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Abstract

This paper studies the problem of language-guided re-
flection separation, which aims at addressing the ill-posed
reflection separation problem by introducing language de-
scriptions to provide layer content. We propose a unified
framework to solve this problem, which leverages the cross-
attention mechanism with contrastive learning strategies to
construct the correspondence between language descrip-
tions and image layers. A gated network design and a ran-
domized training strategy are employed to tackle the rec-
ognizable layer ambiguity. The effectiveness of the pro-
posed method is validated by the significant performance
advantage over existing reflection separation methods on
both quantitative and qualitative comparisons.

1. Introduction

When photographing through transparent materials like
glass windows or showcases, the presence of reflections can
significantly degrade the image quality of captured images
and disrupt downstream computer vision tasks like face
recognition [53] or depth estimation [2]. As an attractive
topic in computational photography, reflection separation
aims at decomposing the contaminated mixture image (de-
noted as M) into two components that correspond to scenes
located at different sides of the glass, i.e., the reflection
layer (denoted as R) and the transmission layer (denoted as
T). Since reflection separation is a severely ill-posed prob-
lem, it is imperative to exploit effective priors or auxiliary
information for distinguishing the two components.

The primary challenge of solving the reflection separa-
tion problem lies in the exploration of distinct clues for dis-
tinguishing transmission and reflection layers. Multi-image
methods handle this problem by introducing additional con-
straints. Some of them acquire a series of mixture images
in different viewpoints [32, 34, 45] to harness the distinct
motions of the two layers, while others adopt specialized
capturing setups to obtain complementary scene informa-
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Figure 1. The recognizable layer ambiguity problem causes uncer-
tain quantities of input language descriptions for language-guided
image reflection separation. Given language descriptions of either
(a) one layer or (b) both two layers, the proposed method achieves
robust reflection separation compared with an existing reflection
separation method [10].

tion [19, 27, 28, 36]. However, the specialized data cap-
ture requirements limit the application scope of these meth-
ods, especially for images downloaded from the Internet.
Single-image methods attempt to tackle reflection separa-
tion by utilizing handcrafted priors derived from natural im-
age statistics [30, 33, 44] or leveraging the modeling ca-
pacity of neural networks to learn content priors about re-
flections from a large scale of training data [10, 22, 31].
However, they are prone to fail due to the lack of auxiliary
content information about transmission or reflection scenes
for solving such a highly ill-posed problem. Recently, lan-
guage descriptions have shown their effectiveness in provid-
ing content information for various vision tasks such as im-
age editing [46, 47, 60, 61], semantic segmentation [57, 65],
and image colorization [4–6, 62], which inspires us to think
about: Can we leverage the auxiliary content information
brought by language descriptions to facilitate the reflection
separation problem?



Since language can effectively convey humans’ prior
knowledge about the real world [8] and provide auxiliary
information of image semantics [65], introducing language
descriptions to guide the separation of reflection and trans-
mission layers from mixture images merits exploration.
However, leveraging language descriptions for reflection
separation is non-trivial in three aspects: 1) Language-
image modality inconsistency. Language and images be-
long to different modalities, thus it is challenging to es-
tablish a cross-modality correspondence between the scene
content information provided in language descriptions and
the complex blended content present in mixture images.
2) Recognizable layer ambiguity. Since the image con-
tent and brightness of reflection and transmission layers
are different, the recognizable extents of them in mixture
images are also uncertain. Specifically, as shown in Fig-
ure 1, it is possible that only one layer’s content is recog-
nizable (clothes in Figure 1(a)), or both two layers exhibit
recognizable content (the trashbin and cars in Figure 1(b)),
which leads to the difficulty of using uncertain quantities
of language descriptions for separating mixture images in
practice. 3) Language annotation deficiency. All existing
datasets for the reflection separation task only contain im-
age data but no correlated language description is provided,
raising the challenge for network training and evaluation.

In this paper, we introduce the concept of language-
guided image reflection separation for the first time, which
leverages flexible natural language to specify the content
of one or two layers within a mixture image, relieving the
ill-posedness of the reflection separation problem and main-
taining a wide applicability for both live captured or online
downloaded mixture images. We propose an end-to-end
framework that employs adaptive global interaction mod-
ules to explore holistic language-image content coherence
and utilizes specifically designed loss functions to constrain
the correspondence between language descriptions and re-
covered image layers. A language gate mechanism and
a randomized training strategy are designed to deal with
the recognizable layer ambiguity problem. To address the
language annotation deficiency, we synthesize the training
dataset from paired image-language datasets [7, 66] and ex-
pand prevailing real reflection separation datasets [31, 49,
67] by manually adding language descriptions. Besides, we
further construct a new dataset for visual quality evaluation
by collecting mixture images from the Internet and caption-
ing them with language descriptions for recognizable lay-
ers. Our contributions are summarized as follows:

• We present the first work that introduces language de-
scriptions to guide the reflection separation task.

• We propose adaptive global interaction modules and
language-image loss functions to tackle modality incon-
sistency.

• We design a language gate mechanism and a randomized

training strategy to handle recognizable layer ambiguity.
• We build a dataset with language descriptions to facilitate

language-guided image reflection separation.

2. Related work
Single-image reflection separation methods try to distin-
guish reflection and transmission layers using a single mix-
ture image, which mainly relies on the assumption that the
two layers have different distributions, i.e., reflection lay-
ers are more likely to be blurry and appear with lower in-
tensity compared with transmission layers. Conventional
methods adopt handcrafted priors derived from natural im-
age statistics in their optimization process, e.g., the gradient
sparsity [30], relative smoothness [33], ghosting cues [44],
content prior [50], and penalty on the gradient of restored
transmission layers [64].

