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Abstract

Neuromorphic event sensors are novel visual cameras that feature
high-speed illumination-variation sensing and have found wide-
spread application in guiding frame-based imaging enhancement.
This paper focuses on color restoration in the event-guided image
deblurring task, we fuse blurry images with mosaic color events
instead of mono events to avoid artifacts such as color bleeding.
The challenges associated with this approach include demosaic-
ing color events for reconstructing full-resolution sampled signals
and fusing bimodal signals to achieve image deblurring. To meet
these challenges, we propose a novel network called Color4E to
enhance the color restoration quality for the image deblurring task.
Color4E leverages an event demosaicing module to upsample the
spatial resolution of mosaic color events and a cross-encoding im-
age deblurring module for fusing bimodal signals, a refinement
module is designed to fuse full-color events and refine initial de-
blurred images. Furthermore, to avoid the real-simulated gap of
events, we implement a display-filter-camera system that enables
mosaic and full-color event data captured synchronously, to collect
a real-captured dataset used for network training and validation.
The results on the public dataset and our collected dataset show
that Color4E enables high-quality event-based image deblurring
compared to state-of-the-art methods.
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1 Introduction

Inspired by the mechanism of the human retina, neuromorphic
event sensors have been designed as a novel type of camera to
break the bottlenecks of traditional frame-based cameras by the
advantages of low latency, low power, and high dynamic range
(HDR) [4, 10, 11, 22, 32]. Event signals are asynchronously trig-
gered by comparing the current and last light intensity states
of the same pixel in log-scale, one binary-signed event will be
triggered whenever the log-intensity variation exceeds the preset
thresholds [8, 22, 43]. Thanks to their microseconds-level sensitiv-
ity (~ 10us temporal resolution), event cameras have been used
in a standalone manner to directly reconstruct high frame-rate
images/videos [6, 7, 14, 47, 61], or in an event-and-frame hybrid
manner to boost the frame rate or eliminate motion blur [28, 45, 60].

As a hot research direction, the event-guided image deblurring
task aims to restore clear images from the corresponding long-
exposure images suffering from motion blur. Based on the correla-
tion between the count of events and the change in light intensity,
EDI [28] bridges the correlation between the blurry image and clear
image by a double integral process of events, and the reverse pro-
cess enables eliminating image motion blur with the guidance of
events. Learning-based methods [3, 24, 40, 42] have demonstrated
the continuous enhancement of deblurring performance through
iterative refinement of network models. Optical estimation has
also been incorporated to improve deblurring performance [16],
and some methods even enable intra-frame interpolation owing to
the high temporal resolution of events. The introduction of event
signals has resulted in a significant enhancement in the perfor-
mance of image deblurring, due to the assistance of events in pro-
viding high-precision motion trajectory and textures/edges for re-
constructing sharp and clear images [16, 42, 53, 55, 58]. Non-linear
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Figure 1: (a) We show an RGB frame sensor and an event
sensor hybrid imaging system to shoot high-speed scenar-
ios, and show the different signals of mono events, mosaic
events with Bayer pattern, and full-color events. (b) Image
deblurring task guided by mono events, mosaic events, and
full-color events. The state-of-the-art method REFID [42] is
chosen as the existing method and retrained with mosaic
events. Our method demosaics the mosaic events and recon-
structs full-color events to guide image deblurring.

motion blur, which was previously challenging for image-based al-
gorithms to address, can now be effectively mitigated through high-
speed sampling of events [20, 35, 38, 46, 51]. However, the existing
event-guided image deblurring methods mainly use monochromatic
(mono) events as the common input, which leads to color aberra-
tion and artifacts in blur-eliminated regions because of the lack of
color spectrum sampling by mono events, the blurred area in the
original image will appear obvious abnormal color artifacts and
motion track after image deblurring [60].

