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Abstract. Electromagnetic Inverse Scattering Problems (EISP) have
gained wide applications in computational imaging. By solving EISP,
the internal relative permittivity of the scatterer can be non-invasively
determined based on the scattered electromagnetic fields. Despite previ-
ous efforts to address EISP, achieving better solutions to this problem
has remained elusive, due to the challenges posed by inversion and dis-
cretization. This paper tackles those challenges in EISP via an implicit
approach. By representing the scatterer’s relative permittivity as a con-
tinuous implicit representation, our method is able to address the low-
resolution problems arising from discretization. Further, optimizing this
implicit representation within a forward framework allows us to conve-
niently circumvent the challenges posed by inverse estimation. Our ap-
proach outperforms existing methods on standard benchmark datasets.
Project page: https://luo-ziyuan.github.io/Imaging-Interiors.
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1 Introduction

As electromagnetic waves can penetrate objects’ surfaces, they play a key role
in non-invasive imaging. Compared with modalities like X-ray and MRI, electro-
magnetic waves provide a potentially low-cost and safe approach [5, 26, 48] for
non-invasive imaging.

Non-invasive imaging via electromagnetic waves needs to be completed by
solving the Electromagnetic Inverse Scattering Problems (EISP). The typical
scenario and the associated physical quantities of EISP are displayed in Fig. 1.
In EISP, we need to infer the distribution of the scatterer’s relative permittivity
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Fig. 1: The results of a standard test case [1,60] in EISP. In an EISP system, the scat-
terer in the enclosed space D is first illuminated by incoming electromagnetic waves
emitted by transmitters and generates scattered fields. Then, the scattered fields mea-
sured by receivers are used to determine the scatterer’s relative permittivity. We show
results obtained by our method, BP [2], Twofold SOM [68], Gs SOM [8], BPS [60], CS-
Net [53], Physics-Net [39], and PGAN [56]. The pixel values in the images indicate the
values of the relative permittivity. RRMSE/SSIM values are shown below each figure.

from the measured scattered fields [46]. Then, the values of relative permittivity
can be visualized to image the objects’ internal structures.

However, solving EISP has never been an easy task. The first challenge comes
from the inverse estimation process, where the scatterer’s relative permittiv-
ity is derived from the measured scattered fields. The multiple scattering ef-
fects inherent to the EISP further significantly complicate this inverse estima-
tion [9,37,70]. Furthermore, continuous spaces are usually discretized into finite
elements or grids to facilitate numerical computations for electromagnetic com-
putations. This process of discretization inherently leads to a loss of details
and a decrease in image resolution for EISP [19, 47]. This consequently poses
challenges in accurately distinguishing internal small objects in close proximity.

The scattering mechanism is crucial in solving EISP [8, 39]. Recent deep-
learning-based methods [37, 60] first obtain a rough image using traditional al-
gorithms (e.g., BP [2] shown in Fig. 1) and then refine this rough result using
image-to-image translation networks. However, with the imaging process being
divided into two distinct stages, the measured physical data are overlooked in the
second phase, inevitably resulting in images of inferior quality (e.g., BPS [60] and
PGAN [56] shown in Fig. 1). Besides, as the relative permittivity distributions
can vary greatly across different objects, a single network may be insufficient
to reflect these differences. Therefore, a more appropriate approach is to opti-
mize for each object while thoroughly considering the scattering mechanisms.
Traditional methods like Twofold SOM [68] and Gs SOM [8] achieve this goal
by discretizing continuous relative permittivity values into discrete variables ex-
pressed as to-be-optimized matrices [8,15,68]. However, they cannot address the
low-resolution issues that arise from discretization, as shown in Fig. 1. Moreover,
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these methods have difficulties in handling sparse measurement data, which usu-
ally leads to low reconstruction quality. Thus, we need a more powerful repre-
sentation scheme beyond the discrete matrix form.

Since the scatterer’s relative permittivity distribution used for imaging is
intimately related to the spatial position [15], the envisioned approach should
indicate such location-dependent physical quantity. Moreover, for better imaging
quality, the approach should have the capacity to eliminate the low-resolution
curse made by discretization. Therefore, we propose to represent the scatterer’s
relative permittivity distribution via Implicit Neural Representations (INR), as
INR has remarkable capability in modeling location-dependent relationships [42,
54]. Its flexibility in handling image resolutions [10, 11, 31] also helps to allevi-
ate the curse made by discretization. Besides, INR is known for its case-by-case
optimization strategy, which can faithfully reflect each object’s internal differ-
ences. In addition, INRs exhibit a strong capacity to recover information from
incomplete data across a range of tasks [33, 35, 42], which can address the diffi-
culties caused by sparse measurement. We then optimize the INR of each object
by making sure that this representation can produce results akin to the actual
measurements. Such an optimization based on forward estimation can help to ad-
dress the difficulties caused by inverse estimation. Once the optimization settles
down, we can access the relative permittivity values by using their corresponding
locations and visualize them for imaging purposes.

Our solution is illustrated in Fig. 2. We use the Multilayer Perceptron (MLP)
as the backbone of INR. Specifically, two MLPs are used to represent the rela-
tive permittivity and the induced current. It allows us to bypass complex matrix
inversions in optimization, largely reducing the computational cost. To opti-
mize the implicit representations, we propose to use a data loss and a state
loss by fully considering the relationships between various physical quantities in
the scattering process. Meanwhile, a random sampling strategy is designed for
comprehensive consideration of each spatial position during optimization. Our
primary contributions can be summarized as follows:

– We propose a solution to EISP based on forward estimation to avoid diffi-
culties triggered by inverse estimation.

– We introduce the use of the learnable INR for the object’s relative permit-
tivity distribution to indicate the location-dependent quantity and achieve
flexibility in imaging resolution.

– We explore a novel strategy that utilizes two separate MLPs for two physical
quantities to avoid complex computations caused by matrix inversion.

The research for solving EISP has established standard benchmarks for eval-
uation [9, 56, 60]. We strictly follow these standard benchmarks in our research,
including system settings, datasets, and metrics.