Due to the tremendous progress in the field of deep learn-
ing, a series of single-image reflection separation methods
concentrate on the improvement of learning strategies or
network design, e.g., predicting edges and images with a
two-stage [11] or concurrent framework [51, 52], training
with the perceptual loss [67], employing generative adver-
sarial network [12] based models [38, 58], adopting iterative
refinement strategies [10, 31, 63, 68], and leveraging the
complementary two-stream architecture [22]. Meanwhile,
research on data synthesis and image models is also ongo-
ing to satisfy the data-driven needs of learning-based meth-
ods. Ma et al. [38] utilize generative adversarial networks
for data generation while Wen et al. [59] synthesize mix-
ture images with learned non-linear blending masks. Hu et
al. [23] introduce a learnable residue term in the mixture im-
age formation model to mitigate the non-linearity caused by
the complex camera pipeline. Zheng et al. consider physical
factors such as reflective amplitude coefficient maps [69]
and the absorption effect [70] in the image formation pro-
cess of mixture images. To facilitate network training and
evaluation, researchers [31, 49, 67] also collect real data by
using portable glass. Moreover, as a special form of images,
panoramic images are introduced to relieve the content am-
biguity in mixture images [13, 19, 21, 40]. We refer read-
ers to [54] for a comprehensive and up-to-date survey on
single-image reflection separation.
Multi-image reflection separation methods usually lever-
age the auxiliary information introduced by additional im-
ages and achieve more robust performance than single-
image methods. Polarization-based methods [9, 26, 28, 36,
37, 39, 43] distinguish reflection and transmission layers
by using images captured with different angles of polar-
izers or special polarization cameras. Flash-based meth-
ods [3, 18, 20, 27, 29] adopt active light sources to illumi-
nate transmission scenes for obtaining reflection-free guid-
ance. Motion-based methods [32, 34, 35, 45] utilize mul-
tiple images captured from different viewpoints to harness
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Figure 2. The pipeline of the proposed language-guided image reflection separation framework, which extracts features from mixture
images and available language descriptions (the description L2 with dashed lines is possible to be set to null due to the recognizable layer
ambiguity) by image and language encoders (in Sec. 3.1), aggregates global visual information by adaptive global aggregation modules
(AGAM) and conducts progressive interactions to exploit distinctive image features with gated language guidance by adaptive global
interaction modules (AGIM) (in Sec. 3.2), and recovers image layers by image decoders (in Sec. 3.3).

distinct motions of reflection and transmission layers. How-
ever, special data capture requirements significantly limit
the application scope of these methods, especially for mo-
bile devices or images downloaded from the Internet.

3. Proposed method
The pipeline of the proposed framework is illustrated in Fig-
ure 2. In this section, we start by introducing the feature
extraction stage (in Sec. 3.1) that obtains multi-scale im-
age features and global language features, the gated lan-
guage interaction stage (in Sec. 3.2) that conducts progres-
sive image-language global interactions to exploit distinc-
tive image features and prevents unavailable language inter-
actions with switchable gates, and the layer recovery stage
(in Sec. 3.3) that reprojects features into the image space
with a light-weight image decoder. Then we explain loss
functions (in Sec. 3.4) employed for network optimization,
especially a contrastive correspondence loss and a layer cor-
respondence loss that constrains the network to construct
correspondences between the language description and the
corresponding layer under the disturbance of the other layer
in a superimposed mixture image. Finally, we present our
training strategy (in Sec. 3.5) which enables the network to
be applicable for varying quantities of input language de-
scriptions and jointly tackles the recognizable layer ambi-
guity problem with the gated network design.

3.1. Image and language feature extraction

The inputs of the proposed method consist of a mixture
image M with two language descriptions {Li|i = 1, 2}

which corresponds to the two image layers. We specify
that layer Ii corresponds to the description Li. However,
due to the recognizable layer ambiguity that in certain cases
only one layer of the mixture image is recognizable (usually
the transmission layer), for such cases, we set L1 to be the
available language description (for the recognizable trans-
mission layer) and L2 to null (for the unrecognizable re-
flection layer) to ensure a unified input setting. Then given
the input image and language descriptions, the feature ex-
traction stage aims at obtaining the image feature FM with
the image encoder and the multi-scale feature fusion pro-
cess and extracting the global language feature FLi for each
description Li via the language encoder for the subsequent
interaction procedure.

Image encoder. Given a mixture image M ∈ RH×W×3,
we employ a commonly-used vision backbone ResNet-
50 [16] as our image encoder, whose last three layers (i.e.,
an average pooling layer, a fully connected layer, and a
softmax layer) are removed to fit our task. We utilize im-
age features from the first five blocks of the image encoder
to form a multi-scale feature pyramid {FMi}5i=1, where
FMi ∈Rhi×wi×Ci , hi =H/2i and wi =W/2i, H and W
is the height and width of the mixture image, respectively,
and Ci is the dimension of the i-th extracted feature.