Fortunately, it happens that event camera prototypes equipped
with Bayer pattern color filter arrays (CFA) have been available,
i.e., DAVIS346-color [37], which triggers red, green, and blue (three-
primary color components, denoted as R, G, B respectively) events
based on the Bayer-pattern mask. Each pixel senses changes in in-
tensity across the different color spectrums. The existing methods
based on color event cameras directly use mosaic events as input to
reconstruct HFR videos or auxiliary RGB video interpolation [17]
without any demosaic processing. As shown in Fig. 1 (a), compared
with mono events, mosaic events carry the color-variation infor-
mation of scenes. Nevertheless, color filter arrays prevent sensors
from recording color information at full resolution and it’s neces-
sary to reconstruct three-channel full-color events. The comparison
in Fig. 1 (b) verifies the necessity of introducing color events and
reconstructing full-color events to suppress color artifacts.
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Figure 2: The illustration of our display-filter-camera system.
We collect a dataset by repeatedly rotating the rotator with
three primary color filters and shooting the high refresh-rate
display with DAVIS346-mono.

Demosaicing processing is an inevitable choice for high-quality
color imaging that has been demonstrated in the field of image
processing [27, 48, 49, 52]. However, there is no available demo-
saicing method for mosaic events currently, convolutional image
demosaicing methods are unsuitable to directly apply to mosaic
events because of the particular signal modality of asynchronously
triggered events. Besides, color events further increase the diffi-
culty of event-and-image two-modality data fusion, and new data
modality brings challenges to the acquisition of training datasets
and the processing of real-simulated gaps.

In this paper, to break the bottleneck of mono events-based meth-
ods and deal with the challenges of mosaic events demosaicing and
event-guided image deblurring, we propose a novel network, named
Color4E, which carries the meaning of “color for events” or “colorful
events”. The network leverages a full-color event constraint module
for demosaicing mosaic events and an event-frame cross-encoding
module for fusing bimodal signals, a refinement module is designed
to further fuse demosaiced full-color events and refine initial de-
blurred images. Furthermore, to avoid the real-simulated gap, we
implement a display-filter-camera system (as shown in Fig. 2) that
enables mosaic and full-color event data captured synchronously
to collect a real-captured dataset used for network training and
validation. The result comparison shows that our method outper-
forms state-of-the-art event-guided image deblurring methods on
common datasets, and obtains a numerical gain of evaluation met-
rics accompanied by visual quality improvements, especially the
suppression of color bleeding artifacts.

Overall, this paper makes the following contributions:

e We propose a united framework to demosaic Bayer-pattern
filtered mosaic color events and further enhance the perfor-
mance of event-guided image deblurring, which is the first
learning-based method to demosaic events and deal with the
color artifacts in event-guided image deblurring.

o We propose a network Color4E to fuse events and images and
realize the complementary advantages between the bimodal
signals, in which images guide mosaic events to restore full-
resolution sampling, and color events guide blurry images
to eliminate blurring and avoid color artifacts.
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e We implement a display-filter-camera system that enables
mosaic and full-color event recording synchronously to col-
lect the first high-resolution color event dataset C4E suitable
for network training and evaluation.

2 Related works

Event camera systems and datasets for image enhancement.
The dataset of image deblurring tasks requires containing input
events, input blurry images, and ground truth no-blur images.
Blurry images are simulated by averaging multiple no-blur image
sequences in the majority of datasets (e.g., [16, 20, 29, 46]). To collect
real-captured images and events, REBlur [40] conducts controlled
indoor experiments to gather triplet data through the repetition
of identical motion scenarios. DVSNOISE20 [1] proposed a noise
annotation approach by deriving an event probability mask using
APS frames and IMU motion data. In the benchmark event dataset
compiled in [13], a display-camera system is used to transform
pre-existing video datasets into event datasets. Duan et al. [7] im-
plements a similar setup to collect a dataset with high-quality videos
and real-captured multi-scale events. We implement a display-filter-
camera system that enables synchronous record mosaic events,
full-color events, and corresponding blurry and no-blur images.