2 Related work

Electromagnetic inverse scattering problems (EISP). Conventional ap-
proaches for EISP can be classified as non-iterative and iterative categories.
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Non-iterative methods tackle nonlinear issues by converting them into linear
equations, such as the Born approximation [55], Rytov approximation [21, 29],
and back-propagation (BP) method [2]. Since non-iterative methods are lim-
ited by reconstruction quality, other methods, such as the Subspace Optimiza-
tion Method (SOM) [8, 63, 69], Contrast Source Inversion (CSI) Method [4, 30],
Distorted Born Iterative Method (DBIM) [22], and other Newton-type meth-
ods [44, 52], are proposed to solve this problem in an iterative way. Despite
their feasibility, their performance is highly sensitive to the initial guess, which
undermines their robustness. Neural networks have recently been employed to
construct nonlinear mappings linking the dispersed fields and the obscure con-
stitutive attributes of scatterers [25, 38]. Most methods consider EISP in two
stages [37, 60, 62, 67], where traditional approaches [2, 55] are first employed to
obtain coarse images, and then the trained image-to-image neural networks are
used for post-processing. However, due to the lack of consideration for scattering
mechanisms, those methods encounter nearly all the difficulties faced by deep
learning [36,49], which easily causes their post-processing efforts to fail. We con-
sider an implicit forward approach to overcome the aforementioned difficulties
by optimizing a trainable implicit representation within a forward process.
Implicit neural representations (INR). Implicit neural representations usu-
ally employ an MLP to map from local coordinates to the associated values on
that coordinates [28,54,66], such as intensity for images and videos, or occupancy
value for 3D volumes. The basics of INR are briefly explained below. INR
is a neural network Fθ : x 7→ Fθ(x) that continuously maps the coordinates
x to the corresponding quantity of interest. For the data expressed as a func-
tion Φ : x 7→ Φ(x), the INR Fθ is a solution to Fθ(x) − Φ(x) = 0. Typically,
the weight of INR, θ, can be obtained through optimization. INR has shown
its advantages in parameterizing geometry and learning priors over shapes, as
demonstrated by DeepSDF [50], Occupancy Networks [41], and IM-Net [12]. A
considerable amount of subsequent research has proposed volumetric rendering
of 3D implicit representations, including Neural Radiance Fields (NeRF) [42]
and its acceleration [6, 45], quality enhancement [13, 59, 72], and copyright pro-
tection [40]. In the realm of 2D image representation, CPPNs [57] first proposed
the use of neural networks to parameterize images implicitly. SIRENs [54] pro-
posed generalization across implicit representations of images via hypernetworks.
X-Fields [3] parameterizes the Jacobian of pixel position with respect to view,
time, and illumination. In this work, we employ INR as the backbone to repre-
sent the scatterer’s properties, which is able to characterize the complex spatial
correlation in EISP and produce better imaging quality.

3 Physical model of EISP

As shown in Fig. 1, for an EISP system, the object to be imaged is defined as the
unknown scatterer, and the enclosed space is represented by a square Region of
Interest (ROI) denoted by D. Transmitters and receivers are positioned around
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D to emit electromagnetic waves and measure the scattered electromagnetic
fields, respectively.

Generally, the data measurement process can be split into two stages. At the
first stage, the induced current is excited as the electromagnetic waves from the
transmitters interact with the scatterer, aka wave-scatterer interaction. Subse-
quently, the induced current serves as a radiation source, generating the scattered
fields. The total electric fields within D can be described by Lippmann-Schwinger
equation [16], aka state equation, as follows:

Et(x) = Ei(x) + k20

∫
D

g (x,x′) J (x′) dx′, x ∈ D, (1)

where x and x′ are the spatial coordinates. Ei is the incident electric fields
directly from transmitters, while Et is the total electric fields consisting of the
original incident fields coming directly from transmitters and the scattered fields
coming from scatterers. k0 is the wavenumber computed from the signal fre-
quency, and g is the free space Green’s function. The relationship between the
induced current J and total electric fields Et can be expressed as follows:

J(x) = ξ(x)Et(x). (2)

In Eq. (2), ξ is the contrast defined as ξ(x) = εr(x)−1, where εr(x) denotes the
relative permittivity of the unknown scatterer.

The second equation describes the scattered fields as a reradiation of the
induced current [16], aka data equation, as follows:

Es(x) = k20

∫
D

g (x,x′) J (x′) dx′, x ∈ S, (3)

where Es is the scattered fields that can be measured by receivers at surface S
around the ROI D.

Since the digital signal analysis is only available on discrete variables5 [43,58],
Eq. (1) to Eq. (3) are inevitably transformed to their discrete counterparts.
Specifically, the ROI D is discretized into M × M square subunits and the
method of moments [51] is employed to obtain the discrete scattered fields. The
relationship between discrete contrast ξ and discrete relative permittivity εr can
be expressed as ξ = εr − 1. Then, Eq. (1) can be reformulated as follows:

Et = Ei +GD · J, (4)

where Et, Ei, and J are the discrete Et, Ei, and J , respectively. GD is dis-
crete free space Green’s function in D. The discrete version of Eq. (2) can be
represented as follows [56]:

J = Diag(ξ) ·Et, (5)

5 Discrete variables are denoted using bold letters in our paper
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Fig. 2: Overview of our implicit method. Two MLPs, Fθ and Hϕ, are used to implicitly
represent relative permittivity εr and induced current J , respectively. Random sam-
pling is applied for comprehensive optimization. The predicted induced current Ĵ is
calculated by Eq. (13) based on relative permittivity εr queried from Fθ and induced
current J directly queried from Hϕ. Then the state loss Lstate is calculated by com-
paring the predicted Ĵ and directly queried J. Besides, the directly queried induced
current J is used to compute the scattered fields Ês by Eq. (11). Data loss function
Ldata is constructed to evaluate the difference between predicted scattered fields Ês

and the measured values Es.

where Diag(ξ) is the diagonal matrix of contrast function. Similarly, Eq. (3) can
be discretized as follows:

Es = GS · J, (6)

where Es is the discrete Es, and GS is the discrete Green’s function to map
contrast source J to scattered fields Es.

The task of EISP is to infer the relative permittivity εr, a value closely re-
lated to ξ, from the scattered fields Es measured by receivers, and then visualize
it in an image. In an EISP system, knowing only Ei and Es makes it challenging
to estimate ξ inversely from Es based on Eq. (6). Furthermore, the inherent
nonlinearity originating from GD · J in Eq. (4) complicates the estimation pro-
cess [14, 19]. Ultimately, εr, a variable with continuous characteristics, can only
be derived using the aforementioned discrete equations, thereby compromising
the imaging resolution. Consequently, an effective strategy is necessary to pro-
duce more accurate outcomes for EISP.

4 Proposed implicit solution

As depicted in Fig. 2, our fundamental idea is to solve the inverse scattering
problem within a forward estimation process, which can be described by refor-
mulating Eq. (4) to Eq. (6) as follows:

Es = GS · Diag(ξ) · (I−GDDiag(ξ))−1 ·Ei, (7)
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where I is the identity matrix. Contrary to previous approaches [2,55] that treat
ξ as unknown, we regard the contrast ξ as a known quantity, by establishing
relative permittivity εr involved in Eq. (2) as a learnable implicit representation.
Then, we can calculate Es triggered by Eq. (7). During training, by contrasting
the calculated Es with the measured true ones, the learnable representation can
finally reach its optimum status. Since we do not aim to inversely express ξ as an
explicit function of Es, this optimization-in-forward approach can alleviate the
challenges associated with inverse estimation and nonlinearity. The use of INR
also ensures enhanced flexibility in imaging resolution. During inference, we can
directly obtain the relative permittivity values by querying the representation
with the corresponding coordinates.

