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Abstract

Polarization cameras can capture multiple polarized im-

ages with different polarizer angles in a single shot, bring-

ing convenience to polarization-based downstream tasks.

However, their direct outputs are color-polarization filter

array (CPFA) raw images, requiring demosaicing to recon-

struct full-resolution, full-color polarized images; unfortu-

nately, this necessary step introduces artifacts that make

polarization-related parameters such as the degree of po-

larization (DoP) and angle of polarization (AoP) prone to

error. Besides, limited by the hardware design, the resolu-

tion of a polarization camera is often much lower than that

of a conventional RGB camera. Existing polarized image

demosaicing (PID) methods are limited in that they cannot

enhance resolution, while polarized image super-resolution

(PISR) methods, though designed to obtain high-resolution

(HR) polarized images from the demosaicing results, tend to

retain or even amplify errors in the DoP and AoP introduced

by demosaicing artifacts. In this paper, we propose PIDSR,

a joint framework that performs complementary Polarized

Image Demosaicing and Super-Resolution, showing the abil-

ity to robustly obtain high-quality HR polarized images with

more accurate DoP and AoP from a CPFA raw image in

a direct manner. Experiments show our PIDSR not only

achieves state-of-the-art performance on both synthetic and

real data, but also facilitates downstream tasks.

1. Introduction

Polarization-based vision has benefited various applications,

such as shape from polarization [1, 2], reflection removal

[19], image dehazing [41], HDR imaging [42], etc. By

fully utilizing the physical clues encoded in the polarization-

# Equal contribution. * Corresponding author.

Code: https://github.com/PRIS-CV/PIDSR

Red Green Blue

0° 45° 90° 135°

CPFA raw image

1 × ℎ × ݓ
܀

Four full-color polarized images

3 × ℎ × ݓ

۷ఈ1 ۷ఈ2

۷ఈ3 ۷ఈ4

۷ఈ1HR ۷ఈ2HR

۷ఈ3HR ۷ఈ4HR
Four HR polarized images

3 × ݇𝑘 × ݇𝑘𝑘

PID PISR݇ ×SR 

Demosaicing results and the 
AoP produced by TCPDNet 

HR polarized images and the 
AoP produced by PSRNet 

↑

DoP & AoP HR DoP & AoP

Calculate

݇ ×SR 

Demosaicing results and the 
AoP produced by our PIDSR

HR polarized images and the 
AoP produced by our PIDSR

Direct output of the 

polarization camera

Ours: PIDSR

complem
entary

AoP HR AoP

ࣞInput CPFA raw image

ࣞ↑
Ground truth HR AoP

Baseline: PIDPISR

۷ఈ1,2,3,4 ۷ఈ1,2,3,4HR

۷ఈ1,2,3,4 ۷ఈ1,2,3,4HR

Concept of PID&PISR
Calculate

AoP HR AoP

Figure 1. Top: The concept of polarized image demosaicing (PID)

and polarized image super-resolution (PISR). Mid: An example

shows that the baseline (PID→PISR) works in a sequential manner,

where the AoPs calculated from the demosaicing results (produced

by TCPDNet [23]) and the HR polarized images (produced by

PSRNet [8]) suffer from severe artifacts. Bottom: An example

shows that our PIDSR works in a complementary manner, where

the calculated AoPs are more accurate. We choose k = 4 here.

relevant parameters such as the degree of polarization (DoP)

and angle of polarization (AoP), polarization-based meth-

ods often achieve higher performance compared with the

image-based ones, showing promising potentials. To acquire

the DoP and AoP, at least three polarized images with dif-

ferent polarizer angles are required. While a polarizer can

be used for this purpose, it demands multiple shots, making

https://github.com/PRIS-CV/PIDSR


the capture process quite inconvenient. Empowered by the

division of focal plane (DoFP) technology, a polarization

camera can capture four color polarized images with dif-

ferent polarizer angles (0◦, 45◦, 90◦, 135◦) in a single shot,

bringing convenience to the acquisition of the DoP and AoP.

Since DoFP uses color-polarization filter array (CPFA) to

record the color and polarization information simultaneously,

the direct output of a polarization camera is a CPFA raw im-

age. As shown in the left part of Fig. 1 (top), each pixel in a

CPFA raw image contains information about only one color

channel and one polarizer angle, which means that demosaic-

ing is required to reconstruct the corresponding polarized

images. Since unavoidable demosaicing artifacts tend to be

amplified by the non-linearity of subsequent calculations,

the DoP and AoP acquired from a polarization camera usu-

ally have a higher level of error than those acquired from a

polarizer, making the physical clues less distinctive. Besides,

limited by the hardware design, the resolution of a polariza-

tion camera is often much lower than that of a conventional

RGB camera, restricting the fidelity of the recorded infor-

mation. Thus, obtaining high-quality high-resolution (HR)

polarized images with more accurate DoP and AoP from a

polarization camera is of practical significance.