Multi-scale feature fusion. Obtaining the extracted feature
pyramid, we first transform it into a hypercolumn feature
Fhyp

M ∈ Rh×w×Chyp

[14] (where h=H/2, w=W/2, and
Chyp =

∑5
i=1 Ci), which has been proved to be effective

in fusing multi-scale contextual information for reflection
separation [58, 67]. Considering the computational cost,
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Figure 3. The architecture of the (a) adaptive global aggrega-
tion module (AGAM) and (b) adaptive global interaction module
(AGIM), which aggregates global contextual information of visual
features and achieves feature channel rearrangement with gated
language guidance, respectively.

we condense and refine the hypercolumn feature by a 1× 1
convolutional layer with a GELU activation [17] followed
by a locally-enhanced feed-forward (LeFF) block [56]. The
final fused feature of the mixture image is denoted as FM ∈
Rh×w×C , which serves as the basis for the subsequent in-
teraction and separation process.
Language encoder. Motivated by the rapid development
of pre-trained large-scale vision-language models, we em-
ploy the language encoder from CLIP [42], which adopts a
Transformer architecture [48] to extract language features
and obtains a global contextual feature in the multi-modal
embedding space by using layer normalization and linear
projection layers. Given a language description Li ∈ RL,
we obtain its corresponding global feature FLi

∈ RC by
leveraging the modeling capacity of the language encoder
to encode the description, thus extracting the holistic con-
textual information of the corresponding image layer. Here
L denotes the length of the language description and C is
the feature dimension as the image feature.

3.2. Gated language interaction

The gated language interaction stage aims at leveraging
the contextual information from available language descrip-
tions to guide the separation of the corresponding layer fea-
ture FIi , which is composed of 2N cascaded interaction
groups to separate image layer features successively. As
shown in Figure 2, each group consists of an adaptive global

aggregation module (AGAM) to gather global information
of input visual features, a language gate to prevent detri-
mental guidance from unavailable descriptions, an adaptive
global interaction module (AGIM) to conduct interactions
using global features for exploring holistic image-language
content correspondence, and K normalization layers with
LeFF blocks [56] for feature refinement. The former N in-
teraction groups are utilized for separating FI1 from FM

and FL1
, and the latter N groups for separating FI2 from

Fini
I2

(obtained by feeding the concatenation of FM and FI1

into a 1×1 convolutional layer) and FL2 (if L2 is available).
We set N = 4 and K = 2 in practice. Details of the gated
language interaction are described as follows.

Adaptive global aggregation module (AGAM). As the
network structure shown in Figure 3(a), given an input vi-
sual feature Fin

V ∈ Rh×w×C with the spatial resolution
of h × w, AGAM is designed for adaptively obtaining
a global feature Fglo

V ∈ RC that aggregates the contex-
tual information for the subsequent interaction. The vi-
sual feature Fin

V is firstly averaged by an average pool-
ing layer to obtain Favg

V ∈ RC . Then the aggregation
process is accomplished via a cross-attention mechanism
which contains three linear projection layers with layer nor-
malization [1] to conduct query, key, and value projections:
Fglo

V = Softmax(QK⊤/τ)V, where the query Q ∈ RC

is projected from Favg
V , and the key K ∈ R(hw+1)×C and

value V ∈ R(hw+1)×C are from the concatenation of Fin
V

and Favg
V , and τ is a learnable scaling factor to control the

magnitude of the dot product of Q and K before applying
the softmax function.

Adaptive global interaction module (AGIM). Inspired by
existing reflection separation approaches [23, 58] which at-
tempt to distinguish transmission and reflection layers in the
feature space by feature channel rearrangement (i.e., allo-
cating distinct channels from mixture image features to the
two layers), we propose to integrate language interactions
at the feature channel level. To achieve this, as illustrated
in Figure 3(b), we propose the adaptive global interaction
module (AGIM), which employs the channel-wise cross-
attention mechanism to conduct interactions between global
language features and image features for channel rearrange-
ment. The query, key, and value projections using linear
projection layers with layer normalization [1] are conducted
on the global language feature FLi , the global visual fea-
ture Fglo

V , and the visual feature Fin
V to generate Q ∈ RC ,

K ∈ RC , and V ∈ RC×hw, respectively. Before the in-
teraction, a language gate is designed to prevent impacts
of unavailable language descriptions caused by the recog-
nizable layer ambiguity problem that users may only input
one description for the layer recognizable in the mixture im-
age. Specifically, if the description Li corresponding to the
current global language feature FLi

is available (not set to
null), the gate will feed FLi into the following interaction



process, otherwise the gate will feed Fglo
V , which turns the

interaction process to be a channel-wise self-attention.
After filtering by the language gate, an interacted feature

can be obtained through the channel-wise cross-attention:
Fitr = Softmax(Q⊤K/η)V, where η is a learnable scal-
ing factor to control the magnitude of the attention map.
Besides, to adaptively adjust the influence of language guid-
ance based on the correspondence between image and lan-
guage features, we define another scaling factor s valued as
the cosine distance between Q and K to multiply with the
interacted feature Fitr. Finally, the output of AGIM is ob-
tained by a residual structure: Fout

V = Fin
V + sFitr, which

integrates the contextual information from the language de-
scription and adjusts features for layer separation.

3.3. Layer recovery

After global language-image interaction and progressive re-
finement by the gated language interaction stage, we ob-
tain layer features FIi which integrates holistic contextual
information from the corresponding language description
Li (if available). The layer recovery stage is dedicated to
reconstructing each image layer Ii ∈ RH×W×3 from its
corresponding layer features FIi , which is achieved by us-
ing individual image decoders. In the image decoder, the
layer feature is firstly upsampled by a transposed convolu-
tional layer with a GELU activation [17], then refined by
a residual block, and finally projected from the feature do-
main back into the image domain by a 1 × 1 convolutional
layer with a sigmoid activation, thus accomplishing a pre-
cise layer recovery.

