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Abstract

Obtaining planetary images with good visual quality is not
an easy task since they are usually degenerated by atmo-
spheric turbulence during the imaging procedure. Existing at-
mospheric turbulence mitigation methods designed for con-
ventional images cannot be applied to planetary images, since
the objects on the Earth have totally different degeneration
patterns to planets. Besides, in planetary imaging, photogra-
phers often capture as many frames as possible to reduce the
noise level of planetary images, which requires the method
designed for planetary images to support an arbitrary number
of input frames. In this paper, we propose a vertical distance-
aware turbulence simulation pipeline to synthesize realistic
planetary images in accordance with their unique degenera-
tion patterns at a large scale with affordable computational
cost, and design a neural network to mitigate the turbulence
with flexible input frames by adopting an edge-based supervi-
sion strategy to handle the background scarcity issue. Experi-
mental results show that our method achieves state-of-the-art
performance on both synthetic and real-world images.

Introduction
Planetary imaging aims to capture the planets within our
solar system on the Earth. Since the distribution of atmo-
spheric refraction index is spatially-variant (Roggemann,
Welsh, and Hunt 1996), the light waves passing through the
atmosphere would be severely distorted, resulting in degen-
erated captured images. Such degeneration is called atmo-
spheric turbulence, which can be regarded as an entangle-
ment of pixel displacement (known as the tilt), blur, and
noise (Fazlali et al. 2022; Zhang et al. 2022b; Mao et al.
2022). To obtain a turbulence-free planetary image, photog-
raphers usually record a large number of frames (usually
ranging from hundreds to thousands) of the same scene, and
fuse them using softwares (e.g., AutoStakkert1). However,
the fusing results are not yet satisfactory, since these soft-
wares only keep the “lucky” frames (frames with relatively
less distortion) by simply discarding other frames, while the
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Figure 1: Top: An illustration to show the difference of ver-
tical distance (marked using orange and green arrows) be-
tween planets and the objects on the Earth. Bottom: A real-
world example to demonstrate the domain gap between con-
ventional images and planetary images.

“lucky” frames are not always available (Fried 1978) so that
the information contained in the discarded frames are com-
pletely unexploited. Therefore, effectively mitigating atmo-
spheric turbulence in planetary images is still an open prob-
lem.

Recently, neural networks have been introduced to
mitigate atmospheric turbulence in conventional images,
i.e., images only containing objects on the Earth (Gao,
Anantrasirichai, and Bull 2019; Mao et al. 2022; Rai and
Jawahar 2022; Chak, Lau, and Lui 2018; Jin et al. 2021;
Li et al. 2021; Fazlali et al. 2022; Zhang et al. 2022b). They
aim to reconstruct the corresponding clean image from a sin-
gle degenerated image (Gao, Anantrasirichai, and Bull 2019;
Mao et al. 2022; Rai and Jawahar 2022) or a fixed num-
ber of degenerated frames (Chak, Lau, and Lui 2018; Jin
et al. 2021; Li et al. 2021; Fazlali et al. 2022; Zhang et al.
2022b), by extracting semantic and physical priors from a



large amount of training data. However, as shown in Figure 1
(top), since the vertical distance2 of a planet (around 20 km)
is much larger than the one of an object on the Earth (typi-
cally less than 1 km), and the variance of turbulence mag-
nitude monotonically increases with the vertical distance,
(Vyhnalek 2017), planetary images and conventional im-
ages have totally different degeneration patterns. Besides, as
shown in the green box of Figure 1 (bottom), the noise level
in planetary images is usually much higher than in conven-
tional images since the lighting condition in outer space is
not as good as the one on the Earth (Li et al. 2020). Further-
more, as shown in the red box of Figure 1 (bottom), the con-
trast between the foreground and background of planetary
images is much higher than conventional images (i.e., the
background of planetary images is extremely dark). These
unique properties of planetary images pose the following
major difficulties in the turbulence mitigation process:
1. Existing turbulence simulation methods designed for

conventional images (Schwartzman et al. 2017; Chimitt
and Chan 2020) cannot generate realistic planetary im-
ages due to the differences in degeneration patterns.

2. In planetary imaging, photographers often capture as
many frames as possible to reduce the noise level (Li
et al. 2020), which requires the method to support an ar-
bitrary number of input frames.

3. The extremely dark background of planetary images pro-
vides little semantic information or physical priors (we
call it background scarcity issue), making the problem
highly ill-posed.

In this paper, to synthesize realistic planetary images in
accordance with their unique degeneration patterns at a large
scale, we propose a new turbulence simulation pipeline spe-
cially designed for planetary images to simulate the light
propagation procedure with affordable computational cost
in a vertical distance-aware manner. To support an arbitrary
number of input frames for reducing the noise level in plan-
etary imaging, we propose PlaNet which solves the atmo-
spheric turbulence mitigation problem for Planetary images
with specially designed neural Networks, capable of mak-
ing full use of the information contained in all input frames.
To handle the background scarcity issue, we explicitly uti-
lize the edge map of the average frame as an external prior
to provide supervision in the latent space with multi-scale
observations, based on the fact that the variation of the tur-
bulence field in planetary images over time follows a zero-
mean Gaussian distribution (Zhu and Milanfar 2011) so that
the average frame often has a similar boundary to the corre-
sponding clean image.