Event-based image deblurring methods. Thanks to the high-
speed characteristic of event cameras, it has recently been used to
improve the performance of image deblurring tasks in an image
and events fusion manner. Pan et al. [28] establish a correlation
between the blurry image and clear image through a double in-
tegral process of events, and the reverse process facilitates the
elimination of image motion blur with the guidance of events. To
impose external priors on the learning of deblurring mapping, Lin
et al. [24] propose an end-to-end trainable neural network that
uses events to estimate the residuals for the sharp frame restora-
tion. eSL-Net [46, 55] proposes an event-enhanced sparse learning
network to solve problems of noise, motion blur, and low resolu-
tion in a unified framework. RED-Net [51] estimates optical flows
from events to enable self-supervision on the deblurring network
with blurry consistency and photometric consistency. NEST [44]
presents a network that satisfies physical constraints and encodes
comprehensive motion and temporal information sufficient for im-
age deblurring. EFNet [41] designs a fusion module that applies
cross-modal channel-wise attention to fuse event features with
image features and proposes a symmetric cumulative event voxel
representation for deblurring. Furthermore, REFID [42] introduces
a bi-directional recurrent architecture into the network to solve the
image deblurring. However, the above methods use mono events
as input and lead to color aberration in blur-eliminated regions.

Image demosaicing. Color imaging in digital cameras is primar-
ily achieved through embedding color filters. To reduce costs and
manufacturing complexity, sensors are covered with color filter
arrays, where each pixel only senses one spectrum of red, green,
or blue in a periodic arrangement. However, this approach results
in each color channel being unable to sample at full resolution.
To address this problem, image demosaicing algorithms attempt
to interpolate the low-sampled color channels to reconstruct RGB

663

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

channels at full resolution. Traditional image demosaicing algo-
rithms mainly adapt simple image interpolation algorithms such
as the nearest neighbor, bilinear, bicubic interpolation, etc. Kiku et
al. [19] introduce residual interpolation, and Ye et al. [54] further
propose an iterative residual method to make the three channels
mutually constrain and guide each other to achieve higher-quality
reconstruction. Deep learning-based methods achieve accurate and
robust image demosaicing by learning sampling mapping from ex-
ternal data priors. Gharbi et al. [9] propose a demosaicing network
based on CNN network, which jointly achieves image denoising
and demosaicing. In recent years, with the development of deep
learning models, researchers further enhanced the prior constraints
and improved the robustness of image demosaicing [39, 50, 57].
However, there is no available demosaicing method for events, con-
volutional image demosaicing methods are unsuitable to directly
apply to mosaic events because of the particular signal modality.

3 Methods
3.1 Preliminaries

Let’s consider a 3D latent space-time volume (Q € R3) that records
the irradiance and chromaticity of scene, we want to capture in the
time range [0, T], and formulate corresponding blurry images and
color events through latent clear images I; (¢ € [0, T]). The corre-

sponding blurry image B = fOT I;dt averages all latent images over
the exposure time [0, T]. For images, we ignore the demosaicing
process and default to using full-color RGB images in this paper.

On the event side, there exist three types of events, i.e., mono
events, mosaic events, and full-color events. Mono events triggered
at time t only depend on the variation of irradiance:

I (xp yp) + b
L1 (X, yg) + b

pi® = T{log( )eh )
where T'{0, €} is an event-triggering function, € is the contrast
threshold, b is an infinitesimal positive number to prevent log(0)
and events are triggered when |0] > €. Polarity pkMO e {1,-1}
indicates the direction (increase or decrease) of intensity change.
The event stream output at this space-time volume can be described
as a set EMO = {811:40};:!: iy where N denotes the number of events,
and each mono event can be expressed as ekMO = (X, Y b, pII:’IO).
Full-color events are triggered after I; of Eq. (1) are filtered
by three primary color filters as C{o-g g, (I¢), and full-color
events can be denoted as EF¢ = {{e}:}ffl, {eg}kal, {f,’]l?}]k\IzB1 }, where
Cia=RrG,p) denotes the color filter process. Mosaic events can be

extracted from full-color events EF® and formulated by:
Bp _ F
E P - ZQ={R,G,B} MQ (E C),

where My means the Bayer pattern mask.

