CAKS) scheme,

as shown in Fig. 4. The embedded regions have been proven
to play an important role in information hiding [74], with
optimal patches offering superior imperceptibility for water-
marking [74], [75]. In general, areas with more complex
textures are more optimal for information hiding [76], [77].
Therefore, our CAKS scheme can select patches with high
visual complexity values for embedding watermarks.

In detail, we first randomly select a camera pose T as a pose
key. From the camera poses T , we can obtain the rendered
images I, which has a full size of H �W . Then, we evenly
partition each rendered image I into patches, each with the size
of h � w. These patches can be indicated by the coordinates
of center points as a list S0 = f(xi; yj)gNh�1;Nw�1

i=0;j=0 :(
xi = i� h+ h

2 ; i = 0; 1; � � � ; Nh � 1;

yj = j � w + w
2 ; j = 0; 1; � � � ; Nw � 1;

(16)

where Nh = bHh c and Nw = bWw c are the number of
divisions along the height and width, respectively. Accord-
ing to the coordinates of center points and patch size, the
coordinates of all h � w points in each patch can be easily
obtained. Thus, all patches can be rendered and assembled into
P0 = fPi;jgNh�1;Nw�1

i=0;j=0 , where Pi;j is the rendered RGB patch
centered at (xi; yj) from the camera pose T . For convenience,
the patch list can be rewritten as P0 = fPngNh�Nw�1

n=0 with a
single subscript.

However, not all the patches are suitable for watermarking.
It has been proven that hiding information in areas with
low color variations can easily leave detectable traces [5],
compromising the imperceptibility of the watermarking on
rendered images. One scenario where these areas appear is
in the rendering backgrounds of some object-only 3D models,
with many 3D assets falling into this important category [78].
Therefore, we use a simple method to filter out these patches.
Specifically, we calculate the color variation within patch P
as follows:

Y (P) =
1

3
(var(PR) + var(PG) + var(PB)); (17)

where var represents the variance of the rendered patch in a
specific channel, and PR, PG, PB represent the three channels
of the patch, respectively. By setting a variance threshold �var,
the candidate patches P1 can be obtained as follows:

P1 = fPjP 2 P0; Y (P) < �varg; (18)

where Y (�) is defined in Equation (17), and �var is the threshold
to remove patches with lower variance values.

Next, we select patches with high visual complexity from
the candidate patches P1 to form the final list of candidate
patches P2. We use a well-established visual complexity
estimator V (�) to predict the complexity value of each patch.
Specifically, the complexity estimator calculates the visual
complexity as the ratio between the compressed and uncom-
pressed image storage size as follows [79], [80]:

V (P) =
Size(Compress(P))

Size(P)
; (19)

where Size(P) is the storage size of the uncompressed patch
P, and Size(Compress(P)) is storage size of the output of
compressor Compress(�).
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Fig. 5. Illustration of our workflow when the signature codebook Gw has been optimized. In the embedding stage, the NeRF owner can select N signatures
to embed into the to-be-protected model through the CSE, resulting in N watermarked models with different embedded signatures. These models are shared
online through different paths. In the verification stage, the NeRF owner first obtains specific patches by rendering the model through a key K for perspective
and patch selection for the to-be-verified model. Then, an extractor extracts the signatures embedded in different to-be-verified models. By comparing these
signatures with the originally embedded signatures, the NeRF owner can determine model ownership and trace the path through which the model is abused.

Patches with low complexity values are discarded, and the
NeRF owner can randomly select Nm patches. The patch key
S is then generated according to the locations of these patches.
To this end, we propose to use an approach for key selection.
After calculating the complexity of each patch in P1, we can
obtain the candidate patches P2 as follows:

P2 = fPjP 2 P1; V (P) > �complexityg; (20)

where �complexity is a threshold for complexity values.
The last step for the NeRF owner is to randomly select Nb

patches out of P2 for signature embedding and extraction. The
center point coordinates of these Nb patches form the patch
key S.

E. Distortion layer

The robustness is a unique part that makes digital wa-
termarking different from other information-hiding tasks [1],
[81]. We follow our settings in CopyRNeRF to use a Distortion
Layer (DiL) module to enhance the robustness of watermarks
against image transformations. The DiL module is positioned
after volumetric rendering but before patch selection, as shown
in Fig. 2. During optimization, the DiL module can simulate
degradation rendered images might encounter, such as blur
noise. The DiL module is discarded after optimization. Our
watermarking method can ensure that the embedded signatures
within the NeRF can be precisely extracted by the extractor,
even when the images rendered from the NeRF are subjected
to a range of distortions. In our experiments, we demonstrate
the DiL module’s effectiveness in enhancing the system’s
robustness.

F. Optimization

In our setting, we aim to ensure both the imperceptibility
of the embedding process and the successful extraction of

signatures. We jointly train the signature codebook Gw and
extractor �m end-to-end.