4.1 Continuous representation for EISP

Representation for relative permittivity. We use a multilayer perceptron
(MLP) with parameters θ to map the continuous spatial coordinates x to its
associating relative permittivity values, which can be briefly described as follows:

εr(x) = Fθ (γ(x)) , (8)

where εr
6 denotes the relative permittivity obtained by querying the spatial

coordinates within the continuous representation Fθ. We further apply the posi-
tional encoding for x to facilitate the fitting capability of the model as follows:

γ(x) =
[
sinx, cosx, · · · , sin 2Ω−1x, cos 2Ω−1x

]⊤
, (9)

where Ω is a hyperparameter controlling the spectral bandwidth.
To optimize this continuous representation, we apply a series of equations de-

fined by the computation of forward estimation, and then compare the scattered
fields incited by this representation with the measured true ones. As discussed
in Sec. 3, since the discretization is unavoidable during the forward compu-
tation, we only query discrete spatial coordinates during optimization to align
with the discretization policy set by the method of moments [51]. Though we can
directly perform the forward computation via Eq. (7), the computation complex-
ity caused by its internal matrix inversion places a high demand on computing
resources and potentially compromises the stability of problem-solving [27].
Representation for induced current. To avoid the complexity caused by
matrix inversion, instead of the explicit computation defined in Eq. (7), we im-
plicitly represent J as its continuous form using another MLP. By analyzing
Eq. (7), the induced current is related to two variables: the discrete contrast ξ
and the incident electric fields Ei caused by transmitters. To faithfully describe
such correlation, we propose to consider the representation for J as the mapping
based on the spatial coordinates x and the transmitter’s position xt, which can
be defined as follows:

J(x,xt) = Hϕ

(
γ(x), γ(xt)

)
, (10)

6 Due to its continuous property, we do not write it as bold font.
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where Hϕ is a continuous function consisting of fully connected networks.
Random spatial sampling. Due to the necessity of discretization in numerical
computations to perform forward process, we need to spatially query the repre-
sentations Fθ and Hϕ at some positions to obtain their discrete forms. A typical
approach is to divide the ROI D evenly into grids and deterministically sam-
ple the center location of each grid [39, 53]. However, the representations would
only be queried at a fixed discrete set of locations in this way [42]. To take a
comprehensive consideration of each spatial position, we use a random sampling
scheme where we partition ROI D into M × M evenly-spaced grids, and the
center of (m,n) grid is (xm, yn). Each sample location (xsample

m , ysample
n ) is then

randomly drawn from a Gaussian distribution: xsample
m ∼ N (xm, σ2), ysample

n ∼
N (yn, σ

2), where σ is a hyperparameter to control the dispersion level of sample
points around their means. By probabilistically sampling each spatial position,
this scheme can alleviate the overlook of specific locations.

4.2 Forward calculation based optimization

The continuous representations obtained before can estimate corresponding phys-
ical quantities using spatial coordinates, but optimizing them directly with esti-
mated values is hard because obtaining their true values is difficult [61]. There-
fore, we indirectly refine the representations denoted by Fθ and Hϕ by proposing
a data loss and a state loss while fully considering the physical relationships.
Data loss. Based on Sec. 3, the wave-scatterer interaction leads to the induced
current when the electromagnetic waves from transmitters interact with the
scatterer. Then, the induced current generates the scattered fields, which can be
measured by receivers. Thus, a straightforward way to refine the representations
is to minimize the distance between the scattered fields computed from the
representations and the true ones. With the discrete induced current J sampling
from the continuous representation Hϕ defined in Eq. (10), we can obtain the
predicted scattered fields by reformulating the data equation in Eq. (6) as follows:

Ês
p = GS · Jp, (11)

where GS denotes the discrete Green’s function, and Jp and Ês
p denotes the dis-

crete induced current and predicted scattered fields inspired by the p-th trans-
mitter, respectively.

We then define our data loss used to contrast the predicted scattered fields
with the measured true ones as follows:

Ldata =

Nt∑
p=1

∥Ês
p −Es

p∥2, (12)

where Es
p is the true scattered fields measured by receivers, and Nt denotes

the number of all transmitters. The data loss enhances the optimization of the
representation by accounting for discrepancies associated with all transmitters.
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State loss. Although the data loss is straightforward, it cannot be used to
optimize Fθ. Since the induced current Jp is directly obtained by querying its
representation Hϕ, Eq. (12) does not contain any variables related to Fθ. To
effectively optimize Fθ, we consider minimizing the mismatch emerging from
the state equation defined in Eq. (4) and Eq. (5). Specifically, by reformulating
Eq. (7), an expression related to p-th transmitter can obtained as follows:

Ĵp = Diag(ξ) ·Ei
p + Diag(ξ) ·GD · Jp, (13)

where Jp denotes the discrete induced current sampling from Hϕ, ξ denotes the
contrast, and Ĵp indicates the induced current computed via the above mathe-
matical correlation.

Although Jp and Ĵp originate from distinct sources, both represent the in-
duced current values within the same spatial domain. If the same spatial coordi-
nates are given, they should yield identical values irrespective of their generation
sources. Therefore, we introduce a state loss to minimize the mismatch between
Jp and Ĵp as follows:

Lstate =

Nt∑
p=1

∥Ĵp − Jp∥2, (14)

where Nt is the number of all transmitters. Since Eq. (2) has clearly defined
the close correlation between ξ and the permittivity values εr, the minimization
of the state loss can ultimately optimize Fθ and Hϕ used for representing the
relative permittivity and induced current, respectively.
Overall loss. The overall loss to train the relative permittivity representation
Fθ and induced current representation Hϕ can be obtained as L = λdataLdata +
λstateLstate+λTVLTV, where LTV is a total variation loss for ξ, and λdata, λstate,
λTV are hyperparameters to balance the loss functions.

4.3 Implementation details

We implement our method using PyTorch. Two eight-layer MLPs with 256 chan-
nels and ReLU activations are used to predict the relative permittivity εr and
induced current J , respectively. Similar to the settings in previous methods based
on INRs [42, 54], positional encoding is applied to input positions before they
are passed into the MLPs. The ROI D is discretized into 64× 64 while training.
The hyperparameters for the overall loss are set as λdata = 1.00, λstate = 1.00,
and λTV = 0.01. We use the Adam optimizer with default values β1 = 0.9,
β2 = 0.999, ϵ = 10−8, and a learning rate 5 × 10−4 that decays following the
exponential scheduler during the optimization. We optimize the model for 4K
iterations on a single NVIDIA V100 GPU for all the datasets.

5 Experiments

5.1 Experiment setup

Dataset. We strictly follow the established rules in EISP [39, 56, 60] to set the
dataset. We train and test our model on standard benchmarks used for EISP.
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1) Synthetic Circular-cylinder dataset is synthetically generated comprising
1200 images of cylinders with random relative radius, number, and location
and permittivity between 1 and 1.5. 2) Synthetic MNIST dataset contains
grayscale images of handwritten digits. Similar to previous settings [60, 71], we
randomly select 1200 of them to synthesize scatterers with relative permittivity
values between 2 and 2.5 according to their corresponding pixel values. Fol-
lowing previous work to generate the above two synthetic datasets, we use 16
transmitters and 32 receivers equally placed on a circle for regular settings, and
the data are generated numerically using the method of moments [51] with a
224× 224 grid mesh to avoid inverse crime [17]. For sparse measurement exper-
iments, we decrease the number of receivers from 32 to 8 to utilize only 25% of
the regular measurement data. 3) Real-world Institut Fresnel’s database con-
tains three different dielectric scenarios, namely FoamDielExt, FoamDielInt, and
FoamTwinDiel. There are 8 transmitters for FoamDielExt and FoamDielInt, 18
transmitters for FoamTwinDiel, and 241 receivers for all the cases. As the wave-
length of the emitted electromagnetic wave should be comparable to or smaller
than the size of the target object, we set operating frequency f = 400 MHz on
synthetic datasets, and f = 5 GHz on real-world datasets.
Baselines. We maintain the same settings as in previous studies [53,56,60] to en-
sure a fair comparison. We compare our method with three traditional methods
and four deep learning-based approaches: 1) BP [2]: A traditional non-iterative
inversion algorithm. 2) Twofold SOM [68]: A traditional iterative minimization
scheme by using SVD decomposition. 3) Gs SOM [8]: A traditional subspace-
based optimization method by decomposing the operator of Green’s function. 4)
BPS [60]: A CNN-based image translation method with an initial guess from
the BP algorithm. 5) CS-Net [53]: A CNN-based contrast source reconstruction
scheme via subspace optimization. 6) Physics-Net [39]: A CNN-based approach
that incorporates physical phenomena during training. 7) PGAN [56]: A CNN-
based approach using a generative adversarial network.
Evaluation methodology. We evaluate the quantitative performance of our
method using PSNR, SSIM, and Relative Root-Mean-Square Error (RRMSE) [56].
For PSNR and SSIM, a higher value indicates better performance. For RRMSE [56],
a lower value indicates better performance. RRMSE is a metric widely used
in EISP defined as RRMSE = ( 1