@)

3.2 Connect degraded images and color events

For blurry images, Pan et al. [28] have developed an event-based
double integral model to establish the relationship on luminance
field between blurry image and mono events, formulated as:

exp (e/ eMO(t)dt) ds.
ty

T
N Ito h+y

T

BMO (3)

to—75
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Figure 3: Network architecture of Color4E. It consists of three modules: event demosaicing module, image deblurring module,
and refinement module. The network inputs a blurry image and the corresponding mosaic color events triggered in the period
of exposure time, and outputs demosaiced full-color events as well as the deblurred clear image.

We simplify Eq. (3) with a blurring function 8 and rewrite it
as BMe = g (ItO,EM"). Obviously, full-color blurry image B =
B(Iz,, EF¢), and the aim of our deblurring task is to learn the inverse
mapping B8~ ! and M ™! to reconstruct a clear and sharp image ito
from the blurry image and mosaic events, i.e.,

i, =87 (B,E) =87 (B, M (D)), @
where the M ™! is the demosaicing process of mosaic events and
the B~! is the deblurring process of the blurry image with the
guidance of demosaiced full-color events E°,

3.3 Dataset from display-filter-camera system

To train the Color4E network, the data requires the quadruplet:
blurry image, mosaic events, no-blur image ground truth, and full-
color event ground truth. Most existing datasets generate event
data through simulators [42, 44]. Note that the gap between real-
captured and simulated events (real-simulated gap) cannot be ig-
nored, which has been verified by NeuroZoom [5, 7]. It also reveals
that real-data driven is an available approach to study event sig-
nal degradation and avoid the real-simulated gap. Therefore, we
develop a display-filter-camera system to collect real-world color
event data and synchronously collect quadruple data.

As Fig. 2 shows, the display-filter-camera system consists of a
high refresh-rate display, a rotator equipped with RGB color filters,
and a mono event camera. The high refresh-rate display is used
to repeatedly play back high frame-rate videos to simulate and
reproduce real-world scenes, the rotator is placed in front of the
camera lens for convenient switching of different color filters, and
the mono event camera shoots the scenes that are repeatedly played
on the display and color information filtered by RGB filters, thus
forming full-color event data.
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We choose the high frame-rate (240FPS) video clips released from
NeuroZoom [5] as source videos, use a display with the refresh
rate of 360Hz to play the source videos, and choose the Proph-
esee Gen 4.1 camera [31] (1280 X 720) to capture filtered events.
Each video clip is repeated 4 times, corresponding to the capture of
R/G/B/mono events. By switching the color filters in the rotator, the
event camera senses intensity changes of different color channels,
and the unfiltered scenes are also recorded to compare the perfor-
mance difference between mono events and color events. An F/1.4
16mm lens is mounted on the cameras. The camera is placed at a
distance of ~180cm away from the display to avoid lens distortion.
We employ checkerboard and collimation tools to align the display
plane and camera plane, and use time markers to achieve temporal
synchronization of the video clips and captured events. All data
undergo precision inspection to ensure pixel-level spatial calibra-
tion precision and sub-microsecond temporal alignment precision.
With this setup, we obtain 67 quadruplet data with a total time
length of 20 minutes, where blurry images are degraded from high
frame-rate images by the processing of averaging adjacent frames.
Mosaic events are downsampled with Bayer patterns from full-color
events. We refer to this newly captured dataset as “C4E” for brevity,
which also signifies that the dataset includes four channels of color
events: R/G/B/mono events.