In summary, this paper makes contributions to overcome
the difficulties in the turbulence mitigation process of plan-
etary images by demonstrating:
1. a vertical distance-aware turbulence simulation pipeline

for planetary images;
2. a specially designed network with flexible input frames

to reduce the noise level; and

2The vertical distance is defined as the altitude difference be-
tween the observer and the object or the layer where most of the
turbulence that affects image quality occurs.

3. an edge-based supervision strategy to handle the back-
ground scarcity issue.

Experimental results show that our method achieves state-
of-the-art performance on both synthetic and real-world
planetary images.

Related work
Atmospheric turbulence simulation. Previous work on tur-
bulence simulation has predominantly concentrated on mod-
eling the degradation patterns of conventional images. Vari-
ous methods have introduced hand-crafted image priors and
manually constructed tilt, blur, and noise models to generate
degraded images from their pristine versions (Zhu and Mi-
lanfar 2012; Chak, Lau, and Lui 2018; Gao, Anantrasirichai,
and Bull 2019). Although visually appealing, these methods
lack physical validity, creating a domain gap between syn-
thesized and real-world images. To address this, some tech-
niques used physical priors based on turbulence formation
statistics for image synthesis (Hardie et al. 2017; Schwartz-
man et al. 2017; Chimitt and Chan 2020; Li et al. 2020),
or induced turbulence effects through air heating along the
imaging path (Jin et al. 2021; Mao et al. 2022). However,
these approaches often incur significant computational ex-
penses due to complex numerical optimization algorithms.
To mitigate this, approximation strategies that utilize phase-
to-space (P2S) transformations and neural networks have
been proposed to replace these algorithms (Mao, Chimitt,
and Chan 2021; Chimitt et al. 2022). Regarding planetary
images, photon simulators (Peterson et al. 2015; Dobke et al.
2010) generate images by sampling photons from astronom-
ical models and simulating their interactions with the atmo-
sphere, telescope, and camera; however, this approach op-
erates at the photon level, leading to prolonged processing
times.
Atmospheric turbulence mitigation. The mitigation of at-
mospheric turbulence presents a highly ill-posed challenge
due to the intricate structures of natural images. Some meth-
ods have focused on turbulence reduction in human faces
(Yasarla and Patel 2020, 2021; Mei and Patel 2023). For
terrestrial objects, earlier approaches used prior-based nu-
merical optimization to restore clean images (Zhu and Mi-
lanfar 2012; Hirsch et al. 2010; Anantrasirichai et al. 2013;
Lau, Lai, and Lui 2019; Mao, Chimitt, and Chan 2020). With
advancements in deep learning, neural networks have been
employed to reconstruct clean images from single degraded
images (Gao, Anantrasirichai, and Bull 2019; Mao et al.
2022; Rai and Jawahar 2022) or a limited number of de-
graded frames (Chak, Lau, and Lui 2018; Jin et al. 2021; Li
et al. 2021; Fazlali et al. 2022; Zhang et al. 2022b). However,
these methods are not suitable for planetary images as they
do not accommodate an arbitrary number of input frames.
Although TurbuGAN (Feng, Xie, and Metzler 2022) sup-
ports a flexible number of input frames, it relies on iterative
optimization, making it computationally expensive.
Image restoration. There are many other methods that
have the partial ability to solve the atmospheric turbu-
lence mitigation problem. For example, methods designed
for video/burst image restoration/deblurring/enhancement



(Dudhane et al. 2022; Chan et al. 2022) can also take an arbi-
trary number of frames as input (more methods can be found
in these surveys (Zhang et al. 2022a; Su, Xu, and Yin 2022))
and output images with enhanced visual quality. However,
since they do not consider the unique properties of planetary
images, their performance may not be optimized.

Image formation and turbulence simulation
Image formation model. For a better understanding of the
atmospheric turbulence mitigation problem for planetary
images, we first introduce the formation model of a degen-
erated planetary image. Denoting a clean image of a planet
and its degenerated counterpart as I and T respectively, their
relationship can be described as

T = T (I) + ϵ, (1)

where T denotes the total effects of the turbulence, includ-
ing the blur and tilt artifact, and ϵ is a noise term. Specifi-
cally, according to the physical-based imaging model of the
atmospheric turbulence (Peterson et al. 2015), T can be de-
composed into the effects of the turbulence induced when
the light waves pass through the atmosphere and arrive at
the observer. Denoting these two effects as A and O respec-
tively, Equation (1) can be further formulated as

T (I) = O
(
A (I;V(C)) ;

D

r0

)
. (2)

We can see that A is dependent on V(C), which is the vari-
ance of the structural constant of atmospheric turbulence
C (reflecting the turbulence magnitude of the atmosphere
(Vyhnalek 2017))3 during the light propagation procedure
through the atmosphere, and O is dependent on D

r0
(reflect-

ing the turbulence level at the observer end (Mao, Chimitt,
and Chan 2021)), where D is the aperture of the lens and r0
is the Fried parameter (Fried 1978).