3.4. Loss functions

In this section, we introduce the contrastive correspon-
dence loss Lctr and the layer correspondence loss Llcr for
constraining the proposed method to establish the cross-
modality correspondence between language descriptions Li

and corresponding image layers under the content distur-
bance from counter layers in mixture images. We also
briefly describe the image layer loss Limg which consists
of image- and feature-level loss functions for layer recov-
ery. We denote the estimated image layers as Ĩi and ground
truths as Ii. Details of the loss functions are as follows.
Contrastive correspondence loss. CLIP [42] conducts
contrastive language-image pre-training within batches
which successes in establishing cross-modality correspon-
dence between language descriptions and clean images,
while our language-guided image reflection separation task
requires finding the correspondence between the given lan-
guage description and a certain layer in the mixture image
with the interference of extraneous contents. To tackle the
above issue, we propose a contrastive correspondence loss
that conducts contrastive learning between image layers to
establish correct cross-modality correspondence. Specifi-

cally, given a language description Li, the goal of the con-
trastive correspondence loss is to force the network to learn
the relation that the corresponding image layer Ii is more
relevant to Li than the counter layer Ij (j ̸= i), thus con-
straining the estimated image layer Ĩi to conform to the as-
sociated language description Li.

To measure the relevance between a language descrip-
tion L and an image layer I, we define a feature-level simi-
larity function D(·) as:

D(L, I) = σ(Ψ(Fglo
L ,Fglo

I )), (1)

where σ represents the sigmoid function, Ψ represents the
cosine distance, Fglo

L is the global language feature obtained
by the language encoder (in Sec. 3.1), and Fglo

I is the global
image feature produced by the AGAM (in Sec. 3.2). For
an available language description Li, we calculate its con-
trastive correspondence loss as:

Lctr(Li, Ĩi, Ij) = − log(
D(Li, Ĩi)

D(Li, Ĩi) +D(Li, Ij)
), (2)

and we sum up the contrastive correspondence loss of each
available language description as the final one.
Layer correspondence loss. We further define a layer cor-
respondence loss to encourage the relevance between the
language description Li and the estimated image layer Ĩi
to approach the relevance between Li and the ground truth
image layer Ii:

Llcr(Li, Ĩi, Ii) =
∥∥∥D(Li, Ĩi)−D(Li, Ii)

∥∥∥
1
, (3)

where D(·) is the same feature-level similarity function as
in the contrastive correspondence loss. We also sum up the
layer correspondence loss of each available language de-
scription for final supervision.
Image layer loss. To achieve high-fidelity recovery of im-
age layers (i.e., transmission and reflection layers), the pro-
posed method is also optimized with loss functions fol-
lowing previous reflection separation methods [23, 52, 67].
Specifically, we utilize loss functions that conduct con-
straints on the visual quality of estimated images (i.e., the
pixel Lpix, structural similarity Lssim, and perceptual loss
Lper) or exploit the inherent relationship between two lay-
ers (i.e., the exclusion Lexc and reconstruction loss Lrec),
and we denote the combination of the above image- or
feature-level loss functions as the image layer loss Limg

1.
Overall, the total loss function is then formulated as:

Ltotal = γ1Lctr + γ2Llcr + Limg, (4)

where coefficients are set as γ1 = γ2 = 0.5.

1Details of Limg are provided in the supplementary material.



3.5. Training strategy

Due to the recognizable layer ambiguity that sometimes
only one layer in the mixture image is recognizable, we pro-
pose a randomized training strategy to synergize with the
gated language interaction mechanism (in Sec. 3.2). Since
our training data simulates the recognizable layer ambigu-
ity that some image layers do not have corresponding lan-
guage descriptions (introduced in the next section), we only
feed the available language description corresponding to the
other image layer to guide the separation. For data with
descriptions of both layers available, which indicates that
both layers are recognizable, we also randomly drop one
language description and feed the remaining one into the
network to improve the generalization capacity for the pro-
posed method. In practice, we set the ratio of dropping lan-
guage descriptions to 30%.

We implement the proposed method with PyTorch [41]
with a batch size of 16 on two Nvidia GeForce RTX 3090
GPUs. The model is trained for 40 epochs with Adam opti-
mizer [25] to update learnable parameters. Weights are ini-
tialized as in [15]. The learning rate is set to 10−4 initially
and decreases to 10−5 at epoch 30.

4. Data preparation

Though existing works have constructed several datasets for
single-image reflection separation [31, 49, 67], they are un-
available for the proposed language-guided reflection sepa-
ration framework due to the lack of corresponding language
descriptions. Therefore, we build a dataset containing both
synthetic and real data to overcome the data deficiency and
facilitate network training and evaluation. Each group of
data is composed of a mixture image, a transmission layer,
a reflection layer, and two language descriptions. Details of
synthetic and real data are as follows.

4.1. Synthetic data

The synthetic dataset is generated for network training to
satisfy the data-driven need of the proposed method. Due to
the demand for paired image-language data, we utilize two
prevailing image captioning datasets (i.e., Flickr30k [66]
and COCO Captions [7]) for data generation, which contain
31,000 and 330,000 images respectively, and each image
has 5 independent human-generated language descriptions.
We randomly select images from the above two datasets as
transmission TS and reflection scene images RS and con-
duct an image synthesis process with linear blending [23]:

M̂ = T̂+ R̂ = αT̂S + βR̂S, (5)

where T̂S = ginv(TS) and R̂S = ginv(RS), ginv represents
the inverse gamma correction, and α ∈ [0.8, 1] and β ∈
[0.4, 1] are the blending attenuation coefficients as in [23].

Considering the recognizable layer ambiguity that some-
times only one layer is recognizable in a mixture image, we
assign a language description only when the corresponding
layer is obvious enough in the synthesized mixture image,
i.e., mean(V̂l)

mean(V̂M)
⩾ µ, where V̂l represents the brightness im-

age of T̂ or R̂ in the HSV color space and V̂M represents
the brightness image of M̂, and we set µ = 0.3 in the data
generation process. Finally, gamma correction is applied
to image triplets {T̂, R̂, M̂} to obtain {T,R,M}, and we
generate 50000 triplets of data in total for network training.