3.4 Color4E Framework

The Color4E network consists of three modules to synchronously
accomplish the color event demosaicing task and color event-guided
image deblurring task, which contains the event demosaicing mod-
ule, image deblurring module, and refinement module. As shown
in Fig. 3, the network inputs blurry image B and the corresponding
mosaic events EPP triggered in the period of exposure time, outputs
demosaiced full-color events EF® and the deblurred image i.
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Event demosaicing module (EDM). This module aims to learn
the demosaicing mapping of the input mosaic events EPP to three-
channel full-color events EF¢. To facilitate the extraction of event
signal features at different time periods by the network and to
match the dual integral model proposed by EDI [28], we prepro-
cess the input mosaic events using symmetric cumulative event
representation [41]. Each event tensor undergoes pixel unshuffling
initially, transforming the original monoplane mosaic event data
into four color channels, i.e., R/G/G/B channels. Subsequently, the
event tensor is spatially upsampled by an interpolation process to
match the full resolution of the input images. The preprocessed
color event tensors are then fed into a backbone network built
upon the U-Net structure [36]. As indicated in Eq. (3), the double
integration of events is approximately equivalent to the blurred
image, which also applies to color channels. Therefore, we utilize
the input blurry image encompassing 3-channel color information,
as external guidance to facilitate the event demosaicing process.
The blurry image B is fed into an image feature encoder, and each
feature layer connects with the corresponding layer of the event en-
coder by a cross-attention block. In addition, a supervised attention
module (SAM) [56] is plugged after the decoder to enable progres-
sive learning. We use full-color events to constrain the demosaic
mapping learning with MSE (Mean Squared Error) Loss.

Image deblurring module (IDM). This module aims to learn
the deblurring mapping of the input blurry image B to deblurred
clear image, the output is an intermediate deblurring result. This
module shares the network structure with the Event demosaicing
module and mosaic events are also fed into the encoder to guide the
image deblurring process. The input mosaic events are treated as
single-channel signals following the process of E2VID, and do not
undergo pixel unshuffling because the events in this module are
used to provide clear edge guidance for image deblurring. We use
no-blur images as the ground truth to constrain this module and the
output intermediate deblurring images are fed into the refinement
module with demosaiced events simultaneously.

Refinement module (RFM). This module inherits the structural
design of the previous two modules. The difference is that in or-
der to strike a balance between performance and computational
complexity, it has fewer layers for feature extraction compared to
the preceding modules. Additionally, to better leverage the feature
information at various hierarchical levels during the refinement
process, pixel attention [12, 59] operations are introduced in this
module. To enhance the quality of the intermediate deblurring re-
sults, we further fuse the demosaiced full-color events output from
the event demosaicing module to refine the deblurring outcomes.
These demosaiced full-color events serve as guidance to compen-
sate for the initial lack of three-channel color event signals in the
former image deblurring module, thereby further enhancing the
color restoration quality for the image deblurring task and avoiding
artifacts such as color bleeding.

3.5 Details

During the inference process, as mentioned above, the three mod-
ules of the Color4E network work synchronously. Similarly, in the
training phase, we maintain this operational scheme and apply
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Table 1: The quantitative results of color image reconstruc-
tion on the GoPro dataset and our collected C4E dataset.

| GoPro dataset | Our dataset

Methods | PSNRT | SSIMT | LPIPS| | PSNRT | SSIMT | LPIPS|

Case #1 | 14.82 | 06520 | 0.4136 | 1436 | 0.6103 | 0.4647
Case#2 | 1550 | 0.6744 | 03427 | 14.22 | 0.6357 | 0.3293
Case #3 | 1497 | 06747 | 03284 | 1456 | 0.6917 | 0.2680

Ours | 15.64 | 0.7012 | 0.2447 | 14.72 | 0.6990 | 0.2934

different supervision signals to the intermediate outputs of each
module. Specifically, for the event demosaicing module, we super-
vise its output EF® using the MSE Loss:

L= Lmse) (5)

for the image deblurring module, we employ Charbonnier Loss [21]
to supervise the content restoration of the image, while also using
Laplacian Loss [2] to constrain the texture restoration:

(6)

and for the final refinement module, besides utilizing the Charbon-
nier Loss [21], we apply the Perceptual Loss [18] to further constrain
the output, aiming to achieve a more natural visual quality.