Despite its importance, a practical and reliable approach

to simultaneously achieve demosaicing and super-resolution

of polarization images has yet to be developed. As shown in

Fig. 1 (top), the most straightforward way is to sequentially

perform polarized image demosaicing (PID) [20, 22, 23]

and polarized image super-resolution (PISR) [8, 37] on the

CPFA raw image, i.e., perform “PID→PISR”. Defining R ∈
R

1×h×w (h and w are the height and width respectively)

as the CPFA raw image, Iα1,2,3,4
∈ R

3×h×w (α1,2,3,4 =
0◦, 45◦, 90◦, 135◦ are the polarizer angles) as the four full-

color polarized images, and IHR
α1,2,3,4

∈ R
3×kh×kw (k is the

SR scale) as the four HR polarized images respectively, the

process of PID→PISR can be written as

Iα1,2,3,4
= D(R) first, then IHR

α1,2,3,4
=↑ (Iα1,2,3,4

), (1)

where D and ↑ represent demosaicing and super-resolution

(SR) respectively. However, PID→PISR would produce

degenerated results, reducing the accuracy of the DoP and

AoP, as shown in Fig. 1 (mid). This is because existing

PISR methods [8, 37] usually assume that the inputs are

free of demosaicing artifacts, while existing PID methods

[20, 22, 23] cannot guarantee perfect outputs. Therefore, the

essential question needs to be addressed is: How to robustly

obtain IHR
α1,2,3,4

from R in a direct manner?

We observe that the spatial resolution often correlates

negatively with the severity of demosaicing artifacts, sug-

gesting that enhancing resolution can benefit PID, while

suppressing demosaicing artifacts could, in turn, improve

the performance of PISR. The observation indicates that PID

and PISR may be complementary, i.e., optimizing both of

them in a single framework can potentially enhance each

other’s performance. This motivates us to propose PIDSR,

a joint framework that performs complementary Polarized

Image Demosaicing and Super-Resolution. As shown in

Fig. 1 (bottom), given a CPFA raw image R, our PIDSR can

not only output the demosaicing results Iα1,2,3,4
with fewer

artifacts, but also output the HR polarized images IHR
α1,2,3,4

with higher quality, which can be described as

IHR
α1,2,3,4

, Iα1,2,3,4
= D↑(R), (2)

where D↑ denotes complementary demosaicing and SR.

Here, it is non-trivial to carefully design the formulation

of D↑, since naively formulating D↑ as a combination of D
and ↑ would result in error accumulation. To reduce the level

of error, we propose to formulate D↑ as a series of polarized

pixel reconstruction sub-problems, and introduce a two-stage

pipeline to handle the intra-resolution and cross-resolution

components of each sub-problem in a recurrent manner, fully

exploiting the complementary aspects of D and ↑ to optimize

each other jointly. Tailored to the pipeline, we design a neu-

ral network to explicitly inject the physical clues into both

two stages to preserve the polarization properties, making

full use of the Stokes-domain information of the polarized

images. To summarize, this paper makes contributions by

demonstrating: (1) PIDSR, a complementary polarized

image demosaicing and super-resolution framework, in-

cluding: (2) a two-stage recurrent pipeline to fundamen-

tally reduce the level of error; and (3) a Stokes-aided neural

network to preserve the polarization properties.

2. Related work

Polarized image demosaicing (PID). Unlike the demo-

saicing methods designed for conventional RGB images

[7, 10, 24] that handle the mosaic generated from color fil-

ter array (CFA), the methods designed for PID aim to deal

with the mosaic from color-polarization filter array (CPFA).

Maeda developed Polanalyser [20], an open-source software

that provides an interpolation-based basic PID tool, which

is widely adopted in polarization-based vision tasks [1, 2].

For higher performance, some methods attempted to adopt

numerical optimization based on handcrafted priors to sup-

press the demosaicing artifacts [5, 13, 16, 21, 22, 25, 34–36].

Some works adopted learning-based approaches to solve

this challenging problem, including convolutional neural net-

work (CNN) [14, 15, 23, 28, 31, 39], generative adversarial

network (GAN) [4], dictionary learning [17, 18, 32, 40], etc.

Li et al. [12] proposed a no-reference physics-based quality

assessment metric and show that it can be used to address

the PID problem. However, these methods can only restore

full-color polarized images from a CPFA raw image, and

cannot further enhance the resolution.

Polarized image super-resolution (PISR). Unlike the SR

methods designed for conventional RGB images [3, 27, 29,



30] that focus solely on resolution enhancement, the methods

designed for PISR aim to not only improve the resolution

of multiple polarized images but also preserve polarization

properties in them, making the task much more challeng-

ing. Hu et al. [8] proposed two polarized image degradation

models to simulate real image degradation, and designed a

network named PSRNet to perform polarization-aware SR

on monochrome polarized images along with a loss func-

tion to refine the DoP and AoP in a direct manner. Yu et

al. [37] proposed a network named CPSRNet to perform

polarization-aware SR on color polarized images, which in-

corporated a cross-branch activation module (CBAM) [33]

to leverage high-frequency information contained in the DoP

and AoP for preserving the polarization properties explicitly.

However, they are largely based on an assumption that the

demosaicing artifacts are not that significant, and ignore the

errors in the DoP and AoP of the input polarized images.

3. Method

3.1. Background

CPFA raw image formation model. Since polarization

cameras have a linear camera response function (i.e., the

pixel values linearly relate to the input irradiance), here we

follow other works [19, 41] by not applying any special

adjustments for non-linearity. As shown in Fig. 1 (top), a

full-color polarized image Iαi
∈ R

3×h×w can be regarded as

a collection of single-channel polarized images, i.e., Iαi
=

{I
cj
αi}, where i = 1, 2, 3, 4 and α1,2,3,4 = 0◦, 45◦, 90◦, 135◦

denote the polarizer angles, j = r, g, b and cr,g,b denote

RGB color channels. Here, each single-channel polarized

image I
cj
αi ∈ R

1×h×w can be written as

Icjαi
= Cj(Pi(E)), (3)

where E ∈ R
1×h×w denotes the input irradiance sampled

by an h × w pixel array, Cj and Pi denote the color and

polarization filtering operations at cj and αi performed by

the CPFA respectively. A CPFA raw image R ∈ R
3×h×w

captured by a polarization camera can be regarded as the

weighted sum of each single-channel polarized image I
cj
αi :

R =
∑

i∈{1,2,3,4}
j∈{r,g,b}

Mij · I
cj
αi

=
∑

i∈{1,2,3,4}
j∈{r,g,b}

Mij · (Cj(Pi(E))),

(4)

where Mij ∈ R
1×h×w denotes the weight of each summa-

tion term whose pixel value at coordinates (x, y) satisfies

Mij(x, y) =

{

1 if I
cj
αi(x, y) is in the CPFA pattern

0 otherwise
.