We construct a content loss Lcontent to ensure the imper-
ceptibility. In detail, the content loss Lcontent is obtained by
computing the MSE as follows:

Lcontent = Er2BkCm(r)�C(r)k22; (21)

where B is the set of rays in a batch, Cm(r) and C(r) are
rendered from watermarked grid as Equation (12) and original
grid as Equation (3), respectively.

We randomly choose a binary signature within one op-
timization loop to enable the NeRF owner to conveniently
select any secret signatures for embedding after optimization.
In detail, we randomly select a binary signature m of length
Nb. Then, Nb bits can be obtained through Equation (14) as
predicted signature m̂. The signature loss Lsignature is finally
obtained by calculating the masked binary cross-entropy error
between predicted signature m̂ and the ground truth signature
m as follows:

Lsignature =
1

Nb

Nb�1X
n=0

� [m(n) log m̂(n)+

(1�m(n)) log(1� m̂(n))];

(22)

where m(n) and m̂(n) indicate the n-th bit of the ground
truth signature and predicted signature, respectively.

Therefore, the overall loss Loverall can be obtained as:

Loverall = Lcontent + signatureLsignature; (23)

where signature is the hyperparameter to balance the loss
functions.

G. Workflow after optimization
After optimization of the signature codebook, the NeRF

owner can directly watermark any NeRF with arbitrary sig-
natures of length Nb through a simple parameter addition, re-
quiring no model retraining or fine-tuning. As shown in Fig. 5,
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during the embedding stage, the NeRF owner first randomly
chooses N secret binary signatures with length Nb. These sig-
natures are then efficiently embedded into the NeRF through
direct parameter addition to obtain N watermarked NeRFs.
This process is computationally efficient as it requires only
straightforward addition operations (�e + Gm) without any
training overhead. Each watermarked model can be shared
through a different path (i.e., different distribution channel
such as website, platform, or user group), enabling the tracking
of potential model leaks or misuse. Specifically, the water-
marked models are obtained through Equation (10) and Equa-
tion (11) based on the optimized signature codebook Gw.
Subsequently, the watermarked models can be shared with
the public. The NeRF owner should keep the secret key K
determined during optimization.

During the verification, the NeRF owner has several to-be-
verified models. The NeRF owner can render specific patches
according to the secret key K by querying these models, and
an extractor is applied to obtain the predicted signatures m̂
through Equation (14). By comparing the predicted signatures
to the originally embedded signatures, the owner can deter-
mine which models belong to them. As models embedded with
different signatures spread through their respective paths, the
NeRF owner can trace which paths the models are abused
through. To evaluate the bit accuracy during the verification
stage, the binary predicted signature m̂b can be obtained by
rounding:

m̂b = clamp(sign(m̂); 0; 1); (24)

where clamp and sign are of the same definitions in [69].
It should be noted that we use the continuous result m̂ to
compute loss in the training process, while the binary one m̂b
is only adopted after optimization to compute bit accuracy.

H. Implementation details

We implement our method using PyTorch. The to-be-
protected models are obtained using Instant-NGP [8], a pop-
ular NeRF model, with the suggested settings in the orig-
inal paper [8]. Due to the human visual system’s reduced
sensitivity to high-frequency details, the signature codebook
Gw is constructed only to modify the grid at the finest
resolution. In such a setting, �e in Equation (9) refers to the
parameters of the grid at the finest resolution, and �e refers
to the other parameters of NeRF. Embedding watermarks in
high frequencies allows for more covert hiding of watermark
information, minimizing its perceptual impact on the original
media. The extractor consists of 7 blocks, where each block is
composed of 2D convolutional layers with batch normalization
and ReLU activation functions. This is followed by a block
with the desired output dimension, the signature length hidden
in each patch, an average pooling layer, and a final linear layer.
The number of divisions along the height Nh and width Nw
of one rendered image in Equation (16) is set as 32. The �gray
in Equation (18) is set as 0:9. The �complexity in Equation (20)
is set to control the size of candidate patches P2 as 1:5Nb.
The views are randomly selected to embed and extract the
watermarking signature. The hyperparameter in Equation (23)
is set as signature = 10:0. We use the Adam optimizer with

default values �1 = 0:9, �2 = 0:999, � = 10�8, and an initial
learning rate 1 � 10�3 that decays following the exponential
scheduler with weight decay 5 � 10�4 during optimization.
We jointly train the signature codebook Gw, and extractor �m
for 3K iterations on a single NVIDIA Tesla V100 GPU.