L3 = A31L¢ + /132Lperc~ (7)

We define the loss between the ground truth and the predicted
result as a hybrid of the three loss functions above L = L1 + Ly + Ls.
During the training process, we dynamically adjust the values of
each hyperparameter A;; to ensure that the magnitudes of each loss
term L; always maintain the same numerical magnitude as Ly. Then
we can adaptively balance the contributions of different loss terms
to the optimization objective L. This guarantees that the gradients
of each loss term remain within a reasonable range and proportion.

Our network is implemented in PyTorch [30] and trained with
an NVIDIA RTX 4090. We employ the AdamW optimizer [25] to
minimize the loss, starting with an initial learning rate of 2 x 1074,
We use a cosine learning rate decay strategy, setting the minimum
learning rate to 1 x 10~°. The network undergoes training for 100
epochs using the C4E dataset or 400 epochs using the GoPro dataset
[26]. Across both datasets, we use consistent data augmentation,
applying 256 X 256 random crops to images and events.

Ly = Aa1Lc + A22Lpap,

4 Experiment
4.1 Training and evaluation dataset

C4E Dataset. The C4E dataset we collected encompasses various
scene types (indoor, outdoor) and a range of motion blur severity
(severe, moderate), covering 67 scenes, 8728 sets of blurred-sharp
image pairs, along with corresponding mono, mosaic, and full-color
events. We partition the dataset into training and evaluation sets,
ensuring consistent proportions of scene types and blur severity
across both sets. We have designated 56 scenes, totaling 7372 images
for training, and 11 scenes with 1356 images for evaluation.

GoPro Dataset [26]. We have used the GoPro dataset [26] for
training and evaluating our model, a widely-used public dataset in
image deblurring. This dataset consists of 3214 blurred images with
the size of 1280 X 720 that are divided into 2103 training images
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Figure 4: Color event demosaicing results on our collected C4E dataset. We compare the qualitative performance of mosaic
events and demosaiced events with ground truth full-color events for RGB channels. RGB dots represent positive events and
gray dots represent negative events Please zoom in for more details.
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Figure 5: Comparison of event-based color image reconstruction on C4E dataset. The benchmark method is E2VID [34]. There
are four ways to reconstruct full-resolution color images. Case #1: Mosaic events — E2VID — bilinear interpolation. Case #2:
Mosaic events — E2VID — chroma subsampling. Case #3: Full-color events — E2VID. Ours: Mosaic events — Color4E — E2VID.

and 1111 test images. We use the DVS-Voltmeter [23] simulator to
generate R/G/B/mono events form the GoPro dataset. Specifically,
we first use RIFE [15], a frame interpolation model to increase the
frame rate of the GoPro dataset by 16X, and then put them into the
DVS-Voltmeter to collect the simulated events. The generation of
mono events is achieved by converting color images to grayscale,
and the generation of full-color events is achieved by separately
extracting and processing each color channel from the color image.
Mosaic events are extracted from full-color events, where pixels are
extracted from each color channel according to the Bayer pattern.

4.2 Event demosaicing results

The event demosaicing module outputs full-color events, enabling
each color channel’s intensity change to be sensed on a full-resolution
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size. Figure 4 compares the effect of our method on the event demo-
saics of each color channel. The comparative results reveal that the
edges and textures of the event frames have been distinctly restored
(e.g., the windows of buildings), indicating the effectiveness of our
method in reconstructing the event signals originally triggered by
edges and textures but downsampled by the Bayer patterns.