4.2. Real data

Existing real datasets collected for the single-image reflec-
tion separation task usually contain mixture images with
ground truth of transmission layers (e.g., Zhang et al. [67]
and Nature [31]), and SIR2 [49, 54] further captures ground
truths of reflection layers. For these off-the-shelf real
datasets, we augment them by manually adding language
descriptions for each group of data to satisfy the input set-
ting of the proposed language-guided reflection separation
task. Specifically, following the annotation principle of
COCO Captions [7], we first describe the content of trans-
mission layers in mixture images with entities, attributes
(e.g., colors or materials), and relative positions between
different entities. If the content of reflection layers is recog-
nizable in mixture images, we also give language descrip-
tions for reflection layers in the same way. To further evalu-
ate the generalization capacity of the proposed method, we
collect a real dataset (denoted as REFOL dataset) contain-
ing 100 mixture images from the Internet that are captured
in different scenes and with different cameras. We anno-
tate these mixture images with language descriptions in the
same manner as mentioned above. Following the training
strategy of previous methods [10, 31], we utilize 200 image
pairs from Nature dataset [31] and 90 pairs from Zhang et
al. [67] for training, and the rest of real data are used for
quantitative and qualitative evaluation.

5. Experiments

5.1. Comparison with state-of-the-art methods

To evaluate the performance of the proposed method, we
conduct quantitative and qualitative experiments on exist-
ing real datasets [31, 49, 67] (with our manually anno-
tated language descriptions) and our newly collected dataset
REFOL. We compare with state-of-the-art single-image
reflection separation methods, including DSRNet [23],
YTMT [22], Dong et al. [10], IBCLN [31], CoRRN [52],
and Zhang et al. [67]. For fair comparisons, we finetune the
above methods on our training data if their training codes
are provided. We report better results between the original
pre-trained model and the finetuned version.



Table 1. Comparison of quantitative results in terms of PSNR [24] and SSIM [55] on real datasets for evaluating the recovery of transmis-
sion layers. ↑ (↓) indicates larger (smaller) values are better. Bold numbers indicate the best-performing results.

Dataset (size) Metrics
Methods

Zhang et al. [67] CoRRN [52] IBCLN [31] Dong et al. [10] YTMT [22] DSRNet [23] Ours

Postcard (199)
PSNR↑ 20.85 22.04 23.41 23.72 22.82 24.88 25.02
SSIM↑ 0.872 0.870 0.872 0.903 0.885 0.910 0.915

Object (200)
PSNR↑ 23.84 25.13 24.52 24.36 24.68 26.44 26.51
SSIM↑ 0.872 0.912 0.891 0.898 0.892 0.921 0.927

Wild (101)
PSNR↑ 24.97 25.17 24.78 25.75 25.70 25.86 26.23
SSIM↑ 0.875 0.889 0.884 0.903 0.897 0.908 0.925

Real20 (20)
PSNR↑ 22.34 21.43 21.47 23.34 23.23 23.88 24.05
SSIM↑ 0.795 0.801 0.762 0.812 0.802 0.816 0.824

Nature (20)
PSNR↑ 20.62 20.75 23.72 23.45 21.53 22.26 23.87
SSIM↑ 0.753 0.783 0.806 0.808 0.778 0.801 0.812

Average (540)
PSNR↑ 22.77 23.70 24.02 24.31 24.01 25.51 25.72
SSIM↑ 0.865 0.883 0.875 0.894 0.883 0.906 0.914

Transmission layer Reflection layer
DSRNet

Transmission layer Reflection layer
Ours

Transmission layer Reflection layer
YTMT

Transmission layer Reflection layer
IBCLN

Transmission layer Reflection layer
Dong et al.Input

A view of buildings 
and streets at night

A man in a room with 
a painting on the wall

Mixture image Description

Transmission layer Reflection layer
DSRNet

Transmission layer Reflection layer
Ours

Transmission layer Reflection layer
YTMT

Transmission layer Reflection layer
IBCLN

Transmission layer Reflection layer
Dong et al.Input

Mixture image Description

Red flowers 
and green leaves

Not provided

Figure 4. Qualitative comparison of estimated transmission and reflection layers on real data, compared with the state-of-the-art methods
including DSRNet [23], YTMT [22], Dong et al. [10], and IBCLN [31]. Please zoom in for details.

Quantitative comparison. Quantitative experiments are
conducted on three real datasets for reflection separation,

i.e., Nature [31], Real20 [67], and three subsets of SIR2 [49]
dataset. Following the setting of existing reflection separa-



Table 2. Quantitative results of ablation studies.

Metrics w/o language w/o AGIM Limg only Ours
PSNR↑ 24.31 24.69 24.52 25.72
SSIM↑ 0.885 0.901 0.893 0.914

tion methods [10, 36], we utilize PSNR [24] and SSIM [55]
as error metrics for evaluating the recovery of transmission
layers2. As quantitative results shown in Table 1, the pro-
posed method achieves the best performance of both PSNR
and SSIM, which validates its generalization capacity and
the effectiveness of language descriptions.
Qualitative comparison. To evaluate the visual quality
of reflection separation results, we compare the proposed
method with four single-image reflection separation meth-
ods, including DSRNet [23], YTMT [22], Dong et al. [10],
and IBCLN [31]. Qualitative results on recovering both
transmission and reflection layers are shown in Figure 4. As
can be observed in Figure 4, IBCLN [31] can only remove
parts of reflections, while Dong et al. [10] have trouble in
dealing with complex semantic images like the reflections
of a man in a room (the second example). YTMT [22]
separates layers incorrectly and thus brings the content of
transmission layers into reflections. DSRNet [23] fails to
recover transmission and reflection layers for these chal-
lenging cases. Contributing to the language guidance, the
proposed method generates better visual results and recov-
ers both transmission and reflection layers neatly.