V. EXPERIMENTS

A. Experimental setting

Datasets. We evaluate our methods on 4 established datasets,
including Blender dataset [12], LLFF dataset [82], Tanks &
Temples dataset [83], and Mip-NeRF360 dataset [84], which
are commonly used datasets for novel view synthesis. The
Blender dataset contains 8 detailed synthetic objects with
100 images from virtual cameras arranged on a hemisphere
pointed inward. LLFF dataset consists of 8 real-world scenes
that contain mainly forward-facing images. Each scene con-
tains images of 20 to 62. Tanks & Temples dataset [83]
contains realistic scenes with large central objects, including
Caterpillar, Family, Truck, etc. Each scene within this dataset
consists of 263 to 1107 images captured using a monocular
RGB camera. Mip-NeRF360 dataset consists of 9 indoor and
outdoor scenes with complex central objects. We follow the
settings in the Instant-NGP [8] to obtain the reconstruction
result to be protected. Based on the obtained model, our
watermarking method is implemented. Due to the need to
embed information from random perspectives, we directly use
the rendered images of the to-be-protected model from specific
perspectives as references instead of using original images to
train the to-be-protected model.
Baselines. We compare our method with four deep water-
marking models to guarantee a fair comparison: 1) HiD-
DeN [1]+NeRF [8]: processing images from different viewing
directions with a classical 2D watermarking method HiD-
DeN [1] before training the NeRF; 2) MBRS [50]+NeRF [8]:
processing images with state-of-the-art 2D watermarking
method MBRS [50] before training the NeRF representation;
3) CopyRNeRF [5]: a method to embed the secret signature
into the NeRF with model structure changed; 4) NeRF Fine-
tuning: a method to watermark the NeRF by fine-tuning
the model every time the NeRF owner wants to embed a
different signature. All the above baselines use the same NeRF
structure as our method, Instant-NGP [8], to ensure fairness
in comparison.
Evaluation methodology. We evaluate our NeRF Signature
across three key aspects: accuracy, imperceptibility, and ro-
bustness. For accuracy, we measure the bit accuracy, defined
as the percentage of correctly extracted bits, by comparing
the binary predicted signature obtained from Equation (24)
with the ground truth binary signature. The bit accuracy is
computed as the average over 200 randomly selected binary
signatures. For imperceptibility, we assess the impact of
digital watermarking on the original to-be-protected model.
To mitigate the influence of the original NeRF performance,
we compare the watermarked model with its corresponding
original model, as this relative comparison isolates the impact
of the watermarking process and provides a precise measure
of imperceptibility without being influenced by the absolute
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Groundtruth NeRF Signature HiDDeN+NeRF CopyRNeRF NeRF Fine-tuningMBRS+NeRF

Bit Acc. 50.15% / PSNR 32.76 Bit Acc. 50.37% / PSNR 33.99 Bit Acc. 60.35% / PSNR 32.92 Bit Acc. 91.85% / PSNR 32.45Bit Acc. 99.95% / PSNR 38.58

Bit Acc. 49.38% / PSNR 26.48 Bit Acc. 50.63% / PSNR 27.20 Bit Acc. 63.22% / PSNR 26.85 Bit Acc. 99.94% / PSNR 24.35Bit Acc. 99.97% / PSNR 34.60

Bit Acc. 50.64% / PSNR 28.23 Bit Acc. 49.79% / PSNR 30.96 Bit Acc. 52.08% / PSNR 36.25 Bit Acc. 83.98% / PSNR 33.74Bit Acc. 99.95% / PSNR 42.46

Bit Acc. 49.45% / PSNR 30.27 Bit Acc. 50.42% / PSNR 31.57 Bit Acc. 51.46% / PSNR 24.76 Bit Acc. 74.08% / PSNR 27.58Bit Acc. 97.69% / PSNR 31.86

Fig. 6. Visual quality compared with the baselines. Results are presented for 48 bits. For each method, we show the original rendering (left) and
the corresponding difference map (right). The difference maps visualize the pixel-wise residuals between watermarked and original renderings with 10�
amplification for better visibility. The averaged Bit Acc. / PSNR is shown below each example. From top to bottom: “hotdog” from Blender, “trex” from
LLFF, “Ignatius” from Tanks & Temples, and “counter” from Mip-NeRF360.

quality of the original NeRF. Image-level imperceptibility is
evaluated using Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM) [85], and Learned Perceptual Image
Patch Similarity (LPIPS) [86], which measure the visual
quality of rendered images after signature embedding. For
each scene, 360 rendered images from different viewpoints
are used for evaluation. Additionally, model-level impercep-
tibility is ensured by preserving the structure of the water-
marked model identical to the original model, as discussed
in Section IV-B. For robustness, we test the ability to extract
embedded signatures under image-level transformations and
model-level modifications. We consider 7 types of image-level
transformations, including rotation, cropping, scaling, JPEG
compression, blurring, noise, and brightness adjustments. For
model-level modifications, we focus on fine-tuning and adver-
sarial attacks. Adversarial attacks are implemented using the
Projected Gradient Descent (PGD) method [87] to generate
adversarial examples of NeRF that aim to fool the signature
extractor. Furthermore, we evaluate robustness against private
key attacks by testing whether malicious users can uncover
the signature using guessed keys after obtaining the extractor.