M×M

∑M
m=1

∑M
n=1 |

ε̂r(m,n)−εr(m,n)
εr(m,n) |2) 1

2 , where
εr(m,n) and ε̂r(m,n) are the true and reconstructed discrete relative permit-
tivity of the unknown scatterers at location (m,n), respectively, and M ×M is
the total number of subunits over the ROI D.

5.2 Experiment results

Qualitative results on synthetic data. We first compare the reconstruction
quality visually using synthetic data including circular-cylinder dataset [60] and
MNIST dataset [20] against all baselines and the results are shown in Fig. 3. Our
method achieves superior visual performance compared to all other baselines.
Traditional methods, such as BP [2] and Twofold SOM [68], can only recover the
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Ground truth Our method BP Twofold SOM Gs SOM BPS CS-Net Physics-Net PGAN

0.054 / 0.971 0.217 / 0.637 0.196 / 0.692 0.071 / 0.935 0.112 / 0.897 0.110 / 0.827 0.098 / 0.906 0.143 / 0.834

0.051 / 0.922 0.135 / 0.636 0.098 / 0.663 0.073 / 0.777 0.092 / 0.769 0.082 / 0.743 0.094 / 0.756 0.077 / 0.791

Fig. 3: Samples obtained from synthetic Circular-cylinder dataset and MNIST dataset.
From left to right: ground truth, results obtained using our method, BP [2], Twofold
SOM [68], Gs SOM [8], BPS [60], CS-Net [53], Physics-Net [39], and PGAN [56]. The
pixel values in the images indicate the values of the relative permittivity. RRMSE/SSIM
values are shown below each figure. The first row is a standard test case [1,60], a well-
known pattern for the evaluation of EISP methods.

0.175 / 0.819 0.163 / 0.813 0.117 / 0.866 0.161 / 0.824

0.164 / 0.811 0.102 / 0.838 0.087 / 0.848 0.145 / 0.797

0.147 / 0.835

0.091 / 0.873

0.162 / 0.825

0.147 / 0.811

BP Twofold SOM Gs SOM BPS CS-Net Physics-Net PGAN

0.163 / 0.824

0.145 / 0.810

Ground truth

FoamDielExt

FoamDielInt

0.103 / 0.925

0.072 / 0.918

Our method

Fig. 4: Samples obtained from real-world Institut Fresnel’s database. From left to
right: ground truth, results obtained using our method, BP [2], Twofold SOM [68], Gs
SOM [8], BPS [60], CS-Net [53], Physics-Net [39], and PGAN [56]. The pixel values in
the images indicate the values of the relative permittivity. RRMSE/SSIM values are
shown below each figure.

rough shape of the target and produce inaccurate results at some junction parts.
Gs SOM [8] can reconstruct the relative permittivity of the targets with relatively
high accuracy, but still has obvious visual defects. Though deep learning-based
methods, such as BPS [60], CS-Net [53], Physics-Net [39], and PGAN [56], can
produce more accurate estimation, their visual qualities are still far below our
proposed method.
Qualitative results on real-world data. We further test our algorithm on
real-world data. The results for all methods are shown in Fig. 4. The visual
performance of our method remains superior when applied to real-world data.
Conventional methods exhibit a diminished performance, which, when used as
input, further negatively impacts the efficacy of deep learning-based approaches.
Noise robustness. We also compare the robustness of the models. By adding
different levels of noise to the received scattered fields signal, we use the noisy
scattered fields signal to recover the scattered object. The results are shown
in Fig. 5. It can be observed that when large noise is added, the results of other
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0.030 / 0.956 0.099 / 0.773 0.051 / 0.827 0.041 / 0.891 0.046 / 0.912 0.050 / 0.866 0.048 / 0.907 0.037 / 0.930

0.034 / 0.948 0.101 / 0.768 0.059 / 0.772 0.047 / 0.829 0.053 / 0.872 0.054 / 0.812 0.057 / 0.860 0.046 / 0.889

BP

5%

30%

Ground truth Twofold SOM Gs SOM BPS CS-Net Physics-Net PGANOur method

Fig. 5: Samples obtained under 5% and 30% noise levels. From left to right: ground
truth, results obtained using our method, BP [2], Twofold SOM [68], Gs SOM [8],
BPS [60], CS-Net [53], Physics-Net [39], and PGAN [56]. The pixel values in the images
indicate the values of the relative permittivity. RRMSE/SSIM values are shown below
each figure.

Table 1: Quantitative evaluation compared with BP [2], Twofold SOM [68], Gs
SOM [8], BPS [60], CS-Net [53], Physics-Net [39], and PGAN [56]. Best results are
shown in bold.

Circular dataset (5%) Circular dataset (30%) MNIST dataset (5%) MNIST dataset (30%) Institut Fresnel’s database
RRMSE SSIM PSNR RRMSE SSIM PSNR RRMSE SSIM PSNR RRMSE SSIM PSNR RRMSE SSIM PSNR

Proposed 0.016 0.968 39.20 0.027 0.938 34.15 0.017 0.972 37.90 0.044 0.893 29.70 0.127 0.897 27.06
BP 0.048 0.916 28.96 0.049 0.914 28.94 0.171 0.750 20.02 0.174 0.744 19.87 0.180 0.792 17.74
Twofold SOM 0.035 0.917 32.27 0.040 0.880 31.13 0.137 0.770 22.35 0.142 0.745 22.13 0.149 0.804 23.87
Gs SOM 0.034 0.926 32.74 0.035 0.916 32.43 0.101 0.853 24.63 0.113 0.811 23.73 0.135 0.837 24.95
BPS 0.027 0.964 34.20 0.034 0.928 32.17 0.098 0.912 25.68 0.133 0.859 23.21 0.166 0.787 18.86
CS-Net 0.024 0.900 33.75 0.035 0.810 31.27 0.179 0.788 25.37 0.227 0.724 24.15 0.137 0.828 24.87
Physics-Net 0.024 0.945 37.20 0.031 0.921 33.53 0.079 0.938 27.74 0.113 0.889 24.44 0.168 0.795 18.42
PGAN 0.021 0.957 36.89 0.030 0.933 33.03 0.090 0.918 26.09 0.124 0.873 23.64 0.167 0.794 18.46

baselines are greatly affected. However, our method can accurately reconstruct
the scatterer under larger noise, demonstrating the superior robustness of the
proposed method.
Evaluation for flexible resolution. The continuity of implicit function al-
lows INR to interpolate and infer at arbitrary points in the input space. This
characteristic ensures flexible resolution during the imaging process. As depicted
in Fig. 6, we employ a fixed resolution of 64 × 64 during training and acquire
images of varying resolutions by sampling the INR at different scales. The use
of the random sampling scheme can avoid artifacts in the results. Compared
to post-super-resolution methods, like Gs SOM + HAT-L [7], our method can
achieve higher quality results. The resolution flexibility of INR paves the way
for more in-depth analysis of reconstructed images at various resolution levels.
Quantitative results. The quantitative results of the reconstruction quality
in Tab. 1 further validate the proposed method. Higher PSNR and SSIM values
suggest our method accurately recovers object shapes and effectively maintains
detailed structural information. Lower relative error values indicate our method’s
predictions of relative permittivity distribution are more accurate compared to
other methods.
Results for sparse measurement. We use 25% of the standard measurement
data to conduct an experiment [53, 60], and the results are shown in Fig. 7.
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0.050 / 0.922