(5)

Combing Eq. (3) and Eq. (4), we can see that PID is similar

to performing interpolation on the missing pixels (i.e., the

pixels at coordinates (x, y) satisfying Mij(x, y) = 0) from

one out of twelve necessary intensity measurements, and it

is an ill-posed problem without closed form solution.

Acquisition of the DoP and AoP. Given a CPFA raw im-

age R, one can perform PID on it to obtain four full-color

polarized images Iα1,2,3,4
and use them to acquire the DoP

p ∈ [0, 1] and AoP θ ∈ [0, π] for downstream tasks by

p =

√

S2
1
+ S2

2

S0

and θ =
1

2
arctan(

S2

S1

), (6)

where S0,1,2
1 are called the Stokes parameters [6, 11] that

can be computed as

{

S0 = 2Īαi
= Iα1

+ Iα3
= Iα2

+ Iα4

S1 = Iα3
− Iα1

, and S2 = Iα4
− Iα2

, (7)

where Īαi
=

∑

4

i=1
Iαi

/4 is the average polarized image.

Acquisition of the HR counterparts. As the polarized

images Iα1,2,3,4
become available, one can perform PISR on

them to acquire their HR counterparts IHR
α1,2,3,4

. Similarly, the

HR counterparts of the Stokes parameters SHR
0,1,2, DoP pHR

and AoP θ
HR can also be acquired by substituting Iα1,2,3,4

with IHR
α1,2,3,4

in Eq. (7) and Eq. (6). It is important to note

existing PISR methods [8, 37] cannot directly perform super-

resolution on CPFA raw images, and they require PID as a

pre-processing step to generate the polarized images first.

3.2. Motivation and overall framework

As indicated in Eq. (7) and Eq. (6), p and θ exhibit non-

linear relationships with Iα1,2,3,4
. This non-linearity would

exacerbate demosaicing artifacts, meaning errors arising

from imperfections in PID (e.g., inaccurate interpolation,

failure to handle sensor noise, etc.) are more noticeable in p

and θ than in Iα1,2,3,4
. To verify it, we design an experiment

on our test dataset to evaluate the average error rates of p,

θ, and S0
2 acquired from the demosaicing results. Here, we

choose Polanalyser [20], IGRI2 [22], and TCPDNet [23]

as the PID methods, and define the error rate of a variable

v (normalized to [0, 1]) similar to the one in [43]: ERv =
∑

p/w |v−vgt|
∑

p/w v
, where

∑

p/w denotes the pixel-wise sum, the

subscript gt stands for the ground truth throughout this paper.

As shown in Fig. 2 (a), the average error rates of p and θ are

much larger than S0 for all PID methods. Besides, obtaining

high-quality HR polarized images is challenging because the

performance of PISR is constrained by the effectiveness of

the pre-processing step, PID. To verify it, we design another

experiment on our test dataset to evaluate the performance of

1S0 describes the total intensity (which can be regarded as the unpolar-

ized image), and S1 (S2) describes the difference between the intensity of

the vertical and horizontal (135◦ and 45
◦) polarized light.

2Since S0 has a linear relationship with Iα1,2,3,4 (see Eq. (7)), we can

use S0 to represent Iα1,2,3,4 in such a proof-of-concept experiment.
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using demosaicing results. (c) The average error rates of both p, θ,
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two PISR methods (PSRNet [8] and CPSRNet [37]) under

different input conditions. Specifically, we use polarized

images generated by an existing PID method (Polanalyser

[20]) and their corresponding mosaic-free ground truth as

inputs respectively for comparison. As shown in Fig. 2 (b),

the performance of PISR methods using polarized images

generated by Polanalyser [20] as input is inferior to that

using the ground truth as input for both p, θ, and S0.

Notably, we observe that the spatial resolution at which

the input irradiance E is sampled (i.e., the same scene sam-

pled at different h×w resolutions) often correlates negatively

with the severity of demosaicing artifacts. As a proof of con-

cept, we use a virtual camera with varying resolutions to

sample the input irradiance from rendered scenes (using Mit-

suba 33), and adopt Eq. (4) to obtain the CPFA raw images at

different resolutions; then, a PID method (Polanalyser [20])

is adopted to produce the corresponding demosaicing re-

sults. Results are shown in Fig. 2 (c), which demonstrate the

3https://www.mitsuba-renderer.org/
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severity of demosaicing artifacts (measured using average

error rates of both p, θ, and S0) decreases as the resolution

increases. We can see these results align with the fact that

existing PID methods [20, 22, 23] typically leverage inter-

actions among neighboring pixels for interpolation, where

preserving finer details could lead to more accurate interpo-

lated pixel values (i.e., at higher resolutions, artifacts such as

blurring or jagged edges (aliasing) are less likely to occur).

This observation suggests enhancing resolution can bene-

fit PID. Combining the fact that suppressing demosaicing

artifacts could improve the performance of PISR, we can

deduce that PID and PISR may be complementary.