B. Accuracy and imperceptibility

Accuracy and imperceptibility are two important indicators
of digital watermarking. We calculate the bit accuracy by
comparing the extracted binary signature with the embedded
one. We randomly select multiple binary signatures and obtain
the final bit accuracy by averaging. We compare the rendered
images from watermarked NeRF and the original NeRF to
evaluate imperceptibility. We report the final imperceptibility
using the average metrics from multiple viewpoints.

1) Qualitative results: We first evaluate the imperceptibility
visually compared to all baselines, with the results presented
in Fig. 6. To quantitatively visualize the watermarking ar-
tifacts, we compute pixel-wise residual maps between the
watermarked and original renderings, with an amplification

factor of 10. The bit accuracy of each method is also shown
in the results. Due to the effectiveness of our NeRF Signature,
our method can achieve a high level of imperceptibility by
keeping the rendered images changed little from the origi-
nal content. Besides, our method can also accurately extract
the embedded signature with bit accuracy 100%. Although
HiDDeN [1]+NeRF [8] and MBRS [50]+NeRF [8] both yield
high-quality reconstructions, their bit accuracy values for the
rendered images are low, near a random guess probability of
50%. This indicates that the signatures cannot be efficiently
embedded after the training of the NeRF [5]. CopyRNeRF [5]
reaches a balance between accuracy and imperceptibility,
but some degradation is visually perceptible in the rendered
images. Moreover, the bit accuracy is low when the bit length
is long. NeRF Fine-tuning can achieve good visual quality,
but each fine-tuning session can only embed a fixed signature
into the model. Whenever the NeRF owners need to change
the embedded signature, they must repeatedly fine-tune the
NeRF, which undermines flexibility for users.

2) Quantitative results: We present the quantitative bit
accuracy and imperceptibility results across various bit length
settings in Table I. NeRF Signature achieves the highest bit
accuracy across all experimental bit lengths. Moreover, high
PSNR and SSIM values, along with low LPIPS values, indicate
that the images rendered from the watermarked model by
our method can preserve the visual fidelity and structural
integrity of the original content, ensuring minimal percep-
tual distortion. The results from HiDDeN [1]+NeRF [8] and
MBRS [50]+NeRF [8] demonstrate that they can achieve a
high level of imperceptibility, but they are unable to maintain a
high bit extraction accuracy, even when the bit length is short.
Although CopyRNeRF [5] can accurately extract signatures
for bit length 8, we can see that the bit accuracy drops when
the number of bits increases. NeRF Fine-tuning can reach the
second-best results among all settings, which shows that such
an approach can also effectively embed signatures into NeRF.
However, the NeRF Fine-tuning method still encounters the



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

TABLE I
BIT ACCURACY AND IMPERCEPTIBILITY COMPARED WITH THE BASELINES. " (#) INDICATES HIGHER (LOWER) METRIC VALUE IS BETTER. RESULTS ARE

PRESENTED FOR 16, 32, AND 48 BITS AND ARE AVERAGED ACROSS ALL INSTANCES WITHIN EACH DATASET. THE BEST-PERFORMING METHODS ARE
HIGHLIGHTED IN BOLD.

Dataset Method
16 bit 32 bit 48 bit

Bit Acc." PSNR" SSIM" LPIPS# Bit Acc." PSNR" SSIM" LPIPS# Bit Acc." PSNR" SSIM" LPIPS#

B
le

nd
er

NeRF Signature 99.98% 43.31 0.9949 0.0028 99.98% 36.18 0.9796 0.0149 99.94% 31.80 0.9628 0.0323
HiDDeN [1]+NeRF 50.38% 31.11 0.9451 0.0482 49.59% 27.31 0.9319 0.0695 50.29% 25.89 0.9302 0.0780
MBRS [50]+NeRF 51.78% 32.95 0.9791 0.0292 50.98% 28.25 0.9513 0.0577 50.53% 26.78 0.9402 0.0697

CopyRNeRF [5] 90.32% 27.31 0.9373 0.0562 79.22% 24.50 0.9268 0.0720 62.15% 23.76 0.9135 0.0799
NeRF Fine-tuning 94.09% 33.69 0.9828 0.0215 87.19% 29.12 0.9402 0.0467 85.26% 27.06 0.9310 0.0513

L
L

FF

NeRF Signature 99.99% 34.09 0.9555 0.0365 99.94% 31.27 0.9037 0.1072 99.48% 29.88 0.8943 0.1188
HiDDeN [1]+NeRF 52.71% 31.39 0.8843 0.1196 48.13% 27.21 0.8423 0.1334 51.04% 26.25 0.8373 0.1436
MBRS [50]+NeRF 51.25% 31.78 0.9155 0.1029 50.42% 28.14 0.8654 0.1192 48.33% 27.66 0.8523 0.1223