32X32
0.046 / 0.958

256X256
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128X128
0.072 / 0.766

256X256
0.071 / 0.834

128X128
0.074 / 0.763

256X256
0.074 / 0.834

128X128
0.074 / 0.764
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0.073 / 0.777

256X256
0.075 / 0.833

Our method Our method (w/o RS)

Gs SOM Gs SOM + Cubic interpolation Gs SOM + Spline interpolation Gs SOM + HAT-L

Fig. 6: Comparison of resolution flexibility among different methods. Our method is
evaluated against our method without random sampling (RS) scheme, Gs SOM [8],
Gs SOM + Cubic/Spline interpolation, and Gs SOM + HAT-L [7], under different
resolution settings. All methods are implemented at an original resolution of 64 × 64.
The pixel values in the images indicate the values of the relative permittivity. Resolution
and RRMSE/SSIM values are shown below each figure.

Ground truth Our method BP Twofold SOM Gs SOM BPS CS-Net Physics-Net PGAN

0.052 / 0.960 0.139 / 0.740 0.133 / 0.726 0.083 / 0.877 0.155 / 0.819 0.883 / 0.044 0.138 / 0.796 0.236 / 0.701

Fig. 7: The results for sparse measurement. From left to right: ground truth, results
obtained using our method, BP [2], Twofold SOM [68], Gs SOM [8], BPS [60], CS-
Net [53], Physics-Net [39], and PGAN [56]. The pixel values in the images indicate the
values of the relative permittivity. RRMSE/SSIM values are shown below each figure.

Our method, leveraging INR, shows superior capability in reconstructing the
object’s interior from sparse measurements compared with other methods. This
also demonstrates that INR is more suitable for representing the relative permit-
tivity distribution of the object compared to other matrix-based representations
like Twofold SOM [68] and CS-Net [53].
Results for 3D scenarios. Our method can naturally generalize to 3D sce-
narios. In 3D scenarios, we utilize 3D Green’s functions in Eq. (4) and Eq. (6),
and perform integration over a 3D region of interest. We augment the input di-
mension of representations for relative permittivity and induced current to align
with the 3D coordinates, while keeping the remaining structures unchanged. We
collect the 3D scattering data from the synthetic 3D MNIST dataset [32] and
real-world dataset [24]. In the synthetic experiments, we employ 40 transmit-
ters and 160 receivers arranged around a unit cube. The results shown in Fig. 8
demonstrate that our method can reconstruct 3D objects by solving EISP.
Time analysis. Our method, BP [2], Twofold SOM [68], and Gs SOM [8] are
case-specific methods that do not require additional training time. The BPS [60],
CS-Net [53], Physics-Net [39], and PGAN [56] are deep-learning methods that
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Real-world settingSynthetic setting

Ground truth Reconstruction

Viewing direction #1 Viewing direction #2

Ground truth Reconstruction Ground truth Reconstruction

Viewing direction #1 Viewing direction #2

Ground truth Reconstruction

Fig. 8: The results for 3D scenarios on 3D MINIST dataset [32] and real-world
dataset [24]. We show two example cases with three viewing directions. We use isosur-
face to visualize the ground truths and reconstructed results of the spatial distribution
of relative permittivity.

Table 2: Ablation results compared with single representation for relative permittivity.

Parameter counts↓ Time each iteration↓ RRMSE↓ SSIM↑ PSNR↑
Proposed 1,019,139 117 ms 0.038 0.909 30.36
Single representation 493,313 289 ms 0.053 0.876 27.32

necessitate model training. We count the time for optimization procedure in
inference time, and our method outperforms traditional case-specific methods
and CS-Net [53]. Although the inference of other deep-learning methods is very
fast, their training processes are time-consuming. Additionally, we may be able
to reduce the optimization time through modifying the INR structure [45] or
improving the training process [64,65].
Ablation study Our approach mainly consists of three parts: the representa-
tion for relative permittivity, representation for induced current, and random
sampling. Since both the data loss Ldata and the state loss Lstate are necessary
for our method, we cannot easily remove any of them. We first use a single
representation for relative permittivity to replace the two MLPs in our original
approach. Both models are trained on an NVIDIA V100 GPU. From the results
shown in Tab. 2, the model with a single MLP takes a longer iteration time to
achieve similar performance. We further remove the random sampling scheme
and adopt a uniform sampling approach. As shown in the last two columns
in Fig. 6, results without random sampling have lower metric values, and the
high-resolution results occasionally meet obvious artifacts.

6 Conclusions

An implicit solution is presented to the EISP in this paper. We propose implic-
itly representing the unknown scatterer’s relative permittivity distribution as a
trainable representation and optimizing these representations within a forward
estimation process. A two-MLP strategy is employed to reduce the computation
complexity. The experimental results on synthetic and real-world data demon-
strate the promising performance of our proposed method. We will further col-
laborate with other parties to consider our solution in different scenarios, such
as medical diagnostics, in more challenging conditions.
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S1 Overview

This supplementary document provides more discussions, reproduction details,
and additional results that accompany the main paper:

– Sec. S2 discusses the detailed physical model of the Electromagnetic Inverse
Scattering Problems (EISP).

– Sec. S3 provides details of the system settings for each dataset.
– Sec. S4 presents reproduction details and pseudocode of our method.
– Sec. S5 provides additional results, including ablation studies on different

backbones and variation loss, and additional qualitative and quantitative
results.

S2 Detailed physical model of EISP

To clarify the physical model of the EISP, we copy some key equations in the
main paper here. The data equation describes the wave-scatterer interaction,
which can be formulated as

Et = Ei +GD · J, (S1)

where Et, Ei, and J are the discrete total electric fields, incident electric fields,
and induced current, respectively. GD is discrete free space Green’s function in
Region of Interest (ROI) D. The relationship between the induced current J and
total electric fields Et can be described as

J = Diag(ξ) ·Et, (S2)
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where Diag(ξ) is the diagonal matrix of the contrast function. The contrast ξ is
defined as

ξ = εrεrεr − 1, (S3)

where εrεrεr is the relative permittivity. The data equation describes the scattered
field as a reradiation of the induced current, which can be expressed as

Es = GS · J, (S4)

where Es is the discrete scattered field, and GS is the discrete Green’s function
to map the induced current J to scattered field Es.