The image formation model adopted by existing turbu-
lence simulation methods designed for conventional images
(Schwartzman et al. 2017; Chimitt and Chan 2020; Mao,
Chimitt, and Chan 2021) could be regarded as a simplified
version of Equation (2). Specifically, they often ignore the
influence of V(C), based on the following assumption:

A (I;V(C)) ≈ I. (3)

It is a fact that C varies along the path of light passing
through the atmosphere from outer space to the ground (Vy-
hnalek 2017). Since the vertical distance of an object on
the Earth is small enough (see Figure 1 (top)), i.e., the in-
fluence of V(C) is ignorable, Equation (3) holds true for
conventional images. However, it is not the case for plan-
etary images, since the vertical distance of a planet in outer
space is large, making the influence of V(C) not ignor-
able. Therefore, existing turbulence simulation methods de-
signed for conventional images (Schwartzman et al. 2017;
Chimitt and Chan 2020; Mao, Chimitt, and Chan 2021) can-
not be applied to planetary images. Figure 2 (right) shows an

3The structural constant of atmospheric turbulence is usually
denoted using C2

n in relevant papers like (Vyhnalek 2017). For sim-
plicity of notations, we use C to denote the same term in this paper.

example of using two frequently-used simulation methods
designed for conventional images (proposed by Schwartz-
man et al.(Schwartzman et al. 2017) and Mao et al.(Mao,
Chimitt, and Chan 2021)) to synthesize planetary images.
We can see that they produce unreasonable degeneration pat-
terns compared with the real planetary image.
Turbulence simulation pipeline. To train a network for mit-
igating atmospheric turbulence in planetary images, a large-
scale dataset containing pairwise clean and degenerated im-
ages is required. In the field of astronomy, photon simulators
(such as PhoSim (Peterson et al. 2015)) are common choices
to generate planetary images with realistic atmospheric tur-
bulence. However, they usually require an excessively long
running time (more than half an hour for a planetary im-
age with 512 × 512 pixels on an Intel Core i7-7800X CPU)
since they work at the photon level (i.e., taking photons as
input), making them not suitable for generating a large-scale
dataset.

To generate realistic degeneration patterns for planetary
images with affordable computational cost, we propose a
vertical distance-aware turbulence simulation pipeline work-
ing at the pixel level (i.e., taking a single clean image as
input, similar to the behavior of existing turbulence simula-
tion methods designed for conventional images (Hardie et al.
2017; Schwartzman et al. 2017; Chimitt and Chan 2020;
Mao, Chimitt, and Chan 2021)). As shown in Figure 2 (left),
we divide the path of light passing through the atmosphere
into three layers (upper/middle/bottom atmosphere) based
on their different spans of vertical distance, and treat them
as three cascaded “optical systems”. Given a preset overall
D and r0, we first adopt a layer-wise parameter configurator,
to configure the layer-wise turbulence level, by assigning a
reasonable D

r0
for each layer to ensure physical justifiability.

Then, we adopt a inner-layer turbulence simulator to sim-
ulate the specific turbulence effect inside each layer, based
on the assigned D

r0
and the statistical distribution of the re-

lationship between the span of vertical distance and V(C)
(Vyhnalek 2017). According to Equations (1) and (2), the
relationship between the input image Iiin and output image
Iiout of the i-th layer (i = 1, 2, 3) can be described as (the
noise term ϵ is omitted for now):

Iiout = O
(
A (Iiin ;Vi(C)) ;

Di

r0i

)
, (4)

where we use the subscript i to mark the parameters in the
i-th layer. Since in each layer, the influence of V(C) does
not change too much, i.e., Equation (3) holds, we choose
to adopt the approximation strategy proposed by Mao et
al.(Mao, Chimitt, and Chan 2021) (which is designed for
conventional images, ignoring the influence of V(C) for re-
ducing the running time) to speed up the simulation process
inside each layer. Thanks to the vertical distance-aware de-
sign, our method can generate a planetary image with 512
× 512 pixels in 9 seconds on an NVIDIA 1080Ti GPU, i.e.,
runs hundreds of times faster than photon simulators (Peter-
son et al. 2015), while presenting more realistic results.