CopyRNeRF [5] 85.45% 26.53 0.9023 0.1112 74.36% 24.96 0.8914 0.1238 56.35% 23.51 0.8894 0.1343
NeRF Fine-tuning 97.29% 27.82 0.7958 0.2059 91.24% 25.70 0.7447 0.2389 86.31% 23.68 0.7345 0.2546

Ta
nk

s
&

Te
m

pl
es

NeRF Signature 100.00% 44.45 0.9884 0.0080 99.98% 38.10 0.9564 0.0183 99.92% 34.06 0.9231 0.0457
HiDDeN [1]+NeRF 52.92% 29.54 0.9186 0.0351 50.83% 26.14 0.8932 0.0596 49.38% 25.07 0.8806 0.0619
MBRS [50]+NeRF 52.08% 31.18 0.9347 0.0257 50.21% 27.36 0.9096 0.0436 50.42% 26.70 0.8962 0.0545

CopyRNeRF [5] 86.24% 35.47 0.9678 0.0095 71.58% 31.36 0.9353 0.0254 55.96% 29.56 0.9173 0.0477
NeRF Fine-tuning 92.50% 33.57 0.9496 0.0124 87.80% 30.32 0.9188 0.0358 83.10% 28.98 0.9001 0.0503

M
ip

-
N

eR
F3

60

NeRF Signature 99.97% 33.07 0.9223 0.0583 97.39% 31.12 0.9112 0.1013 96.47% 30.68 0.8948 0.1113
HiDDeN [1]+NeRF 52.71% 32.76 0.8876 0.0629 51.67% 30.92 0.8532 0.0980 49.79% 29.54 0.8482 0.1018
MBRS [50]+NeRF 52.50% 32.82 0.9095 0.0526 52.08% 31.09 0.8753 0.0836 50.63% 30.57 0.8634 0.0942

CopyRNeRF [5] 79.42% 29.25 0.8598 0.1071 68.81% 27.98 0.8233 0.1224 53.16% 26.45 0.8108 0.1373
NeRF Fine-tuning 91.25% 30.36 0.8742 0.0976 84.88% 28.84 0.8414 0.1129 80.50% 27.59 0.8366 0.1214

issue of repeated fine-tuning when the hidden signatures need
to be changed.

To provide a comprehensive evaluation of absolute ren-
dering quality, we conduct an experiment by comparing all
rendered images against the ground truth images captured from
the real world. The results are shown in Table II. The first
row is the results for non-watermark NeRF, which represents
the original model quality. The results show that our NeRF
Signature maintains rendering quality closest to the original
model while achieving significantly higher bit accuracy than
other watermarking methods.

TABLE II
COMPARISON OF DIFFERENT METHODS ON QUALITY METRICS AND BIT

ACCURACY FOR EMBEDDING 48-BIT WATERMARK ON “IGNATIUS” SCENE
FROM TANKS & TEMPLES DATASET [83]. " (#) INDICATES HIGHER

(LOWER) METRIC VALUE IS BETTER.

Method PSNR" SSIM" LPIPS# Bit Acc."
non-watermark 28.12 0.953 0.048 -
NeRF Signature 27.95 0.948 0.051 99.95%

HiDDeN [1]+NeRF 26.68 0.924 0.178 50.64%
MBRS [50]+NeRF 27.67 0.945 0.075 49.79%

CopyRNeRF [5] 27.47 0.944 0.058 52.08%
NeRF Fine-tuning 27.07 0.924 0.073 83.98%

C. Robustness

Robustness is a critical metric for digital watermarking,
aiming to ensure the signature can withstand various modifi-
cations or attacks without destruction or removal. We evaluate
the robustness of our NeRF Signature and the baselines by
subjecting them to different types of attacks.

1) Image-level transformations: We first consider transfor-
mations on the rendered images, similar to those considered
by previous 2D watermarking schemes [1]. Specifically, as
illustrated in Table III, we examine various types of 2D
transformations, including rotation, cropping, scaling, JPEG

compression, blurring, noise, and brightness. The results in-
dicate that our method is quite robust to different 2D distor-
tions. Although CopyRNeRF [5] achieves enhanced robustness
against image transformations by integrating a distortion layer
during training, its bit accuracy values are still lower than those
of our NeRF Signature.

2) Fine-tuning attacks: Beyond transformations at the im-
age level, attackers may target the NeRF model itself. Model
fine-tuning represents a common attack strategy. We examine
two attack scenarios: without clean images (w/o CI) and with
clean images (w/ CI). In the w/o CI scenario, attackers use
synthetically rendered images with random noise for fine-
tuning the watermarked NeRF. In the w/ CI scenario, they
use original, unmodified images. Each scenario is further
distinguished by whether the attacker has access to the pose
key (w/ PK) or not (w/o PK). Without the pose key, attackers
can only fine-tune from random viewpoints. With the pose key,
they can fine-tune using the specific viewpoints corresponding
to the key.