5.2. Ablation study

In this section, we conduct several ablation studies with
quantitative results shown in Table 2 to investigate the in-
fluence of the additional input of language descriptions (de-
noted as ‘w/o language’), the network design of AGIM (de-
noted as ‘w/o AGIM’), and the loss functions for cross-
modality correspondence (denoted as ‘Limg only’). The
performance of the variant ‘w/o language’ suffers from an
obvious degradation as we remove language descriptions,
which shows the effectiveness of the additional contextual
information for layer separation. The variant ‘w/o AGIM’
replaces AGIMs with simple feature fusion blocks which
directly concatenate language and image features and feed
them into self-attention blocks, and the decline in perfor-
mance validates the necessity of our gated interaction mech-
anism. The variant ‘Limg only’ is trained with Limg, which
obtains results slightly better than the variant ‘w/o lan-
guage’, indicating the significance of establishing the cross-
modality correspondence.

To further verify the effectiveness of the language inter-
action, we conduct an ablation study by gradually increas-
ing the number of input descriptions. As shown in yellow

2Quantitative evaluations on the recovery of reflection layers are pro-
vided in the supplementary material.
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Figure 5. Results with different numbers of input language de-
scriptions.

boxes of Figure 5, by utilizing more input language descrip-
tions, the separation of transmission (clothes) and reflec-
tion layers (a man with a camera) becomes more thorough,
which also demonstrates the efficacy and robustness of the
proposed method.

6. Conclusion

This paper introduces natural language to provide contex-
tual information about image layers for relieving the ill-
posed reflection separation problem. We develop an end-
to-end framework with adaptive global interaction mod-
ules and language-image loss functions to effectively man-
age the modality inconsistency, and we adopt a language
gate mechanism with randomized training strategies to han-
dle the recognizable layer ambiguity. To address data de-
ficiency, a specially built dataset with language annota-
tions significantly aids in training and evaluating the pro-
posed language-guided image reflection separation frame-
work. Quantitative and qualitative experiments on real data
demonstrate the effectiveness of introducing language de-
scriptions for reflection separation.
Limitations. The proposed method may not distinguish
transmission and reflection layers accurately when their
contents are similar. For such ambiguous cases, a more flex-
ible language-guided mechanism is needed. This might be
solved by exploring a better interaction approach, which is
left as our future work.
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In the supplementary material, we provide details about
the image layer loss Limg, report quantitative results on re-
flection recovery, conduct additional ablation studies, pro-
vide a comparison on model size and efficiency, and con-
duct additional qualitative comparisons with state-of-the-art
reflection separation methods.

7. Details of the image layer loss
In this section, we provide details of the image layer loss
Limg (corresponding to footnote 1 in the main paper), which
consists of several image- or feature-level loss functions fol-
lowing previous reflection separation methods [2, 3, 6, 12,
16] to impose constraints on the visual quality of estimated
transmission and reflection layers or to exploit the inherent
relationship between the two layers. We denote the esti-
mated transmission and reflection layers as T̃ and R̃ and
their ground truths as T and R, respectively, and mixture
images are denoted as M.
Pixel loss Lpix. We apply the l1 distance to penalize the
pixel-wise discrepancy on estimated images and gradients
with their ground truths, which is formulated as:

Lpix =∥T− T̃∥1 + ∥R− R̃∥1
+λ(∥∇T−∇T̃∥1 + ∥∇R−∇R̃∥1),

(6)

where ∇ represents the gradient operator, and λ is set to 1.
Structural similarity loss Lssim. We incorporate the struc-
tural similarity index (SSIM) to form a loss function, which
conforms to human perception and evaluates the similarity
in luminance, contrast, and structure between image pairs.
The structural similarity loss Lssim [12] is defined as:

Lssim = 2− (SSIM(T, T̃) + SSIM(R, R̃)). (7)

Perceptual loss Lper. To measure the multi-scale discrep-
ancy between estimated images layers and their ground
truths in the feature domain, we utilize the VGG-19 model
to extract low-level and high-level image features and cal-
culate the perceptual loss [16] as:

Lper =
∑
k

ϕk(Dvgg
k (T, T̃) +Dvgg

k (R, R̃)), (8)

#
Equal contributions. ∗Corresponding author.

where {ϕk} are the weights for balancing multi-scale fea-
ture discrepancies, and Dvgg

k represents the l1 distance be-
tween features extracted from the k-th convolutional layer
in the VGG-19 model. We adopt the same selection of con-
volutional layers and the setting of {ϕk} as [16].
Exclusion loss Lexc. To ensure the gradient irrelevance be-
tween estimated transmission and reflection layers for di-
minishing content residues from each other, we employ the
exclusion loss [16] as:

Lexc =
1

M

M−1∑
m=0

∥Θ(T̃↓m, R̃↓m)∥F, (9)

Θ(T̃, R̃) = tanh(ξ1|∇T̃|)⊙ tanh(ξ2|∇R̃|), (10)

where ∥ · ∥F denotes the Frobenius norm, T̃↓m and R̃↓m

represent down-sampling T̃ and R̃ by a factor of 2m with
bilinear interpolation (2M at most where M = 3 as in [16]),
⊙ is the element-wise multiplication, and ξ1 and ξ2 are the
normalization factors as in [16].
Reconstruction loss Lrec. To constrain the relation be-
tween transmission layers, reflection layers, and mixture
images, we employ a reconstruction loss following [6]:

Lrec = ∥T̃+ R̃+Ω(T̃, R̃)−M∥)1, (11)

where Ω(T̃, R̃) is a residue term estimated from an addi-
tional learnable residue module Ω(·) [6], which is designed
for handling the non-linearity in the mixture image forma-
tion process caused by the non-linear mapping and dynamic
range clipping [4] in the camera pipeline.