Based on the above analysis, we propose to design a joint

framework that performs complementary polarized image

demosaicing and super-resolution, named PIDSR. As shown

in Eq. (2), given a CPFA raw image R as input, our PIDSR

aims to perform complementary demosaicing and SR (D↑)

on it to output not only demosaicing results Iα1,2,3,4
but also

HR polarized images IHR
α1,2,3,4

with more accurate DoP and

AoP. Thus, the overall process of PIDSR can be regarded as

maximizing a posteriori of the outputs Iα1,2,3,4
and IHR

α1,2,3,4

conditioned on the inputs R along with the complementary

demosaicing and SR function D↑ parameterized by Ψ:

argmax
Ψ

D↑(Iα1,2,3,4
, IHR

α1,2,3,4
|R,Ψ). (8)

3.3. Two-stage recurrent PIDSR pipeline

The most straightforward way to solve the maximum a pos-

teriori estimation problem in Eq. (8) is directly formulating

the complementary demosaicing and SR function D↑ as a

cascade of two stages, i.e., demosaicing function D and SR

function ↑, as shown in Eq. (1). However, such a pipeline

has two main drawbacks that limit its overall performance.

First, errors tend to accumulate across stages because D
and ↑ are independent, preventing the formation of negative

feedback loops to stabilize the level of error. Second, the

sequential nature of these stages fails to leverage the comple-
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mentary aspects of D and ↑, missing the opportunity for joint

optimization. Therefore, a more robust pipeline is required.

Prominently, we found that a CPFA raw image R can be

approximately converted to four half-resolution, full-color

polarized images Rα1,2,3,4
. As shown in Fig. 3, first, by

filtering out the pixels corresponding to a specific polarizer

angle αi from a given CPFA raw image R and arranging

them together, we could form an image R∗
αi

∈ R
1×h/2×w/2

with a format similar to a CFA raw image (i.e., the mosaic

pattern produced by a color filter array); then, by applying a

simple RGB demosaicing method (e.g., bi-linear interpola-

tion) to R∗
αi

, we could generate a half-resolution, full-color

polarized image Rαi
, though it would exhibit spatial dis-

continuities between neighboring pixels. This suggests that

D can be formulated into two sub-problems: spatial discon-

tinuity alleviation and resolution enhancement, equivalent

to performing intra-resolution and cross-resolution polar-

ized pixel reconstruction. Similarly, ↑ can also be formu-

lated into two sub-problems: physical correlation restoration

(the intra-resolution one) and resolution enhancement (the

cross-resolution one). This decoupled formulation ensures

that the disrupted physical correlation among multiple po-

larized images, caused by demosaicing artifacts from the

pre-processing step (PID), has minimal negative impact on

resolution enhancement, facilitating the accurate acquisition

of DoP and AoP. To this end, we could unify D and ↑ into a

recurrent structure, which can not only avoid error accumu-

lation but also make full use of the complementary aspects

of D and ↑ to optimize each other jointly.

We design a two-stage recurrent PIDSR pipeline to im-

plement D↑, as illustrated in Fig. 4. The first stage f is a

spatial-physical coherence reconstructor that performs intra-

resolution pixel reconstruction, aiming to alleviate the spa-

tial discontinuities between neighboring pixels, restore the

physical correlation among multiple polarized images, and

deal with the potential sensor noise; the second stage g is a

polarization-aware resolution enhancer that performs cross-

resolution pixel reconstruction, with a focus on both SR and

preserving polarization properties. Starting with a CPFA

raw image R as the initial input, we first approximately con-

vert it into four half-resolution, full-color polarized images

Rα1,2,3,4
using the way shown in Fig. 3 as a pre-processing

step, then send Rα1,2,3,4
to f and g in a sequential manner

to finish the first round of iteration to obtain four full-color

polarized images Iα1,2,3,4
; after that, we can repeat the iter-

ation for n additional rounds to produce four HR polarized

images IHR
α1,2,3,4

with an SR factor of k = 2n×.

3.4. Stokes-aided PIDSR network

Spatial-physical coherence reconstructor (f ). As shown

in the first stage of Fig. 4, it aims to solve the intra-resolution

polarized pixel reconstruction sub-problem, which alleviates

the inherent spatial discontinuity in Rα1,2,3,4
and restores

the imperfect physical correlation in Iα1,2,3,4
during the de-

mosaicing and SR workflows, respectively. Taking the demo-

saicing workflow as an example, this stage learns the residual

between Rα1,2,3,4
and Tα1,2,3,4

(which are the spatially con-

tinuous intermediate results). First, two feature extraction

heads Fi and Ff
s are used to extract the image and polariza-

tion features from Rα1,2,3,4
and their corresponding Stokes

parameters Sa
1,2 respectively. Then, a backbone network is

adopted to process the extracted features to compensate the

missing spatial information in the high-dimensional feature

space. Here, we should not directly concatenate the extracted

features and send them into the backbone network, since the

domain gap between the features of Rα1,2,3,4
and Sa

1,2 could



Table 1. Quantitative comparisons on synthetic data. The comparisons involve our PIDSR, three state-of-the-art PID methods (Polanalyser

[20], IGRI2 [22], and TCPDNet [23]), and the only existing two PISR methods (PSRNet [8] and CPSRNet [37]).