Our turbulence simulation pipeline takes a 3D planet



3D model

2D snapshot 𝐈𝐈

La
ye

r-
w

is
e 

pa
ra

m
et

er
 

co
nf

ig
ur

at
or

𝐷𝐷1
𝑟𝑟01 Upper

atmosphere

Noise 
generator

𝝐𝝐

Inner-layer 
turbulence 
simulator

Mao et al.

Ours

Schwartzman et al.

Large 𝐶𝐶

Small 𝐶𝐶

Real dataOutput 𝐓𝐓

𝒱𝒱1(𝐶𝐶)

𝒱𝒱2(𝐶𝐶)

𝒱𝒱3(𝐶𝐶)

𝐷𝐷2
𝑟𝑟02

𝐷𝐷3
𝑟𝑟03

𝐷𝐷, 𝑟𝑟0
Middle

atmosphere

Bottom
atmosphere

Figure 2: Left: The proposed turbulence simulation pipeline for planetary images working in a vertical distance-aware manner.
Right: Visual comparisons of the simulation results from existing simulation methods designed for conventional images (pro-
posed by Schwartzman et al.(Schwartzman et al. 2017) and Mao et al.(Mao, Chimitt, and Chan 2021)) and our method along
with a real planetary image (an observation sample taken from a different angle).

model (obtained from the NASA website4) as input and
outputs a degenerated image (or outputs an arbitrary num-
ber of degenerated frames, by running the pipeline multi-
ple times) along with the corresponding clean image (as the
ground truth), as shown in Figure 2 (left). Specifically, we
first sample 2D snapshots from the 3D planet model in a
uniform manner to obtain the clean images, then feed them
into the inner-layer turbulence simulator with the parameters
produced from the layer-wise parameter configurator to ob-
tain the degenerated image, and add the noise term ϵ in the
end. From Figure 2 (right) we can see that our method can
synthesize planetary images with the degeneration patterns
resembling the real planetary images more closely5.

PlaNet architecture design
Given the high-quality synthetic data, we propose PlaNet,
a neural network for mitigating the atmospheric turbulence
in planetary images with simple but effective module de-
signs. Due to the poor lighting condition in outer space,
the noise level in planetary images is usually much higher
than in conventional images, which often requires captur-
ing as many frames as possible to reduce the noise level
(Li et al. 2020). Besides, since the background of planetary
images is extremely dark, providing little semantic informa-
tion or physical priors, mitigating the turbulence in planetary
images could be more challenging than conventional im-
ages. Therefore, unlike existing methods designed for con-
ventional images that only consider reconstructing the cor-
responding clean image from a single degenerated image
(Gao, Anantrasirichai, and Bull 2019; Mao et al. 2022; Rai
and Jawahar 2022) or a fixed number of degenerated frames

4https://solarsystem.nasa.gov/resources/
5Additional evaluation of the simulator can be found in the sup-

plementary material.

(Chak, Lau, and Lui 2018; Jin et al. 2021; Li et al. 2021; Fa-
zlali et al. 2022; Zhang et al. 2022b), PlaNet should support
an arbitrary number of input frames and can fully exploit
their information. Besides, an effective strategy to handle the
background scarcity issue should be integrated into PlaNet.
As shown in Figure 3, denoting PlaNet as f , it can be written
as

I = f(T1, · · · ,TN ), (5)
where Ti(i = 1, . . . , N) denotes a degenerated input frame,
I denotes the output clean image, and N is the number of
input frames (can be an arbitrary positive integer). And we
will introduce the module design of PlaNet in the following
paragraphs.
Permutation-invariant feature aggregation. Due to the at-
mospheric time constant, typically under 10 milliseconds
(Tokovinin 2002), adjacent frames in an input sequence ex-
hibit low correlation. Consequently, we design PlaNet to en-
sure permutation invariance. For each input frame Ti, we
first process it through a backbone network to extract its
feature map, followed by the OBG (output by group) mod-
ule, which aggregates these feature maps in a permutation-
invariant manner. This design allows PlaNet to accommo-
date any number of input frames while fully utilizing the in-
formation from all frames. The backbone network employs
a U-Net architecture (Ronneberger, Fischer, and Brox 2015),
known for its effective multi-scale information extraction in
computational photography (Zhou et al. 2020, 2021), with
an SE (squeeze-and-excitation) block (Hu, Shen, and Sun
2018) added in the coarsest layer for enhanced detail. All
input frames share the same backbone weights to minimize
network size. The OBG module integrates a CBAM (con-
volutional block attention module) block (Woo et al. 2018)
that recalibrates feature maps using attention for adaptive
refinement, along with two ConvBlocks that decode the ag-
gregated feature maps into a single output image.
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Edge-based supervision. Due to the significant distance be-
tween planets and Earth, both the observer and the planets
can be considered relatively stationary. In this context, the
turbulence in planetary images over time adheres to a zero-
mean Gaussian distribution (Zhu and Milanfar 2011). Con-
sequently, while the average frame Tavg may appear blur-
rier, it is less affected by tilt artifacts, resulting in bound-
aries that closely resemble those of the corresponding clean
image. Leveraging this characteristic, we propose an edge-
based supervision strategy to address background scarcity
and reduce blurriness from averaging. This approach em-
ploys the Laplacian edge map of Tavg as an external prior
for supervision in the latent space using multi-scale obser-
vations. We introduce three OBI (output by instance) mod-
ules at different scales within the decoder of the backbone
network to generate multi-scale feature maps. A Laplacian
edge extractor is then used to obtain and resize the edge map
of Tavg to supervise these feature maps through loss compu-
tation. Each OBI module consists of two ConvBlocks with-
out feature aggregation, with shared weights across feature
maps from different frames.