Overall, the image layer loss is formulated as:

Limg = ω1Lpix+ω2Lssim+ω3Lper+ω4Lexc+ω5Lrec. (12)

Following previous methods [1, 6, 12, 16], the weights are
set as ω1 = 1, ω2 = 1, ω3 = 0.01, ω4 = 1, and ω5 = 0.2.

8. Quantitative results on reflection recovery
In this section, we conduct quantitative experiments on
three subsets (i.e., Postcard, Object, and Wild) of a real
reflection separation dataset SIR2 [13] with our manually

1



Table 3. Quantitative results in terms of PSNR and SSIM on three subsets of the SIR2 dataset [13] for evaluating the recovery of reflection
layers, compared with state-of-the-art single-image reflection separation methods [1, 5–7, 12, 16]. Averaged results are shown at the
bottom. ↑ indicates larger values are better. Bold numbers indicate the best-performing results.

Dataset (size) Metrics
Methods

Zhang et al. [16] CoRRN [12] IBCLN [7] Dong et al. [1] YTMT [5] DSRNet [6] Ours

Postcard (199)
PSNR↑ 17.02 17.68 17.95 18.13 17.53 17.66 18.37
SSIM↑ 0.519 0.574 0.528 0.592 0.557 0.566 0.611

Object (200)
PSNR↑ 21.87 22.52 22.08 23.62 22.91 23.56 23.88
SSIM↑ 0.531 0.561 0.524 0.688 0.605 0.669 0.699

Wild (101)
PSNR↑ 20.33 20.93 20.82 21.53 21.22 21.64 21.94
SSIM↑ 0.544 0.568 0.554 0.606 0.581 0.613 0.627

Average (500)
PSNR↑ 19.63 20.27 20.18 21.01 20.43 20.82 21.30
SSIM↑ 0.529 0.568 0.532 0.633 0.581 0.617 0.649

Table 4. Ablation studies on the network structure and the size of training dataset.

CLIP-L-encoder Llama2-L-encoder AGAM CLIP-I-encoder AGIM Cross att 50K data 13K data PSNR↑ SSIM↑
✓ ✓ ✓ ✓ 25.72 0.914

✓ ✓ ✓ ✓ 25.68 0.917
✓ ✓ ✓ ✓ 24.80 0.891
✓ ✓ ✓ ✓ 24.92 0.903
✓ ✓ ✓ ✓ 25.55 0.909

annotated language descriptions (as mentioned in Sec. 4 of
the main paper) to evaluate the recovery of reflection layers
(corresponding to footnote 2 in the main paper), since other
datasets such as Real20 [16] and Nature [7] do not provide
ground truths of reflection layers. We compare the proposed
method with state-of-the-art single-image reflection separa-
tion methods [1, 5–7, 12, 16]. PSNR and SSIM are selected
as error metrics. As shown in Table 3, the proposed method
achieves the best performance, which indicates the efficacy
of introducing language descriptions for relieving the ambi-
guity in separating strong reflections from mixture images.

9. Additional ablation studies
Ablation studies on the network structure. We conduct
ablation studies on the network structure to investigate the
effectiveness of the language encoder, global image feature,
and interaction module by replacing the language encoder
of CLIP [10] with the encoder of a large language model
Llama2 [11] (with 13B parameters), replacing the AGAM
with the global image feature encoder of CLIP [10], and
replacing the AGIM with standard cross-attention modules,
respectively. As shown in Table 4, the proposed method (the
first row) achieves competitive results with the variant (the
second row) using the language encoder of Llama2 [11],
which indicates our generalizability. Besides, directly us-
ing global image features from pretrained CLIP [10] (the
third row) leads to performance degradation since they are
trained for classification. Using standard cross-attention
modules also degrades the performance (the fourth row),
indicating the efficacy of AGIM for channel rearrangement.
Ablation studies on the network training. We investi-
gate the influence of the training dataset size by training our
model with 13,000 images from our dataset following [1].

Table 4 shows a slight performance decrease with fewer
training data (the fifth row) while we still outperform base-
lines (Table 1 of main paper). Besides, we conduct an abla-
tion study by setting loss coefficients γ1 and γ2 in Eq. (4)
of the main paper to 0, 0.5, 1.0, and 2.0, respectively. As
shown in the left part of Figure 6, setting both γ1 and γ2 as
0.5 yields the best results. In addition, we investigate the
drop rate of language descriptions mentioned in Sec. 3.5 of
the main paper. As depicted in the right part of Figure 6,
the drop rate of 30% strikes an optimal balance, which is
adopted in the paper.
Ablation studies on language descriptions. We investi-
gate different types of language descriptions as shown in
Figure 7. Using the simplified description achieves com-
parable performance to the complete matched description,
while using the unmatched description fails in reflection
separation, indicating the efficacy of incorporating language
modality. Besides, since reflection layers are sometimes too
dark and blurry to be recognizable [12] which might make
descriptions of reflection layers unobtainable, we empiri-
cally set I1 and I2 to be transmission and reflection layers,
respectively. If exchanging the order of descriptions (shown
in Figure 8), though results are degraded due to different
statistics of transmission and reflection layers, the contents
still conform to descriptions, validating the effectiveness of
language guidance.