Metric PSNR↑/SSIM↑ MAE↓

Demosaicing Iα1
(0◦) Iα2

(45◦) Iα3
(90◦) Iα4

(135◦) S0 p θ

Polanalyser [20] 31.95/0.8955 32.08/0.8968 32.44/0.8989 32.14/0.8973 33.28/0.9138 26.68/0.7164 17.8666

IGRI2 [22] 34.25/0.9349 34.33/0.9359 34.64/0.9369 34.46/0.9365 35.50/0.9450 27.78/0.7486 16.5830

TCPDNet [23] 37.26/0.9585 37.60/0.9602 37.90/0.9609 37.81/0.9612 38.65/0.9669 32.26/0.8262 13.1881

PIDSR 38.90/0.9717 38.98/0.9719 39.11/0.9721 39.21/0.9732 40.24/0.9780 33.33/0.8447 12.2383

Super-resolution IHR
α1

(0◦) IHR
α2

(45◦) IHR
α3

(90◦) IHR
α4

(135◦) SHR
0

pHR
θ

HR

PSRNet (2×) [8] 35.66/0.9309 35.49/0.9301 35.65/0.9306 35.65/0.9319 36.46/0.9439 32.01/0.8298 13.1884

CPSRNet (2×) [37] 32.97/0.8936 33.11/0.8944 33.35/0.8947 33.17/0.8958 33.60/0.9021 24.14/0.7649 15.5811

PIDSR (2×) 36.55/0.9488 36.64/0.9493 36.85/0.9502 36.77/0.9505 37.44/0.9553 32.97/0.8438 12.3520

PSRNet (4×) [8] 35.15/0.9227 35.41/0.9247 35.74/0.9264 35.57/0.9257 36.13/0.9311 31.95/0.8305 13.7751

CPSRNet (4×) [37] 30.82/0.8599 30.75/0.8596 30.98/0.8600 30.76/0.8608 31.16/0.8677 22.52/0.7325 16.5469

PIDSR (4×) 35.48/0.9297 35.58/0.9307 35.83/0.9321 35.70/0.9319 36.31/0.9371 32.43/0.8379 13.0520

be very large, i.e., the features of Rα1,2,3,4
contain mainly

low-frequency structures, while the features of Sa
1,2 contain

mainly high-frequency structures. To handle this issue, we

design the backbone network as a modified U-Net [26] archi-

tecture, where in each scale the original convolution block

is substituted with a Stokes feature injection (SFI) block to

explicitly utilize the physical clues encoded in the Stokes

parameters to provide guidance for bridging the domain gap.

The SFI block contains two different branches for processing

the input and Stokes features respectively, which learn a bias

by multiplying the processed features to adjust the input fea-

tures. To effectively capture long-range feature interactions,

we design the SFI block to incorporate a multi-Dconv head

transposed attention (MDTA) module [38] at the beginning

of the branch for input features along with a gated-Dconv

feed-forward network (GDFN) module [38] before output.

After the backbone network, a feature refinement block Af

(containing an MDTA and a GDFN module [38]) is used to

reconstruct the residual between Rα1,2,3,4
and Tα1,2,3,4

.

Polarization-aware resolution enhancer (g). As shown

in the second stage of Fig. 4, it aims to solve the cross-

resolution polarized pixel reconstruction sub-problem, which

focuses on resolution enhancement during both the demo-

saicing and SR workflows. Also taking the demosaicing

workflow as an example, this stage learns the residual be-

tween Rint
α1,2,3,4

(the interpolated version of Rα1,2,3,4
) and

Iα1,2,3,4
. Since Tα1,2,3,4

are spatially continuous, their corre-

sponding Stokes parameters Sb
1,2 could offer robust physical

clues to facilitate the SR process with polarization-awareness.

Besides, since the backbone network in f already encodes

fine-grained multiscale features in the image domain, we

do not need to extract features from Tα1,2,3,4
additionally.

Therefore, in this stage, we choose to directly grab the fea-

tures from the coarsest level of the backbone network in f

and send them into a decoder (sharing the same architecture

with the decoder part of the backbone network in f ), under

the guidance of the features of Sb
1,2 extracted by another

feature extraction head Fg
s . Then, the output features of the

decoder are fed into another feature refinement block Ag

and a feature upsampling block U in a sequential manner to

form the residual between Rint
α1,2,3,4

and Iα1,2,3,4
.

Loss function. We design the loss function for both demo-

saicing and SR rounds as L = λ1Limg + λ2LStokes + λ3Lpol,

where Limg is the image loss aiming to ensure the pixel accu-

racy in the image domain, LStokes is the Stokes loss aiming

to preserve the continuity in the Stokes domain, and Lpol

is the polarization loss aiming to enforce the physical cor-

rectness of the DoP and AoP, λ1,2,3 are set to be 1.0, 10.0,

and 10.0 respectively. Here, we only detail each loss term in

the demosaicing round, and the SR round could be similar

(just replace the variables with the corresponding HR coun-

terparts). For the second stage (g), Limg can be written as

Limg = L1(Iα1
+Iα3

, Iα2
+Iα4

)+Lgrad(Iα1,2,3,4
, Igt

α1,2,3,4),
where L1 and Lgrad denote the ℓ1 loss and gradient loss re-

spectively, the superscript gt labels the ground truth through-

out this paper. Here, L1(Iα1
+Iα3

, Iα2
+Iα4

) aims to adjust

the numerical relationship among Iα1,2,3,4
since Iα1

+Iα3
=

Iα2
+ Iα4

always holds for polarized images. LStokes can

be written as LStokes = Lgrad(S0,S
gt
0
)+L1(S1,2,S

gt
1,2). Lpol

can be written as Lpol = L1(p,p
gt) + L1(θ,θ

gt). For the

first stage (f ), we use T
gt
α1,2,3,4 (the half-resolution version

of I
gt
α1,2,3,4 ) along with the corresponding Stokes parameters,

DoP, and AoP for supervision.