Implementation details
Dataset preparation. We first collect 27 different 3D planet
models in our solar system, including 9 planets (with two
different models for Venus), 4 dwarf planets, 3 asteroids,
and 11 satellites. Then, we split them into two parts that
contain 22 and 5 different 3D models for making the train-
ing and test sets respectively. For each 3D model, we first
position virtual cameras in the direction of the vertices of
a regular dodecahedron that shared a center point with the
3D model to uniformly sample 12 2D snapshots using or-
thographic projection as the ground truth clean image, then
use the proposed vertical distance-aware turbulence simula-
tion pipeline to generate a sequence of degenerated frames

for each clean image. We further perform data augmenta-
tion (such as random flipping and rotating) on the images
for training, so that the training (testing) set contains 1056
(60) different image sequences finally. Note that the images
are resized to 256 × 256 (512 × 512) pixels in the training
(test) set.
Loss function. The overall loss function L is defined as

L = Lout + λLdec, (6)

where Lout and Ldec denote the output loss term and decoder
loss term respectively, and λ is a weighting coefficient set to
be 10.0. The output loss term Lout computes the loss between
the output image I and the corresponding ground truth clean
image Igt, which can be written as

Lout = L2(I, Igt), (7)

where L2 denotes the ℓ2 loss. The decoder loss term Ldec
computes the loss between the feature map Fi of each in-
put frame Ti (Fi is obtained from the decoder part of the
backbone network using OBI modules) and the edge map
Ei of the average frame Tavg (Ei is extracted using a Lapla-
cian edge extractor) in three different scales, which can be
written as

Ldec =
1

N

N∑
i=1

3∑
j=1

αjL1(F
(j)
i ,E

(j)
i ), (8)

where N is the number of input frames, L1 denotes the ℓ1
loss, the superscript j denotes the j-th scale, and α1,2,3 are
weighting coefficients set to be 9.0, 3.0, and 1.0 respectively.
Training strategy. We implement our method using Py-
Torch on a computer with an Intel Xeon Platinum 8358P
CPU and two NVIDIA A100 GPUs. The network is trained
for 100 epochs with a batch size of 8. For optimization, we
use Adam optimizer (Kingma and Ba 2014) (β1 = 0.9,
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Figure 4: Qualitative comparisons on synthetic data among our method, a representative planetary imaging software Au-
toStakkert, and several state-of-the-art learning-based methods that solve the closest problems including TurbNet (Mao et al.
2022), NIDR (Li et al. 2021), BIPNet (Dudhane et al. 2022), and BasicVSR++ (Chan et al. 2022).

β2 = 0.999) with a constant learning rate of 10−4 dur-
ing training. We add an instance normalization (Ulyanov,
Vedaldi, and Lempitsky 2016) layer and a ReLU activation
function after each convolution layer.

Experiments

Evaluation on synthetic data. We compare our method to
a representative planetary imaging software AutoStakkert,
along with several state-of-the-art learning-based methods
that solve the closest problems, including TurbNet, NIDR
(Li et al. 2021), BIPNet (Dudhane et al. 2022), and (Chan
et al. 2022). Note that for a fair comparison, we fix the
number of input frames to 12, and retrain all learning-based
methods (Mao et al. 2022; Li et al. 2021; Dudhane et al.
2022; Chan et al. 2022) using our dataset. Besides, for Turb-
Net (Mao et al. 2022), we use it to process the input frames
in a one-by-one manner to get multiple output frames, and
select the best frame as its result; and for BasicVSR++
(Chan et al. 2022), since it outputs multiple frames, we also
choose the best frame as its result. In this way, the per-
formance of TurbNet (Mao et al. 2022) and BasicVSR++
(Chan et al. 2022) is optimized. For AutoStakkert, we utilize
its built-in tools for post-processing to recover high-spatial-
frequency details.