The results for fine-tuning attacks are shown in Table IV.
The results indicate that when the attacker does not have access
to clean images, regardless of whether they know the pose
key, their fine-tuning attacks cannot reduce the bit accuracy
of our NeRF Signature. The bit accuracy of NeRF Signature
decreases after a certain number of attack rounds if the attacker
knows the clean images corresponding to the actual pose key,
but the conditions for such an attack are very stringent in
practice. Our method maintains a high bit accuracy rate under
fine-tuning attacks when the attacker does not know the pose
key. This indicates that using the secret key can effectively
enhance the robustness of digital watermarking against such
fine-tuning attacks.

3) Adversarial attacks: The adversarial attack is a tech-
nique that attempts to fool the downstream models by adding
imperceptible perturbations to the input, which can lead to the
failure of the downstream models. We assess the robustness
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TABLE III
BIT ACCURACY UNDER VARIOUS IMAGE-LEVEL TRANSFORMATIONS COMPARED WITH THE BASELINES. RESULTS ARE PRESENTED FOR 16 BITS AND ARE

AVERAGED ACROSS ALL INSTANCES WITHIN THE BLENDER DATASET. THE BEST-PERFORMING METHODS ARE HIGHLIGHTED IN BOLD.

Method No distortion Rotation Cropping Scaling JPEG Blurring Noise Brightness Combined
NeRF Signature 99.98% 99.90% 98.62% 99.94% 99.78% 99.86% 99.87% 99.89% 97.11%

NeRF Signature (w/o DiL) 99.98% 49.41% 88.54% 90.66% 90.43% 87.28% 74.66% 82.34% 55.32%
CopyRNeRF [5] 90.32% 88.53% 88.07% 87.16% 81.66% 89.10% 88.36% 86.57% 82.45%

NeRF Fine-tuning 94.09% 89.33% 87.82% 88.93% 86.00% 89.26% 87.02% 87.65% 80.74%

TABLE IV
BIT ACCURACY UNDER FINE-TUNING ATTACKS IN DIFFERENT SETTINGS.
RESULTS ARE PRESENTED FOR 16 BITS AND ARE AVERAGED ACROSS ALL

INSTANCES WITHIN THE DATASET.

Attack setting 0 epochs 100 epochs 300 epochs 500 epochs

w/o CI
w/ PK 99.98% 99.98% 99.97% 99.96%

w/o PK 99.98% 99.98% 99.98% 99.97%

w/ CI
w/ PK 99.98% 66.75% 56.44% 52.13%

w/o PK 99.98% 98.91% 98.06% 97.50%

TABLE V
RESULTS OF ADVERSARIAL ATTACKS IN DIFFERENT SETTINGS. THE

ADVERSARIAL ATTACKS ARE IMPLEMENTED BY PGD-40. RESULTS ARE
PRESENTED FOR 16 BITS AND ARE AVERAGED ACROSS ALL INSTANCES

WITHIN THE DATASET.

Attack setting �adv = 0:1 �adv = 1:0

Bit Acc. PSNR Bit Acc. PSNR
No attack 99.98% 43.31 99.98% 43.31

Attack with
random keys

seed #0 99.91% 38.27 99.89% 27.23
seed #1 99.03% 38.21 97.28% 28.24
seed #2 98.75% 37.50 92.28% 30.59
seed #3 99.81% 37.36 93.25% 25.96
seed #4 99.56% 37.60 94.00% 31.45

Attack with the actual key 61.75% 37.37 50.66% 30.65

of NeRF Signature against adversarial attacks. We consider
a scenario where the malicious user can access the signature
extractor. The malicious user leverages gradient information
to introduce adversarial perturbations into the model parame-
ters, aiming to mislead the signature extractor and prevent it
from correctly extracting information from rendered images.
For digital watermarking, the attacker’s goal is to make the
signature extractor obtain random binary signatures, thereby
achieving an accuracy rate that approximates 50%. If adversar-
ial samples are generated solely by maximizing the signature
loss of the extractor as in Equation (22), it is equivalent to
targeting the opposite of the actual binary signature, which
is meaningless for digital watermarking. Therefore, in the
setup of our experiment, the attacker randomly selects a binary
signature as the target to make the signature extractor obtain
it. Formally, the process of conducting an adversarial attack
on the watermarked NeRF can be concluded as follows:

min
��

CE
�
fm(R(� + ��; ~K); �m);mrandom

�
; (25)

s.t. k��kp � �adv; (26)

where R is the rendering operator as defined in Equation (13),
CE(�; �) represents the cross-entropy loss computed between
the two inputs, ~K denotes the key utilized for the attack, ��
signifies the adversarial perturbation applied to the parameters
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Fig. 7. Results of attacks on the private key. We show a histogram of bit
accuracies by using the same released extractor with either the correct key
or 10000 randomly chosen keys. Results are presented for 48 bits on the
“hotdog” case in the Blender dataset.

of NeRF �, k�kp denotes the ‘p-norm, and �adv is the maxi-
mum allowable perturbation. The random signature mrandom is
selected by the attacker as the target of the adversarial attack.
We consider two scenarios. In one scenario, the attacker is
aware of the actual key, in which case ~K = K. In the other
scenario, the attacker does not know the real key and thus
can only attack by a randomly guessed one as ~K = Kguess. In
practice, we employ PGD-40 [87] to implement the adversarial
attack described above.