Training strategy. Our PIDSR is implemented using Py-

Torch and trained on an NVIDIA A800 GPU. For both de-

mosaicing and SR, we train the two stages f and g for 100

epochs simultaneously in total, with a learning rate of 0.005.

We use Adam optimizer [9] for optimization.
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Figure 5. Qualitative comparisons on both synthetic (the top group) and real data (the bottom group) of both demosaicing and 4× SR tasks.

4. Experiment

4.1. Evaluation

Since existing public datasets are insufficient for the setting

of our PIDSR, we generate a synthetic dataset4 for evalua-

tion. As for the demosaicing performance evaluation, we

compare our PIDSR with three state-of-the-art PID methods

Polanalyser [20], IGRI2 [22], and TCPDNet [23]; as for the

SR performance evaluation, we compare our PIDSR with

the only existing two PISR methods PSRNet [8] and CPSR-

Net [37]. Here, since PSRNet [8] is initially designed for

grayscale polarized images, we make slight modifications on

it to allow it to accept the color polarized images. Besides,

since the compared PISR methods [8, 37] can only take the

polarized images (instead of the CPFA raw image) as input,

we provide them the demosaicing results from TCPDNet

[23] (which achieves the best performance among the com-

pared PID methods [20, 22, 23]). Note that all compared

methods based on deep-learning [8, 23, 37] are retrained on

our dataset for a fair comparison. As the compared methods

do, we not only evaluate the quality of Iα1,2,3,4
(for demo-

4Details about our dataset can be found in the supplementary material.

saicing task) and IHR
α1,2,3,4

(for SR task), but also p, θ, S0

(for demosaicing task) and pHR, θHR, SHR
0

(for SR task).

We evaluate the results quantitatively on synthetic data us-

ing: Mean Angular Error (MAE), Peak Signal-to-Noise Ra-

tio (PSNR), and Structural Similarity Index Measure (SSIM).

Here, MAE (lower values indicating better performance) is

exclusively used to evaluate angular variables (θ and θ
HR),

while PSNR and SSIM are applied to the remaining variables.

Results are shown in Tab. 1, where our framework consis-

tently outperforms the compared methods on all metrics in

both demosaicing and SR tasks. Visual quality comparisons

on both synthetic and real data are shown in Fig. 55. From

the results, we can see that our PIDSR can produce more

accurate DoP and AoP, while the compared methods suffer

from severe artifacts (e.g., broken edges and discontinuity).

4.2. Ablation study

We conduct several ablation studies in Tab. 2 to verify the

validity of each design choice. First, we show the signifi-

cance of our PIDSR framework design that formulates D↑

as complementary demosaicing and SR, by comparing with

5Additional results can be found in the supplementary material.



Table 2. Quantitative evaluation results of ablation study.

Metric PSNR↑/SSIM↑ MAE↓

Demosaicing S0 p θ

Sequential D and ↑ 32.32/0.9134 23.78/0.6661 19.2907

Single-stage pipeline 34.61/0.9426 27.95/0.7406 38.2174

Without SFI blocks 37.18/0.9612 32.73/0.8392 13.1242

Ours (demosaicing only)→PSRNet [8] 40.24/0.9780 33.33/0.8447 12.2383

TCPDNet [23]→ ours (SR only) 38.65/0.9669 32.26/0.8262 13.1881

Our complete PIDSR 40.24/0.9780 33.33/0.8447 12.2383

Super Resolution SHR
0

(2×) pHR (2×) θ
HR (2×)

Sequential D and ↑ 32.16/0.8965 20.07/0.6225 21.8965

Single-stage pipeline 34.35/0.9278 28.10/0.7584 38.2203

Without SFI blocks 36.35/0.9458 31.65/0.8322 14.1309

Ours (demosaicing only)→PSRNet [8] 36.81/0.9513 32.68/0.8412 12.5958

TCPDNet [23]→ ours (SR only) 36.83/0.9457 32.19/0.8308 13.1530

Our complete PIDSR 37.44/0.9553 32.97/0.8438 12.3520

an alternative design that naively formulates D↑ as a com-

bination of D and ↑ using the same network architecture

(Sequential D and ↑). The performance degenerates, since

such a naive pipeline would result in error accumulation.

Next, we verify the necessity of our two-stage pipeline, by

comparing to a single-stage pipeline that does not explic-

itly reconstruct spatial-physical coherence under the same

PIDSR framework (Single-stage pipeline). The results are

not that good since the still remaining spatial discontinu-

ity and disrupted physical correlation would have negative

impact on resolution enhancement. Then, we validate the

effectiveness of our Stokes-aided neural network, by sub-

stituting the SFI blocks with original convolution blocks

(Without SFI blocks). We find that it does not perform well

since it cannot make full use of the Stokes-domain infor-

mation to preserve the polarization properties. Finally, we

also compare with two different hybrid baselines that feed

our demosaicing results into PSRNet [8] for SR (Ours (de-

mosaicing only)→PSRNet [8]), and feed the demosaicing

results of TCPDNet [23] into our PIDSR for SR (TCPDNet

[23]→ ours (SR only)), respectively. We can see that our

complete PIDSR achieves the first performance.