Visual quality comparisons are shown in Figure 46. It can
be seen that our method exhibits the closest approximation
to the ground truth. Besides, we can see that our method
can not only handle the planets, but also perform well on
other objects in the outer space (e.g., the spacecraft shown
in the bottom row of Figure 4), which shows that our method
has broad applicability. To evaluate the results quantitatively,
we adopt two frequently-used metrics including PSNR and
SSIM. Results are shown in Table 1. Our model consistently
outperforms the compared methods on all metrics.
Evaluation on real data. In order to demonstrate the ro-
bustness and generalization capabilities of our method, we
capture some planetary images using a Celestron C11 tele-
scope and a ZWO ASI 290 camera, and collect some plane-
tary images from the Internet7. For each scenario, we pre-
pare 12 frames as the input of PlaNet and the compared
methods (AutoStakkert, TurbNet (Mao et al. 2022), NIDR
(Li et al. 2021), BIPNet (Dudhane et al. 2022), and Ba-
sicVSR++ (Chan et al. 2022)). As shown in Figure 58, our
method achieves superior image quality across various noise
levels and turbulence magnitudes, producing clean back-
grounds and sharp edges. In contrast, the other methods fail

6Additional results can be found in the supplementary material.
7http://www.skyimaging.com/astronomy-videos.php
8Additional results are provided in the supplementary material.
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Figure 5: Qualitative comparisons on real data among our method, a representative planetary imaging software AutoStakkert,
and several state-of-the-art learning-based methods that solve the closest problems including TurbNet (Mao et al. 2022), NIDR
(Li et al. 2021), BIPNet (Dudhane et al. 2022), and BasicVSR++ (Chan et al. 2022).

Table 1: Quantitative evaluation results on synthetic data
among our method, a representative planetary imaging soft-
ware AutoStakkert, and several state-of-the-art learning-
based methods.

Method PSNR SSIM

AutoStakkert 24.41 0.836
TurbNet (Mao et al. 2022) 26.48 0.887
NIDR (Li et al. 2021) 23.86 0.833
BIPNet (Dudhane et al. 2022) 23.11 0.898
BasicVSR++ (Chan et al. 2022) 26.07 0.835
Ours 27.78 0.901

to address real atmospheric turbulence effectively, yielding
blurry results, or introduce artifacts and background noise.
Ablation study. We validate our design choices through ab-
lation studies in Table 2. First, we assess edge-based super-
vision by excluding the edge map of the average frame (W/o
edge-based supervision), underscoring the edge map’s util-
ity. Next, we evaluate the OBI module by comparing it to a
model that applies edge-based supervision after feature map
aggregation (W/o OBI) and the OBG module against one us-
ing average pooling (W/o OBG), confirming the soundness
of both designs. We also test multi-scale edge supervision
by calculating Ldec only at level j = 1 (W/o multi-scale
Ldec), which results in a significant performance decline.
Furthermore, moving the OBG module ahead of the back-
bone network (Frame instead of feature aggr.) demonstrates
that frame aggregation fails to utilize information fully, lead-
ing to reduced performance. Overall, our complete model

Table 2: Quantitative evaluation of ablation study.

PSNR SSIM

W/o edge-based supervision 27.25 0.893
W/o OBI 27.21 0.898
W/o OBG 25.90 0.895
W/o multi-scale Ldec 26.40 0.897
Frame instead of feature aggr. 23.37 0.891
Our complete model 27.78 0.901

outperforms all variations, validating our design choices.

Conclusion
We present PlaNet, a learning-based method designed to re-
duce atmospheric turbulence in planetary images, encom-
passing not only planets but also other celestial objects
like spacecraft, utilizing flexible input frames. Our verti-
cal distance-aware turbulence simulation pipeline enables
the large-scale synthesis of realistic planetary images while
maintaining cost-effectiveness. To address the challenge of
limited background data, we incorporate an edge-based su-
pervision strategy into PlaNet. Experimental results demon-
strate that our approach outperforms existing methods on
both synthetic and real-world planetary images.
Limitations. Due to the challenges in data acquisition, the
real data presented in this paper only demonstrates valida-
tion results on planets, not including other objects in outer
space. Besides, the edge-based supervision strategy might
also be less effective in situations where the background is
not scarce or the edges are not clear.
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Details about our synthetic dataset
In this section, we give a thorough overview of the celestial
objects featured in our synthetic dataset and the process of
turbulence simulation, corresponding to Footnote 4 of the
main paper.
Selected celestial bodies. To adequately expose the network
to prior knowledge of celestial bodies, we downloaded as
many 3D models of celestial bodies as possible from the
NASA website1. These models are drawn based on the data
from space probes and cover various common types of ce-
lestial bodies in the solar system, including:
• 9 planets, namely Mercury, Venus, Venus (surface),

Earth, Mars, Jupiter, Saturn, Uranus and Neptune. Plan-
ets are the largest bodies orbiting the Sun. For Venus,
there are two different models representing the planet
with and without its atmosphere;

• 4 dwarf planets, namely Ceres, Makemake, Haumea, and
Eris. Dwarf planets are celestial bodies that, like planets,
orbit the Sun, but they are not dominant in their orbital
zone;

• 3 asteroids, namely Bennu, Itokawa and Vesta. Asteroids
are small, rocky bodies that orbit the Sun and are found
mainly in the asteroid belt between the orbits of Mars and
Jupiter;

• 11 satellites of various planets, namely the Moon (of
Earth), Phobos (of Mars), Io, Europa, Ganymede and
Callisto (of Jupiter), Enceladus, Tethys, Dione, Rhea and
Iapetus (of Saturn). Satellites are celestial bodies that or-
bit planets.