S2.1 Forward estimation

The aim of forward estimation is to deduce the scattered fields Es from given
incident fields Ei. The forward estimation is linear because Es and Ei have a
linear relationship [9]. Specifically, by replacing J in Eq. (S1) with Eq. (S2), we
can obtain

Et = Ei +GD · Diag(ξ) ·Et. (S5)

Reformulating Eq. (S5) yields the expression for total fields Et:

Et = (I−GDDiag(ξ))−1 ·Ei. (S6)

By combining Eq. (S2), we can obtain the expression of induced current J as

J = Diag(ξ) · (I−GDDiag(ξ))−1 ·Ei. (S7)

Then, the expression for the scattered fields Es can be obtained from Eq. (S4)
and Eq. (S7) as

Es = GS · Diag(ξ) · (I−GDDiag(ξ))−1 ·Ei. (S8)

Since Green’s functions GD and GS are fixed in our problem, and the contrast
ξ, or relative permittivity εrεrεr is the physical property independent of the incident
fields, Eq. (S8) is a linear equation in variables Es and Ei. Therefore, we can
easily obtain the scattered fields Es through Eq. (S8) if the relative permittivity
εrεrεr is known. We propose to make use of the convenience and benefits of the
forward estimation to circumvent the difficulties of EISP.

S2.2 Difficulties of EISP

In this section, we discuss three main challenges of EISP and explain why our
approach can address these challenges.
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Inverse. In an inverse problem, the incident fields Ei are given, and the scat-
tered fields Es are measured by receivers, and then the task is to reconstruct
relative permittivity εrεrεr from the measured scattered fields. From Eq. (S3), this
task is equivalent to predicting the contrast ξ. An intuitive approach is to in-
fer the induced current J from the scattered field Es by inverse deduction from
Eq. (S4). However, the discrete Green’s function is a complex matrix of dimen-
sion Nr ×M2, where Nr is the total number of receivers and M ×M is the size
of the discretized subunits of ROI. In practice, we have Nr ≪ M2. Since such
a less-than relation does not provide enough information to determine J from
Eq. (S4), it is difficult to obtain relative permittivity εrεrεr in this inverse way.

Nonlinearity. The nonlinearity poses significant challenges to the solution of
the EISP. We explain nonlinearity from two perspectives. First, in Eq. (S8),
the nonlinearity is due to the fact that the scattered fields Es are not doubled
when the scatterer’s permittivity is doubled. This phenomenon is caused by the
condition that total fields Et is a quantity related to the relative permittivity εr
according to Eq. (S6). Then, The nonlinearity is due to the multiple scattering
effects that physically exist. In Eq. (S1), the global-effect term GD · J is caused
by multiple scattering effects [9], a factor leading to the nonlinearity. Traditional
methods, such as Born approximation [29, 55], involve a linearization of the
original problem by neglecting the effect of multiple scattering. However, these
methods can introduce significant errors and compromise the accuracy of the
computation when the multiple scattering amplitude is large and unignorable.

Discretization. Although the relative permittivity εr exhibits continuous prop-
erties, numerical computations based on the aforementioned discrete equations
can only obtain the discrete form of the relative permittivity with low resolu-
tion. Such a low resolution always makes it difficult to recognize the scatterer’s
details.

Why can our approach address these challenges? We propose an implicit
forward solution for EISP. First, we apply Implicit Neural Representations (INR)
to represent relative permittivity εr and induced current J separately. Then we
optimize these two representations through forward estimation by constructing
two loss functions, namely data loss Ldata and state loss Lstate. In this way,
we do not need to worry about the difficulties caused by inverse estimation
and nonlinearity. Besides, due to the inherent property of INR to approximate
continuous functions, our method can provide results with flexible resolutions.

S3 Details of system settings

We conduct our experiments on Synthetic, real-world, and 3D datasets. There
are some differences in system settings for each dataset, and we provide separate
explanations for each.
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S3.1 Settings for synthetic datasets

Two synthetic datasets, the Circular-cylinder dataset and the MNIST dataset [60,
71], are used for our experiments. The basic settings are the same for these two
datasets. We set operating frequency f = 400 MHz, and the ROI is a square
with the size of 2× 2m2. The placement scheme for transmitters and receivers is
illustrated in Fig. S1. There are 16 transmitters and 32 receivers equally placed
on a circle of radius 3 m centered at the center of ROI.
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Fig. S1: Positions of the transmitters and receivers on the measurement circle for
synthetic datasets. The green area indicates the ROI.
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Fig. S2: The ground truth of FoamDielExt, FoamDielInt, and FoamTwinDiel scenarios
in Institut Fresnel’s database [23].



An Implicit Solution to Electromagnetic Inverse Scattering Problems 23

Rotate for the next
measurement

Fig. S3: Positions of the transmitters and receivers on the measurement circle for
Institut Fresnel’s database [23]. For FoamDielExt/FoamDielInt and FoamTwinDiel, the
measurement system rotates by 45◦ and 20◦, respectively, for the next measurement.
The green area indicates the ROI.

S3.2 Settings for real-world dataset

Institut Fresnel’s database [23] is a famous real-world electromagnetic scat-
tering dataset in the field of EISP. We use FoamDielExt, FoamDielInt, and
FoamTwinDiel scenarios in Institut Fresnel’s database for testing. As presented
in Fig. S2, all the cases consist of two kinds of cylinders. The large cylinder
(SAITEC SBF 300) has a diameter of 80 mm with the relative permittivity
εr = 1.45 ± 0.15. The small cylinder (berylon) has a diameter of 31 mm with
the relative permittivity εr = 3 ± 0.3. The "±" indicates the range of uncer-
tainty associated with the experimental value. The operating frequencies are
taken from 2 to 10 GHz with a step of 1 GHz. The ROI is a square with the size
of 0.15×0.15m2. All the transmitters and receivers are equally placed on a circle
of radius 1.67 m centered at the center of ROI. For all scenarios, 241 receivers
are used for each measurement, with a central angle step of 1◦, without any
position closer than 60◦ from the transmitter [23]. The placement schemes for
FoamDielExt, FoamDielInt, and FoamTwinDiel are shown in Fig. S3. After each
measurement, the measurement system rotates by a certain angle for the next
measurement. For FoamDielExt and FoamDielInt, this angle is 45◦, while for
FoamTwinDiel, it is 20◦. This means there are 8 transmitters for FoamDielExt
and FoamDielInt, while there are 18 transmitters for FoamTwinDiel.

S3.3 Settings for 3D dataset

We also test our method on the 3D MNIST dataset [32]. We set the permittivities
of the objects to be 2. We set operating frequency f = 400 MHz, and the ROI is
a cube with the size of 2×2×2m3. As shown in Fig. S4, there are 40 transmitters
and 160 receivers. The transmitters and receivers are all located at the sphere of
radius 3 m around the target centered at the center of ROI. For the positions of
transmitters, the azimuthal angle ranged from 0◦ to 315◦ with a 45◦ step, and



24 Z. Luo et al.

the polar angle ranged from 30◦ to 150◦ with a 30◦ step. For the positions of
receivers, the azimuthal angle ranged from 0◦ to 348.75◦ with an 11.25◦ step,
and the polar angle ranged from 30◦ to 150◦ with a 30◦ step.

-2

2

0Z

2

Y

2

0

X

0
-2 -2

Transmitters
Receivers

Fig. S4: Positions of the transmitters and receivers on the measurement sphere for 3D
dataset.