10. Comparison on model size and efficiency
We show the model size (number of parameters), compu-
tational cost (FLOPs), and inference time of the proposed
method and state-of-the-art single-image methods in Table
5. The input image size is set as 224× 288, and we run the
inference on an Nvidia RTX 2080 Ti GPU. While having the



Figure 6. Ablation studies on coefficients of γ1 and γ2 (left part) and drop rates of language descriptions (right part).

No language description Matched language description
Mixture Transmission Reflection Description Transmission Reflection

Description Transmission Reflection Description Transmission Reflection
Simplified language description Unmatched language description

A painting of Mona 
Lisa

on a wall

Painting,
wall

A ball on 
a table

Figure 7. Ablation studies on different types of language descriptions.

Mixture image
𝐋𝐋1: A view of 
buildings and 

streets at night

𝐋𝐋2: A man in a 
room with a 

painting on the wall

Description 𝐈𝐈1 𝐈𝐈2

𝐋𝐋1: Transmission       𝐋𝐋2: ReflectionInput image

𝐋𝐋1: A man in a 
room with a 

painting on the wall

𝐋𝐋2: A view of 
buildings and 

streets at night

Description 𝐈𝐈1 𝐈𝐈2

𝐋𝐋1: Reflection       𝐋𝐋2: Transmission

Figure 8. Results of exchanging the order of language descriptions.

Table 5. Comparisons on the model size, computational cost, and inference time, compared with single-image methods [1, 5–7, 12, 16].

Metric
Method

Zhang et al. [16] CoRRN [12] IBCLN [7] Dong et al. [1] YTMT [5] DSRNet [6] Ours

Params 22.06M 59.51M 21.61M 10.93M 73.43M 137.63M 75.54M
FLOPs 99.66G 75.53G 386.16G 329.28G 437.16G 406.97G 320.95G

Time (s) 0.028 0.017 0.034 0.044 0.062 0.115 0.056

comparable model size, computational cost, and inference
time with recent single-image methods (e.g., YTMT [5] and
DSRNet [6]), the proposed method outperforms them in re-
flection separation as shown in Table 1 of the main paper,
indicating our trade-off between practicality and efficiency.

11. Additional qualitative results
In this section, additional qualitative experiments are con-
ducted on real datasets to show the effectiveness and unique
advantages of the proposed language-guided reflection sep-
aration method. We compare with several single-image

methods including DSRNet [6], YTMT [5], Dong et al. [1],
IBCLN [7], CoRRN [12], and Zhang et al. [16]. Besides,
a representative diffusion-based image generation method,
i.e., ControlNet [15], is selected to show the performance
of the prevailing diffusion models on reflection separation.
We also compare with a multi-image reflection separation
method Liu et al. [9] to demonstrate the robustness of the
proposed method. Details are as follows.

Comparison with ControlNet [15]. ControlNet [15] is
a conditional generative model modified from large pre-
trained text-to-image diffusion models, achieving remark-



able performance in image generation and editing. To make
ControlNet [15] fit our input setting, we finetune it fol-
lowing the official instruction1 by using mixture images as
source images (control images), language descriptions of
transmission layers as prompts, and transmission layers as
target images. Qualitative results on the proposed REFOL
dataset are shown in Figure 9. It can be observed that Con-
trolNet [15] performs modifications on mixture images in
a generative manner, e.g., the portrait in the first example
is infused with the blue hue and the blue butterfly in the
second example is transformed into cyan, which leads to
a divergence in the content of generated results from orig-
inal mixture images, indicating that ControlNet [15] can-
not be trivially adapted to the task of reflection separa-
tion. By utilizing global scene contextual information from
language descriptions to interact with visual features for
channel rearrangement (mentioned in Sec. 3.2), the pro-
posed method outperforms single-image methods in achiev-
ing a more thorough separation of transmission and reflec-
tion layers and obtains results whose image content re-
mains faithful to input images. For instance, as shown in
Figure 9, the proposed method distinguishes reflections of
visitors from the portrait in the first example while other
single-image methods fail in recognizing the visitors, and
in the second example, the bookshelf and the white door are
also correctly separated from the butterfly by the proposed
method, indicating the efficacy of language descriptions.

Comparison with Liu et al. [9]. We further conduct exper-
iments on real datasets collected for multi-image reflection
separation [8, 14]. We compare the proposed method with
the aforementioned single-image methods [1, 5–7, 12, 16]
and a multi-image method Liu et al. [9] which leverages
different motions of the two layers to guide the separation.
Qualitative results are shown in Figure 10. By introduc-
ing language descriptions, the proposed method achieves
comparable performance with Liu et al. [9] in reflection
separation, e.g., the trash bin and the cabinet in the first
example and the walking man in the second example of
Figure 10, where other single-image methods fails in dis-
cerning the content of reflection layers. Moreover, multi-
image reflection separation methods [8, 9, 14] typically re-
quire additional images (with the quantity ranging from one
to four) with specialized capture settings compared with
single-image methods, while the proposed method only de-
mands a maximum of two additional language descriptions
for network inputs, which significantly relieves the burden
of data acquisition and storage associated with multi-image
methods. Concurrently, the proposed method maintains the
broad applicability as single-image methods, indicating its
potential for practical applications.

1https://github.com/lllyasviel/ControlNet/blob/
main/docs/train.md
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Figure 9. Qualitative comparison of estimated transmission and reflection layers on the proposed REFOL dataset, compared with several
state-of-the-art single-image methods [1, 5–7, 12, 16] and a diffusion-based method ControlNet [15]. Please zoom in for details.
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Figure 10. Qualitative comparison of estimated transmission and reflection layers on real data from [8] and [14], compared with several
state-of-the-art single-image methods [1, 5–7, 12, 16] and a multi-image method Liu et al. [9]. Please zoom in for details.
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