4.3. Application

To show that our PIDSR can be beneficial to down-

stream polarization-based vision applications, we take

polarization-based reflection removal (PRR, which takes

reflection-contaminated polarized images as input and out-

puts reflection-removed unpolarized images) as an example,

and try to obtain a reflection-removed unpolarized image

from a reflection-contaminated CPFA raw image captured

by a polarization camera. To achieve it, the following ap-

proaches could be used: (1) “PID→PISR→PRR”: perform-

ing PID and PISR sequentially on the CPFA raw image, then

performing reflection removal; (2) “PID→PRR→SISR”:

performing PID on the CPFA raw image first, then per-

forming reflection removal, and performing single image

super-resolution (SISR) in the end; (3) “PIDSR→PRR”: per-

Input reflection-contaminated 

CPFA raw image

(1) PID→PISR→PRR (2) PID→PRR→SISR (3) PIDSR→PRR (ours)

Reflection-free CPFA raw image

(for reference)

Figure 6. Results of polarization-based reflection removal. Our

method is not influenced by the zigzag artifacts. Please zoom-in

for better details.

forming our PIDSR on the CPFA raw image first, then per-

forming reflection removal. Here, the SR scale is 2, and the

involved PRR, PID, PISR, and SISR methods are selected to

be RSP [19], TCPDNet [23], PSRNet [8], and OmniSR [29]

respectively. Visual comparisons are shown in Fig. 6, where

we can see the result from PIDSR→PRR (ours) contains

more detailed textures and less reflection contamination.

5. Conclusion

We propose PIDSR, a joint framework that performs comple-

mentary polarized image demosaicing and super-resolution.

By carefully designing a two-stage recurrent pipeline to

fundamentally reduce the level of error and a Stokes-aided

neural network to preserve the polarization properties, our

PIDSR can robustly obtain HR polarized images with more

accurate polarization-related parameters such as the DoP and

AoP from a CPFA raw image in a direct manner.

Limitations. Since our PIDSR is specifically designed to

process a single CPFA raw image, it is unsuitable for recon-

structing a polarized video. Additionally, it cannot handle

CFA raw images, as it requires the Stokes parameters as

input, which are unavailable in this setting.
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A. Details about our synthetic dataset

Since existing public datasets are insufficient for the setting

of our PIDSR, we propose a synthetic dataset. It contians

138 different scenes (108 for training and 30 for test), and

we perform data augmentation (including random flip and

rotation) on each scene, so that in total the training and test

sets contain 98496 and 27360 different images respectively.

Fig. A shows the detailed procedure of generating our

dataset. For each scene, we place a linear polarizer in front

of a conventional RGB camera (Hikrobot MV-CA050-12UC

with an F/2.8 lens), and rotate the polarizer to four specific

polarizer angles α1,2,3,4 = 0◦, 45◦, 90◦, 135◦ in succession.

At each polarizer angle αi(i = 1, 2, 3, 4), we capture 100

polarized images and average them to serve as the HR ground

truth polarized image I
HRgt

αi
(i = 1, 2, 3, 4) (the ground truth

of PISR task). Then, we downsample I
HRgt

α1,2,3,4
to obtain the

ground truth polarized images I
gt
α1,2,3,4

(the ground truth of

PID task). After that, according to Eq. (4) of the main

paper, we manually add mosaic to I
gt
α1,2,3,4

to synthesize the

corresponding CPFA raw image R. Note that the size of

I
HRgt

α1,2,3,4
is set to be 1024×1224 for 2× SR experiments and

2048× 2448 for 4× SR experiments respectively, while the

size of I
gt
α1,2,3,4

and R is fixed to 512× 612.

B. Computational complexity analysis

To evaluate the computational complexity, we compare

the Params, FLOPs, and inference time on our synthetic

test dataset using a single NVIDIA A800 GPU among our

PIDSR, three state-of-the-art PID methods (Polanalyser [3],

IGRI2 [5], and TCPDNet [6]), and the only existing two

PISR methods (PSRNet [1] and CPSRNet [9]), as shown

in Tab. A. Here, the size of the input CPFA raw images is

# Equal contribution. * Corresponding author.

Table A. Computational complexity analysis.

Demosaicing Params[M] FLOPs[G] Inference time[s]

Polanalyser [3] - - 0.047

IGRI2 [5] - - 29.466

TCPDNet [6] 34.522 767.779 0.089

PIDSR 9.162 247.202 0.187

Super-resolution Params[M] FLOPs[T] Inference time[s]

PSRNet (2×) [1] 2.329 7.147 0.624

CPSRNet (2×) [9] 17.110 6.086 2.596

PIDSR (2×) 9.162 1.182 0.435

PSRNet (4×) [1] 2.477 7.358 0.644

CPSRNet (4×) [9] 16.962 5.321 2.709

PIDSR (4×) 9.162 5.910 0.890

512 × 612 pixels for measuring FLOPs, and the inference

time is the time taken to reconstruct a single scene. Note

that CPSRNet [9] generates a single polarized image cor-

responding to one polarizer angle per run. Therefore, to

obtain the complete set of outputs for comparison, the model

must be executed four times, each with a different polarizer

angle. Besides, since Polanalyser [3] and IGRI2 [5] are

not learning-based methods, we can neither evaluate their

Params nor FLOPs.

C. Additional results on synthetic data

We provide additional visual quality comparisons on syn-

thetic data among our PIDSR, three state-of-the-art PID

methods (Polanalyser [3], IGRI2 [5], and TCPDNet [6]),

and the only existing two PISR methods (PSRNet [1] and

CPSRNet [9]), as shown in Fig. B.

1



RGB camera

Linear polarizer

Hikrobot MV-CA050-12UC 

with an F/2.8 lens

……

100 polarized images 

at each polarizer angle

۷ఈ1HRgt ۷ఈ2HRgt
۷ఈ3HRgt ۷ఈ4HRgt

0
°

45
°

90
°

135
°

0
°

45
°

90
°

135
°

Ground truth HR polarized images

۷ఈ1gt ۷ఈ2gt
۷ఈ3gt ۷ఈ4gt

Capture Average Downsample Add mosaic ࡾ
Ground truth polarized images CPFA raw image

Figure A. The detailed procedure of generating our dataset.