We show the results for adversarial attacks in Table V.
In our experiments, we choose two maximum allowable per-
turbations, epsilon, and select 5 random seeds to generate
the guessed keys. When the attacker can access the key,
the results indicate that the attacked NeRF can effectively
deceive the extractor into producing a random binary signature.
However, when adversarial attacks are implemented using
randomly guessed keys, the bit accuracy can remain very
high. This proves that our proposed key mechanism can
effectively resist malicious adversarial attacks. As maximum
allowable perturbation �adv increases, the bit accuracies of
random keys decrease slightly, but the rendering image quality,
as measured by PSNR, decreases significantly. This suggests
that our method is robust against this type of adversarial attack.

D. Attacks on private key

We evaluate the robustness of our method against private
key attacks when malicious users have access to the extractor.
The experiment simulates a scenario where attackers attempt to
extract signatures without knowing the correct pose and patch
keys. We conduct the experiment on a watermarked NeRF with
a 48-bit signature.
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Groundtruth
Embedding at 

finest resolution

Embedding at

coarsest resolution

Embedding at

medium resolution

Embedding at

full range of resolutions

Bit Acc. 99.94% / PSNR 20.69 Bit Acc. 99.97% / PSNR 27.83 Bit Acc. 99.42% / PSNR 12.76Bit Acc. 99.99% / PSNR 41.76

Fig. 8. Ablation study on the choice of embedding portion of our method. Results are presented for 32 bits on the “lego” case in the Blender dataset. The
averaged Bit Acc. / PSNR is shown below each example

Groundtruth NeRF Signature
NeRF Signature

(w/o pose & patch key)

NeRF Signature

(w/o patch key)

NeRF Signature

(w/o CAKS)

Bit Acc. 53.27% / PSNR 22.25 Bit Acc. 56.11% / PSNR 26.23 Bit Acc. 93.31% / PSNR 24.76Bit Acc. 99.73% / PSNR 29.50

Fig. 9. Ablation study on the design of our joint pose-patch encryption watermarking strategy and CAKS scheme. Results are presented for 48 bits on the
“room” case in the LLFF dataset. The averaged Bit Acc. / PSNR is shown below each example

TABLE VI
TRAINING TIME COMPARED WITH THE BASELINES. RESULTS ARE

PRESENTED FOR 48 BITS AND ARE AVERAGED ACROSS ALL INSTANCES
WITHIN THE DATASET.

Method NeRF Signature CopyRNeRF [5] NeRF Fine-tuning
(with fixed signature)

Training time � 6 minutes > 70 hours � 40 minutes

As shown in Fig. 7, we evaluate signature extraction using
both the correct private key and 10; 000 randomly gener-
ated keys. With the correct key, our method achieves 100%
bit accuracy in signature extraction. However, attempts with
random keys typically yield accuracies below 70%. This
significant performance gap between correct and random keys
demonstrates that our joint pose-patch encryption effectively
prevents unauthorized signature extraction, even with extractor
access.

E. Training time

We compare the training time required for our NeRF
Signature with the training times for CopyRNeRF [5] and
NeRF Fine-tuning. The results are illustrated in Table VI.
We calculate the total time for all 2Nb signature embedding
situations. Since NeRF Fine-tuning can only embed one fixed
signature at one time, we calculate the total time for 2Nb

fine-tuning sessions. The experimental results indicate that the
NeRF Signature requires the shortest training time. Therefore,
our method enables users to freely choose any signatures from
2Nb possibilities to embed within a shorter training time.

F. Computational efficiency

The computational efficiency of the extractor is crucial for
practical deployment, especially on edge devices. We evaluate
the computational requirements of our extractor on a standard
desktop environment with Intel Xeon CPU and NVIDIA Tesla
V100 GPU.

For runtime performance, our extractor completes the sig-
nature extraction process in approximately 7:46 ms. This
efficiency is achieved through the use of lightweight con-
volutional operations in our architecture. Regarding resource
consumption, the extractor has a small memory footprint
with only 515 KB runtime memory overhead. The storage
requirement for the extractor model is 1023 KB, making it
suitable for deployment on resource-constrained devices.

The extractor’s architecture primarily consists of standard
convolutional operations that are well-supported by mobile
deep learning frameworks. This design choice ensures com-
patibility with edge devices while maintaining extraction
accuracy. Edge device deployment would facilitate practical
applications by enabling on-device signature extraction.