Examples of these four types of celestial bodies are shown
in Figure 6. It should be specifically noted that Venus, Mars,
Jupiter, Saturn, and the Moon are common targets of real-
world planetary imaging. To ensure fairness, we designated
these five celestial bodies strictly for the test set and did not
utilize them in the training process of our network.
Details of the simulation pipeline. Here, we provide more
details on the turbulence simulation pipeline, as illustrated

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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in Fig. 2 of the main paper. We first use the layer-wise pa-
rameter configurator to assign Di and r0i to each layer. Ini-
tially, we randomly select parameters D and r0, where D
and r0, respectively, represent the diameter of the photog-
rapher’s lens and the total Fried parameter along the path.
Since the observed turbulence intensity depends on D

r0
, we

actually select the parameters D and D
r0

for our study. The
two parameters are randomly chosen for each ground truth
and its corresponding disturbed images, as recommended
by (Zhang et al. 2022). In our case, the value of D is uni-
formly distributed between 0.1 m and 0.4 m, while D

r0
is

uniformly distributed between 1 and 3, corresponding to the
common apertures of the planetary observation telescopes
and the typical turbulence magnitude during planetary pho-
tography.

To obtain the r0i for each layer, we configure them ac-
cording to Table 4 in (Li et al. 2020), so that the variance of
phase fluctuation between the actual beam and the approx-
imate beam is minimized, and r0 satisfies the relation with
r0i (for i = 1, 2, 3) as

r0 =

(
3∑

i=1

r
−5/3
0i

)−3/5

. (1)

The specific configuration is shown in Table 3, where α is
a constant that can be solved by substituting the total Fried
parameter r0 along with the physically configured r0i into
Equation (1), and Di is the equivalent aperture at the bottom
of the atmosphere of the i-th layer, defined as

Di =

{
D0 + θ0

∑2
j=i Vj+1(C), i = 1, 2

D0, i = 3

Here, θ0 is the angular extent of the celestial body to the ob-
server. As shown in Figure 7, the decreasing trend in mean
variance with increasing N demonstrates the effectiveness
of finer layer-wise segmentation in capturing the subtle vari-
ations in atmospheric turbulence, yet as N increases further,
the diminishing returns in variance reduction suggest that
N = 3 represents an optimal trade-off. Following this, we
simulate different turbulence magnitudes for each layer in
a top-to-bottom sequence using the pre-trained model pro-
vided by (Mao, Chimitt, and Chan 2021). Subsequently, the



Planet Dwarf planet SatelliteAsteroid

Figure 6: Visual representation of four types of celestial objects included in our synthetic dataset. From left to right, the images
show two examples for each type: planets (Mars and Jupiter), dwarf planets (Eris and Makemake), asteroids (Bennu and
Itokawa), and satellites (Dione and Ganymede).

Figure 7: Mean variance of atmospheric turbulence magni-
tude as a function of the number of discrete atmospheric lay-
ers (N ) used in the simulation. Each layer is configured with
distinct values of Di and r0i , contributing to the overall tur-
bulence profile captured by our pipeline. Our choice N = 3
significantly reduces the mean variance of turbulence mag-
nitude, without incurring too much computational cost.

simulation passes through a noise generator to yield the fi-
nal simulation result. An additional visual comparison of the
photon simulator PhoSim (Peterson et al. 2015) and our sim-
ulation method is presented in Figure 8, showing that our
simulation method can produce similar result to the physi-
cally accurate photon simulator, while much more efficient
in time.

OursPhoSim

Figure 8: Comparison between PhoSim (Peterson et al.
2015) and our simulation method, demonstrating that our
simulation method is a close approximation to the physically
accurate photon simulator PhoSim (Peterson et al. 2015).

Table 3: This table presents the configuration of each atmo-
spheric layer in our turbulence simulation pipeline, as refer-
enced in Fig. 2 of the main paper. We provide the values of
Vi(C)/m and r0i/m for each layer, which are essential for
reducing the variance of phase fluctuation between the actual
and approximate beams. The values of r0i are set according
to Table 4 in (Li et al. 2020), making sure that Equation (1)
is followed for the connection between Di and r0i .

i Vi(C)/m r0i/m

1 4877 0.6844 α
2 3860 0.3941 α
3 1263 0.0895 α



Table 4: Quantitative evaluation of different layer configura-
tions. PSNR and SSIM values are shown for each configu-
ration.