CPSRNet Ours

High-resolution

ground truthPSRNetOursIGRI2Polanalyser TCPDNet

Demosaicing results Super-resolution results

ࣂ
ܘ
0܁
ࣂ
ܘ
0܁
ࣂ
ܘ
0܁

Figure B. Qualitative comparisons on synthetic data of both demosaicing and 2× SR tasks.



D. Additional results on real data

We provide additional visual quality comparisons on real

data among our PIDSR, three state-of-the-art PID methods

(Polanalyser [3], IGRI2 [5], and TCPDNet [6]), and the only

existing two PISR methods (PSRNet [1] and CPSRNet [9]),

as shown in Fig. C.

E. Qualitative evaluation of ablation study

We present an example of the qualitative evaluation of the

ablation study in Fig. D. As shown, our complete PIDSR

produces the results with the best visual quality.

F. Additional results of application

We provide additional results of polarization-based reflection

removal (PRR) produced by the following approaches: (1)

“PID→PISR→PRR”: performing PID and PISR sequentially

on the CPFA raw image, then performing reflection removal;

(2) “PID→PRR→SISR”: performing PID on the CPFA raw

image first, then performing reflection removal, and per-

forming single image super-resolution (SISR) in the end; (3)

“PIDSR→PRR”: performing our PIDSR on the CPFA raw

image first, then performing reflection removal, as shown

in Fig. E. Here, the SR scale is 2, and the involved PRR,

PID, PISR, and SISR methods are selected to be RSP [2],

TCPDNet [6], PSRNet [1], and OmniSR [8] respectively.

G. Generalization ability evaluation

To validate the generalization ability of our PIDSR and

the compared methods (including three state-of-the-art PID

methods (Polanalyser [3], IGRI2 [5], and TCPDNet [6]),

and the only existing two PISR methods (PSRNet [1] and

CPSRNet [9])), we also evaluate them on two existing

datasets (KAUST dataset [7] and Tokyo Tech dataset [4]).

The KAUST dataset [7] provides 40 different scenes with

a resolution of 1024 × 1024 pixels, and the Tokyo Tech

dataset [4] provides 40 different scenes with a resolution

of 1024 × 768 pixels. Those scenes were also captured

by placing a linear polarizer in front of a conventional

RGB camera and rotating it to four specific polarizer an-

gles α1,2,3,4 = 0◦, 45◦, 90◦, 135◦ in succession.

Since the KAUST dataset [7] and Tokyo Tech dataset [4]

are initially designed for the PID task only, in order to make

them applicable for both PID and PISR tasks, we adopt a

similar approach as our procedure of dataset capturing. First,

we treat the provided polarized images as the ground truth

HR polarized images I
HRgt

α1,2,3,4
(i.e., the ground truth of PISR

task). Then, we downsample I
HRgt

α1,2,3,4
to half the resolution,

and treat the downsampled ones as the ground truth polarized

images I
HRgt

α1,2,3,4
(i.e., the ground truth of PID task). After

that, we manually add mosaic to I
HRgt

α1,2,3,4
to synthesize the

corresponding CPFA raw images R.

Table B. Generalization ability evaluation on KAUST dataset[7].

Metric PSNR↑/SSIM↑ MAE↓

Demosaicing S0 p θ

Polanalyser [3] 38.48/0.9620 31.92/0.8717 7.4131

IGRI2 [5] 44.15/0.9866 35.37/0.9324 5.1473

TCPDNet [6] 45.21/0.9870 39.01/0.9430 4.0684

PIDSR 46.99/0.9893 39.23/0.94933 3.7633

Super Resolution SHR
0

(2×) pHR (2×) θ
HR (2×)

PSRNet [1] 41.36/0.9648 34.55/0.8917 5.6266

CPSRNet [9] 39.74/0.9573 34.81/0.9011 5.3150

PIDSR 42.76/0.9720 35.29/0.9049 5.2796

Table C. Generalization ability evaluation on Tokyo Tech dataset

[4].

Metric PSNR↑/SSIM↑ MAE↓

Demosaicing S0 p θ

Polanalyser [3] 33.10/0.9042 26.88/0.6983 20.0742

IGRI2 [5] 37.75/0.9634 30.12/0.7985 16.9239

TCPDNet [6] 39.26/0.9718 33.66/0.8497 13.8324

PIDSR 39.83/0.9759 35.14/0.8593 12.7000

Super Resolution SHR
0

(2×) pHR (2×) θ
HR (2×)

PSRNet [1] 36.25/0.9458 31.10/0.8091 14.4521

CPSRNet [9] 34.46/0.9278 32.03/0.8004 14.2948

PIDSR 37.97/0.9574 32.61/0.8104 14.0238

Results are shown in Tab. B and Tab. C. Note that all

learning-based methods involved in the comparisons, includ-

ing our PIDSR, TCPDNet [6], PSRNet [1], and CPSRNet

[9], were trained exclusively on our dataset. For evaluation,

these models were tested on the entire KAUST dataset [7]

and Tokyo Tech dataset [4], ensuring that the test datasets

remain entirely unseen during training. From the results

we can see that our PIDSR consistently outperforms the

compared methods on all metrics in both demosaicing and

SR tasks, which demonstrates that our PIDSR has better

generalization ability than all compared methods.
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