G. Ablation study

Our approach consists of four parts: the signature codebook,
the joint pose-patch encryption watermarking strategy, the
complexity-aware key selection scheme, and the distortion
layer. As the signature codebook is necessary for our method,
we cannot easily remove it. However, we can assess the choice
of embedding portion �e as in Equation (9). Therefore, in
our ablation study, we evaluate our method from the above-
mentioned four aspects.

1) Effect of embedding portion choice: In our main exper-
iments, we choose the grid at the finest resolution in Instant-
NGP [8] for signature embedding. To evaluate the performance
of other choices of the embedding portion, we conduct an
ablation study by selecting different portions of the NeRF for
signature embedding. The results are shown in Fig. 8. The
results show that embedded signatures at the highest resolution
can achieve the highest PSNR. Although embedded signatures
at the lowest resolution, medium resolution, and full range of
resolutions can all reach high bit accuracy, their visual quality
drops a lot. The results indicate that choosing the grid at the
finest resolution for signature embedding can maintain high
imperceptibility.
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2) Effect of joint pose-patch encryption watermarking:
The core of our joint pose-patch encryption watermarking
strategy is to use the pose and patch keys to embed and
extract signatures. To demonstrate the effectiveness of this
strategy, we test our method without applying the pose key
and patch key. We first remove both the pose key and patch
key, indicating that information is extracted across the entire
rendered image from any viewpoint. Then, we use a pose
key and remove the patch key to extract information from the
whole rendered image from a specific viewpoint. The results
are shown as NeRF Signature (w/o pose & patch key) and
NeRF Signature (w/o patch key) in Fig. 9, respectively. These
results indicate that using the pose key and patch key can
effectively enhance the imperceptibility and effectiveness of
watermarking.

3) Effect of complexity-aware key selection scheme: For
patch selection, we apply a complexity-aware scheme to select
patches with a higher complexity level of texture. To evaluate
the effectiveness of such a key selection scheme, we conduct
experiments by removing it. We randomly choose Nb patches
as the regions for embedding and extracting signatures. The
results are shown as NeRF Signature (w/o CAKS) in Fig. 9.
The results demonstrate that utilizing a CAKS scheme enables
a more imperceptible embedding of signatures in NeRF.

4) Effect of distortion layer: Our approach employs the
distortion layer during optimization to enhance the system’s
robustness. To validate the effectiveness of the distortion layer,
we compare the robustness against image-level transformation
attacks between using and not using the distortion layer. The
results of our method without the distortion layer are shown
as Proposed (w/o DiL) in Table III. The results demonstrate
that the distortion layer is important in enhancing robustness
against image-level degradation.

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We propose a novel watermarking method for NeRF called
NeRF Signature, which offers high imperceptibility and ro-
bustness at both the image and model levels, while allowing
the NeRF owner to flexibly choose the signatures to embed.
First, using a codebook-aided signature embedding in our
method can keep the NeRF structure unchanged during signa-
ture embedding without introducing extra complex modules.
The NeRF owner can generate watermarked NeRF with any
desired signatures through the signature codebook. Second,
the joint pose-patch encryption watermarking strategy hides
signatures in a secret pose and several patches, preventing the
leakage of the signatures even when the extractor is publicly
known. This also increases the difficulty of their attacks on
targeted pose and patches if malicious users are unaware
of the secret key. Third, the CAKS scheme is proposed to
select patches with high visual complexity, in which hiding
signatures can cause less visual difference. Experiments on
standard datasets show that our method outperforms other
baselines in terms of bit accuracy and imperceptibility. Our
method also demonstrates strong robustness against image-
level transformations, model-level modifications, and attacks
on the private key.

Limitations and future work. Our approach has demon-
strated promising performance in asserting ownership of
NeRF, a widely-used method for 3D representation that has
served as the basis for numerous applications. However, the
landscape of 3D representation methods is constantly evolv-
ing. For instance, 3D Gaussian Splatting (3DGS) [36] is an
emerging 3D representation method that is rapidly developing.
Due to the point cloud representation of 3DGS [36], directly
applying our approach would lead to a significant increase
in storage space required for the signature codebook. Further-
more, the development of watermarking for 3D representations
faces several key challenges. First, it is essential to develop
scalable watermarking methods adaptable to different 3D
representations like NeRF [8], [12] and emerging techniques
such as 3DGS [36], [88], [89]. Second, seamless integration
into existing 3D content creation and distribution pipelines
is crucial, which includes minimizing computational overhead
and optimizing for edge devices while maintaining compati-
bility with downstream processes. Third, enhancing security
and robustness against various attacks remains critical for
protecting intellectual property. Addressing these challenges
will foster a more secure and innovative ecosystem for 3D
digital content creation and distribution.
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