S4 Reproduction details and Pseudocode

S4.1 Reproduction details

In this section, we present reproduction details and pseudocode of our method.
Our code will be released upon the acceptance of this paper.

Additional network details. Two eight-layer MLPs with 256 channels and
ReLU activations are used to individually predict the relative permittivity εr
and induced current J . The difference between these two networks lies in the
last layer. The output dimension of the last layer is 1 for relative permittivity and
2 for induced current, representing the real and imaginary parts, respectively.

Computational details. In Section 4.2, we have developed formulas to predict
the relative permittivity and induced current for each transmitter. Specifically,
for p-th transmitter, we can obtain the predicted scattered fields as

Ês
p = GS · Jp, p = 1, 2, · · · , Nt, (S9)

where GS is a Nr ×M2 complex matrix, denoting the discrete Green’s function,
and Jp and Ês

p are complex vectors of dimensions M2 and Nr, denoting the dis-
crete induced current and predicted scattered fields inspired by p-th transmitter,
respectively. Nt and Nr are the total numbers of transmitters and receivers, re-
spectively, and M ×M is the size of the discretized subunits of ROI. Jp is the
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discrete induced current directly sampled from Hϕ. To calculate the mismatch
of the state equation, we can obtain the predicted induced current Ĵp as

Ĵp = Diag(ξ) ·Ei
p + Diag(ξ) ·GD · Jp, p = 1, 2, · · · , Nt, (S10)

where ξ is a vector of dimension M2, reshaped from spatially queried network Fθ,
representing the contrast value. Ĵp is a complex vector of dimension M2, indi-
cating the induced current computed via the mathematical correlation. Diag(ξ)
is the diagonal matrix of the contrast function with dimension M2 ×M2. GD is
also a discrete Green’s function with dimension M2 ×M2.

Although we provide the computation formulas for each transmitter when
calculating Eq. (S9) and Eq. (S10) for all Nt transmitters, we use a more efficient
approach. To be precise, equations in Eq. (S9) and Eq. (S10) can be rewritten
as

Ês
all = GS · Jall, (S11)

and
Ĵall = Diag(ξ) ·Ei

all + Diag(ξ) ·GD · Jall, (S12)

where
Ês

all = [Ês
1, Ê

s
2, · · · , Ês

Nt
], (S13)

Jall = [J1,J2, · · · ,JNt ], (S14)

Ĵall = [Ĵ1, Ĵ2, · · · , ĴNt ], (S15)

Ei
all = [Ei

1,E
i
2, · · · ,Ei

Nt
]. (S16)

In Eq. (S11) and Eq. (S12), Ês
all is a matrix of dimension Nr × Nt, contain-

ing the scattered fields referring to all transmitters. Jall, Ĵall, and Ei
all are all

M2 ×Nt matrices. Therefore, during implementation, the loss functions can be
equivalently rewritten as

Ldata =
∥Ês

all −Es
all∥22

∥Es
all∥22

, (S17)

and

Lstate =
∥Ĵall − Jall∥22

∥ Diag(ξ) ·Ei
all∥22 +∆

, (S18)

where Es
all is the ground truth measured by receivers in a matrix form, ∆ denotes

a small number to improve stability by preventing the denominator from being
zero, and ∥ · ∥2 denotes the matrix 2-norm.
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Calculation of Green’s functions. The two-dimensional scalar Green’s func-
tion [9] can be expressed as

g (x,x′) =
i

4
H

(1)
0 (k0 |x− x′|) , (S19)

where H
(1)
0 (·) is the zeroth order Hankel function of the first kind, k0 = 2π/λ0

is the wavenumber in free space, and λ0 is the wavelength in free space. x and
x′ are the coordinates of two corresponding positions.

We use the method of moment (MOM) [51] with the pulse basis function and
the delta testing function to discretize the domain D into M ×M subunit, and
the centers of subunits are located at xn with n = 1, 2, ...,M2. Then, we can
discretize this continuous Green’s function into matrix GD and GS respectively.
The element in the n−th row and n′−th column of the M ×M matrix GD can
be obtained as

GD(n, n′) = k20An′g (xn,xn′) , n = 1, 2, . . . ,M2, n′ = 1, 2, . . . ,M2, (S20)

where An′ is the area of the n′−th subunits. Similarly, the element in the q−th
row and n′−th column of the Nr ×M matrix GS can be obtained as

GS(q, n
′) = k20An′g (xq,xn′) , q = 1, 2, . . . , Nt, n

′ = 1, 2, . . . ,M2. (S21)

The discretized forms of Green’s function can then be used in the calculations
in Eq. (S9) to Eq. (S12).

Preprocessing for real-world dataset. To handle real-world and synthetic
data in a unified manner, we calibrate the real-world data before using it. Fol-
lowing previous works [34, 39, 60], the calibration of real-world scattering field
data can be conducted by multiplying those data with a complex coefficient.
The complex coefficient is derived by dividing the measured incident field by the
simulated incident field at the receiver located opposite the source [23].

Implementation details of baselines. For Physics-Net [39], we follow the
formulation in [39] to get the regularization parameter β. We use the back-
bone architecture depicted in the same paper. For network optimization, we use
the SDG optimizer with momentum 0.99, a learning rate 5 × 10−6 that decays
following the step scheduler with step size 20 and decay factor 0.5. All the hy-
perparameters are recommended in the paper.

For PGAN [56], the structure of the generator and discriminator follows the
architecture in [56], respectively. We also use the hyperparameters suggested in
the paper. The number of hidden layers used in perceptual adversarial loss is
Md = 1, weight parameters β = 0.01 and γ = 4.0 for the loss function of the
generator, and m = 0.2 for the loss function of the discriminator. For network
optimization, we employ the Adam optimizer with default values β1 = 0.9, β2 =
0.999, ϵ = 10−8, and a learning rate 2 × 10−4 that decays following the linear
scheduler after the first 20 epochs during optimization. All the hyperparameters
are the ones suggested by the paper.

We directly use the codes of BPS and CS-Net to ensure the fairness of the
evaluation.
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S4.2 Pseudocode

We provide a pseudocode to offer a detailed and step-by-step understanding of
our proposed approach, as shown in Algorithm S1.

Algorithm S1: Our INR-based method for EISP
Data: Incident field Et, scattered field Es, ROI D, transmitters’ positions xt,

and receivers’ positions xr

Result: Optimized INR Fθ for the object’s relative permittivity
1 Initial INR Fθ for relative permittivity, and INR Hϕ for induced current;
2 Generate GD and GS from xt, xr and D according to definition of discretized

forms of Green’s function from Eq. (S20) and Eq. (S21), respectively;
3 For step = 1 to max_iter:
4 Infer contrast ξ from Fθ using D, and infer induced current J from Hϕ

using D and xt with random spatial sampling;
5 Calculate Ês and Ĵ from Eq. (S11) and Eq. (S10), respectively;
6 Calculate Ldata, Lstate and LTV from Eq. (S17), Eq. (S18) and total

variation function, respectively;
7 Obtain the loss L = λdataLdata + λstateLstate + λTVLTV;
8 Update θ and ϕ by minimizing L using the Adam optimizer.