4.3 Color image reconstruction results

We verify the performance of the color event demosaicing through
the event-based image reconstruction task. E2VID [34] is chosen
as the benchmark method to reconstruct color images with events.

There are four strategies to reconstruct full-resolution color im-
ages directly from mosaic events. (1) Case #1: Mosaic events —
E2VID — bilinear interpolation. We first reconstruct the different
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Figure 6: Image deblurring results on GoPro dataset.
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Figure 7: Image deblurring results on our C4E dataset.

Table 2: The event-guided image deblurring quantitative re- use a method proposed in E2VID [34] for reconstructing mosaic
sults on the GoPro dataset and our collected C4E dataset. The events, which relies on chroma subsampling [33]. In this approach,
blue item represents the mosaic color event input, while the mosaic events are initially reconstructed into a three-channel color
white item represents the monochromatic event input. image using the bilinear procedure. Then this low-quality color
image is merged with a full-resolution grayscale image obtained

GoPro dataset Our dataset by applying the E2VID [34] network to all events while disregard-

Methods PSNR? | SSIM?T | LPIPS| | PSNR? | SSIMT | LPIPS) ing the Bayer pattern. The color image is then converted into the

EDI [28] (mono) 29.28 | 0.8538| 0.1896| 29.50| 0.8705| 0.1085 HSL colorspace, with the luminance channel replaced by the full-
EDI [28] (Mosaic) 29.19 0.8483| 0.1988  29.01| 0.8638| 0.1230 resolution grayscale reconstruction, resulting in the color recon-
eSL-Net [46] (mono) 30.28[ 0.9086| 0.1323| 31.33| 0.9184| 00833 struction output; (3) Case #3: Full-color events — E2VID. We utilize

eSL-Net [46] (Mosaic) | 30.56 0.9143| 01260 30.68| 0.9170| 0.0813
Red-Net [51] (mono) | 33.05 0.9456| 0.0946| 34.68| 0.9592| 0.0268
Red-Net [51] (Mosaic)| 3321 09480| 00914 34.67| 0.9697| 0.0275

the full-color event data, which serves as supervision during the
training of the demosaicing model, to be reconstructed using E2VID

NEST [44] (mono) 3047] 0.9015| 0.0935| 32.97| 0.9336| 0.0279 [34] for reference purposes, evaluating the effectiveness of the de-
NEST [44] (Mosaic) 31.19 0.9112] 0.0648 32.96| 0.9360| 0.0289 mosaicing process. Since these events are full-resolution size, we
EF-Net [41] (mono) 35.03] 0.9545| 0.0711| 35.19| 0.9592| 0.0292 directly apply E2VID to individually reconstruct each channel; (4)
EF-Net [41] (Mosaic) | 3547 0.9580| 0.0670  35.14| 0.9602| 0.0289 Ours: Mosaic events — Color4E — E2VID. The output demosaiced
REFID [42] (mono) 34.71] 0.9539| 00766| 3549 0.9622| 0.0256 events of our event demosaicing module are fed into the E2VID [34]
REFID [42] (Mosaic) OO WP G| R | PRE model to obtain RGB three-channel color reconstruction results.
Ours (Mosaic) 35.90 0.9615| 0.0406 35.78|0.9649| 0.0166

Figure 5 and Table 1 record the qualitative and quantitative results
respectively. The comparison results show that Color4E can effec-
tively reconstruct the texture and edge details after demosaicing
the color events, and the global color tone is closer to the ground
truth, such as the buildings and cyclists. Interestingly, our results
obtain better visual effects and numerical metrics than the images

color channels from the mosaic events independently at the quarter
resolution, concatenate the R/G/B channels together, and upsample
the result to the full resolution with bilinear interpolation [37]; (2)
Case #2: Mosaic events — E2VID — chroma subsampling. We also
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Figure 8: Image deblurring results on our real-captured dataset.

reconstructed from full-color events (i.e., Case #3), because the
event demosaicing module uses color blurry images as guidance
and color clear images as constraints, which suppress the effect of
event noise and make the color tone better match real images.