C V(C) PSNR (dB) SSIM
Ours Ours 27.78 0.9007

Doubled Ours 22.12 0.7928
Halved Ours 22.73 0.8138
Ours All the Same 25.56 0.8499
Ours Reversed 20.92 0.7779

Evaluation of the turbulence simulator. We compare dif-
ferent layer configurations by creating datasets and summa-
rizing the quantitative results in Table 4, where C is the
overall turbulence strength, and V(C) represents its varia-
tion across layers (see Equation 2 in the main paper for de-
tails). First, we vary C while keeping V(C) constant, noting
a significant performance drop. Then, we keept C constant
and modified V(C), either making strength uniform across
layers or reversing its order, both of which lead to signifi-
cant degradation. The all the same case in the table refers
to no distance awareness as you mentioned. These experi-
ments show that our distance-aware simulator configuration
achieves superior performance.
Why not color image? Taking pictures of planets typi-
cally involves using black-and-white CMOS or CCD sen-
sors to capture images with different band filters due to
the faint light of planets. This technique, which focuses on
grayscale imaging, maximizes image clarity and resolution
by capturing all incoming photons, resulting in higher clarity
and signal-to-noise ratio (SNR), especially in scenarios with
short exposure times. As planetary objects are usually faint,
as mentioned in (Li et al. 2020), grayscale images are pre-
ferred for more detailed observations. Before creating color
images from these grayscale pictures, it is essential to per-
form turbulence removal operations, allowing for the pro-
cessing of grayscale images only.

Details of PlaNet architecture
In this section, we will give a more thorough explanation of
the design of our PlaNet network, including a comprehen-
sive demonstration of how the network processes arbitrary
input frames, and why the edge-based supervision is able to
be effective in practice, corresponding to Footnote 6 of the
main paper.

Permutation-invariant feature aggregation. The core
design for processing arbitrary input frames is the proposed
OBG module. As discussed in Sec. 4 of the main paper, a
CBAM block is used to aggregate the recalibrated feature
maps, and two ConvBlocks are used to decode the aggre-
gated feature maps into a single output image. To illustrate
this, let us assume an arbitrary number of N input grayscale
frames with shape (N, 1, H,W ). The features of each frame
are extracted and calibrated independently to get a tensor of
shape (N,C,H,W ), where C is the number of feature chan-
nels for each frame. After passing through the CBAM block

Input edge map Multi-frame averaged edge map

Figure 9: Visualization of the edge map showing the im-
pact of atmospheric turbulence on individual frames and
the efficacy of the averaging operation in mitigating distor-
tion. Each frame shows its own unique distortions, which
are significantly reduced in the stabilized image because of
the zero-mean Gaussian distribution that is typical of atmo-
spheric turbulence, leading to a less distorted edge map.

and two ConvBlocks, the tensor’s shape is transformed to
(1, C,H,W ) and (1, 1, H,W ), resulting in the final output.

Edge-based supervision. We present a visualization of
the edge map in Figure 9, which shows how each input
frame is affected by atmospheric distortions. These distor-
tions, mainly characterized by a zero-mean Gaussian distri-
bution, are substantially reduced through our averaging pro-
cess. This technique effectively stabilizes the image, signifi-
cantly diminishing the effects of atmospheric distortion. No-
tably, while the boundary of the planet appears blurry with
low contrast, our approach relies on edge supervision in-
stead of direct supervision in the image domain. This strat-
egy takes advantage of the stabilizing effect of the edges,
ensuring improved definition and clarity. Therefore, even
though some blurriness is inherent due to atmospheric con-
ditions, our method avoids the reconstruction of an overly
blurred image, preserving a balance between stability and
image sharpness.

Additional Comparisons on Synthetic and
Real Data

This section extends the comparison of the software Au-
toStakkert with four state-of-the-art learning-based methods
(Mao et al. 2022; Li et al. 2021; Dudhane et al. 2022; Chan
et al. 2022) to both synthetic and real datasets. Specifically,
for synthetic data, Figure 10 corresponds to Footnote 7 in
the main paper. Similarly, for real data, Figure 11 is aligned
with Footnote 9 in the main paper.
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Figure 10: Qualitative comparisons on synthetic data among our method, a representative planetary imaging software Au-
toStakkert, and several state-of-the-art learning-based methods that solve the closest problems including TurbNet (Mao et al.
2022), NIDR (Li et al. 2021), BIPNet (Dudhane et al. 2022), and BasicVSR++ (Chan et al. 2022).

Input Ours TurbNet NIDR BIPNet BasicVSR++AutoStakkert

Figure 11: Qualitative comparisons on real data among our method, a representative planetary imaging software AutoStakkert,
and several state-of-the-art learning-based methods that solve the closest problems including TurbNet (Mao et al. 2022), NIDR
(Li et al. 2021), BIPNet (Dudhane et al. 2022), and BasicVSR++ (Chan et al. 2022).
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