4.4 Image deblurring results on GoPro dataset
and our collected C4E dataset

We compare Color4E with recent event-based image deblurring
methods EDI [28], eSL-Net [46], Red-Net [51], NEST [44], EF-Net
[41] and REFID [42] on our reprocessed GoPro dataset and our
collected C4E dataset. For a fair comparison, each learning-based
method is retrained with reprocessed color event training datasets.
Figure 6 and Fig. 7 show the visual comparison of GoPro dataset
and C4E dataset respectively, and Table 2 records the quantitative
results of both datasets. In Fig. 6, Color4E effectively eliminates
motion blur and avoids artifacts such as color bleeding that exist in
the output results of other algorithms, such as the blue T-shirt in the
first example “spills” onto the ground, and the child’s face is stained
in the second example. Figure 7 also shows a similar comparison
result, such as the window and door handle of the car in the first
example. In the second example, the high-frequency texture at
the window is clearly restored by Color4E, which is attributed to
the color event demosaicing processing that enlarges the spatial
sampling resolution of events for color channels and makes the
deblurred sharp images avoid moire aliasing. Our method also well
suppresses the color bleeding of red shoes in the second example.

We also used mono events to retrain the existing methods and
record their performance in Table 2 to objectively compare the ef-
fects of mono events and mosaic events on image deblurring meth-
ods. The results show that the results of mosaic events are generally
higher than mono events, which indicates that mosaic events bring
effective color information for image deblurring. The results of EDI
[28] do not conform to the above rules, because mosaic events that
are not denoising optimized may introduce artifacts into the results.
We evaluate the effectiveness of the proposed event demosaicing
module and refinement module, as well as the mosaic color event
input and full-color event constraint. The comparison summarized
in Table 3 verifies the necessity of each proposed module.
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Table 3: Ablation study on different module combinations.

GoPro dataset Our dataset
Input events |EDM | RFM | Event GT | PSNR SSIM? LPIPS||PSNRT SSIMt LPIPS|
mono X | X X 3501 09566 0.0715 | 34.81 09572 0.0322
mono X | v X 3504 09553 0.0498 | 3498 09577 0.0203
mosaic X | X X 3552 0.9595 0.0663 | 3458 0.9560 0.0360
mosaic X | v X 3534 09571 00473 | 3475 09571 0.0212
mosaic V| v X 3572 09607 0.0426 | 3537 09624 0.0187
mosaic vl v v 35.90 0.9615 0.0406 | 35.78 0.9649 0.0166

4.5 Image deblurring results on real data

To further verify the performance of our method in real-world
scenarios, we use DAVIS346-color [43], currently the only event
camera that can capture mosaic color events filtered by Bayer pat-
terns, to collect a series of challenging scenarios to evaluate image
deblurring methods. The DAVIS346-color [43] synchronously out-
puts color images with a resolution of 346 X 260 and mosaic color
events triggered during the exposure period. We input these blurry
images and mosaic event counterparts into the above event-based
image deblurring methods and the result examples are shown in
Fig. 8. The Color4E clearly restores the edges and details of the
windows in the first example and accurately corrects the edges and
colors of the traffic signs in the second example.

5 Conclusion

We propose the Color4E for color event-guided image deblurring.
This method leverages a full-color event constraint module for de-
mosaicing color events and an event-frame cross-encoding module
for fusing bimodal signals, a refinement module is designed to fur-
ther refine initial deblurred images. To avoid the real-simulated
gap, we implement a display-filter-camera system to collect a real-
captured dataset C4E used for network training and validation. The
results show that Color4E enables high-quality image deblurring
compared to state-of-the-art methods. In future work, we will fur-
ther explore the application of event demosaicing in other image
enhancement tasks, and the performance enhancement of color
event-guided video deblurring.
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