S5 Additional results

Ablation study on different backbones. We study two different backbones
for INR, namely basic MLP with ReLU activations and SIREN [54]. These two
structures are both based on fully connected networks to represent continuous
mappings, so choosing either network does not affect our proof of the applica-
bility of INR. The results for different backbones are shown in Fig. S5. From
the results, both basic MLP and SIREN can accurately reconstruct the inter-
nal structures of objects. The reconstruction quality using basic MLP is slightly
better than that of SIREN.

Some previous studies point out that SIREN [54] has certain drawbacks in
terms of its implementation [18]. First, it cannot utilize the speed-up techniques
of INRs, such as the one described in Instant-NGP [45]. Second, their custom
activations are still not compatible with accelerator hardware in certain de-
vices [18]. Therefore, we choose the basic MLP as the backbone of INR in our
main paper.

Ablation study on variation loss. We further test the impact of total vari-
ation loss LTV for relative permittivity ξ on the results. We show the results
with and without LTV in Fig. S5. The results indicate that LTV improves our
model’s performance.



28 Z. Luo et al.

Ground Truth Our method
(Basic MLP)

0.051 / 0.922

Our method
(Basic MLP w/o       )

0.056 / 0.916

Our method
(SIREN)

0.052 / 0.901

Fig. S5: Ablation study results including comparison with different backbones and
comparison with and without variation loss LTV. We show the results of a standard
test case [1] in EISP. The pixel values in the images indicate the values of the relative
permittivity. RRMSE/SSIM values are shown below the figure.

Additional qualitative and quantitative results. We present more qualita-
tive and quantitative results on the Circular-cylinder dataset [60] and MNIST
dataset [20] under different noise levels, as shown in Fig. S6 to Fig. S9. Our
method reaches the highest visual quality compared with the other baseline
methods.
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Ground Truth Our method BP Twofold SOM Gs SOM BPS CS-Net Physics-Net PGAN

0.031 / 0.952 0.094 / 0.817 0.055 / 0.826 0.062 / 0.844 0.043 / 0.918 0.042 / 0.897 0.041 / 0.910 0.043 / 0.911

0.032 / 0.957 0.096 / 0.825 0.058 / 0.837 0.066 / 0.853 0.037 / 0.946 0.045 / 0.902 0.046 / 0.916 0.043 / 0.923

0.031 / 0.941 0.085 / 0.821 0.054 / 0.835 0.058 / 0.852 0.037 / 0.922 0.042 / 0.901 0.037 / 0.920 0.038 / 0.922

0.022 / 0.966 0.070 / 0.875 0.043 / 0.888 0.044 / 0.899 0.019 / 0.972 0.031 / 0.932 0.022 / 0.961 0.021 / 0.965

0.035 / 0.935 0.087 / 0.804 0.058 / 0.825 0.061 / 0.841 0.039 / 0.916 0.042 / 0.895 0.038 / 0.919 0.038 / 0.920

0.026 / 0.972 0.080 / 0.885 0.049 / 0.881 0.052 / 0.895 0.027 / 0.970 0.036 / 0.934 0.027 / 0.964 0.028 / 0.968

0.023 / 0.961 0.071 / 0.858 0.043 / 0.875 0.045 / 0.889 0.026 / 0.955 0.032 / 0.923 0.023 / 0.956 0.024 / 0.956

0.033 / 0.924 0.075 / 0.812 0.051 / 0.831 0.052 / 0.845 0.039 / 0.910 0.040 / 0.889 0.038 / 0.905 0.040 / 0.896

0.029 / 0.942 0.080 / 0.834 0.048 / 0.859 0.054 / 0.864 0.038 / 0.922 0.038 / 0.909 0.036 / 0.922 0.040 / 0.907

0.026 / 0.951 0.073 / 0.847 0.047 / 0.869 0.049 / 0.879 0.031 / 0.942 0.036 / 0.910 0.031 / 0.946 0.030 / 0.942

0.028 / 0.954 0.079 / 0.845 0.050 / 0.858 0.052 / 0.876 0.028 / 0.944 0.037 / 0.913 0.030 / 0.940 0.031 / 0.940

0.017 / 0.971 0.061 / 0.882 0.034 / 0.893 0.035 / 0.905 0.032 / 0.946 0.026 / 0.934 0.020 / 0.964 0.021 / 0.963

Fig. S6: Samples obtained from synthetic Cicrular-cylinder dataset under 5% noise
level. From left to right: ground truth, results obtained by our method, BP [2], Twofold
SOM [68], Gs SOM [8], BPS [60], CS-Net [53], Physics-Net [39], and PGAN [56].
RRMSE/SSIM values are shown below each figure.
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Ground Truth Our method BP Twofold SOM Gs SOM BPS CS-Net Physics-Net PGAN

0.030 / 0.905 0.097 / 0.758 0.062 / 0.726 0.064 / 0.772 0.071 / 0.762 0.051 / 0.728 0.069 / 0.765 0.069 / 0.778

0.029 / 0.916 0.097 / 0.775 0.067 / 0.745 0.069 / 0.795 0.057 / 0.826 0.051 / 0.806 0.064 / 0.805 0.060 / 0.821

0.034 / 0.892 0.086 / 0.774 0.058 / 0.761 0.061 / 0.785 0.055 / 0.806 0.047 / 0.813 0.053 / 0.817 0.054 / 0.819

0.020 / 0.930 0.070 / 0.831 0.052 / 0.793 0.049 / 0.837 0.035 / 0.864 0.039 / 0.826 0.035 / 0.856 0.035 / 0.860

0.036 / 0.891 0.087 / 0.759 0.062 / 0.746 0.064 / 0.775 0.053 / 0.816 0.046 / 0.808 0.055 / 0.807 0.050 / 0.833

0.022 / 0.940 0.080 / 0.837 0.053 / 0.786 0.054 / 0.837 0.040 / 0.877 0.044 / 0.819 0.037 / 0.885 0.040 / 0.882

0.024 / 0.920 0.072 / 0.814 0.049 / 0.784 0.047 / 0.838 0.041 / 0.854 0.039 / 0.804 0.038 / 0.866 0.039 / 0.860

0.045 / 0.853 0.076 / 0.767 0.056 / 0.748 0.054 / 0.792 0.053 / 0.790 0.045 / 0.796 0.051 / 0.801 0.053 / 0.801

0.031 / 0.893 0.081 / 0.790 0.055 / 0.772 0.056 / 0.805 0.046 / 0.836 0.048 / 0.746 0.043 / 0.847 0.044 / 0.846

0.032 / 0.891 0.075 / 0.801 0.054 / 0.782 0.053 / 0.820 0.046 / 0.825 0.055 / 0.717 0.043 / 0.846 0.046 / 0.832

0.030 / 0.906 0.079 / 0.801 0.055 / 0.767 0.054 / 0.819 0.038 / 0.862 0.044 / 0.802 0.041 / 0.855 0.040 / 0.861

0.022 / 0.914 0.062 / 0.835 0.038 / 0.822 0.038 / 0.850 0.048 / 0.819 0.041 / 0.735 0.033 / 0.872 0.033 / 0.873

Fig. S7: Samples obtained from synthetic Cicrular-cylinder dataset under 30% noise
level. From left to right: ground truth, results obtained by our method, BP [2], Twofold
SOM [68], Gs SOM [8], BPS [60], CS-Net [53], Physics-Net [39], and PGAN [56].
RRMSE/SSIM values are shown below each figure.
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Ground Truth Our method BP Twofold SOM Gs SOM BPS CS-Net Physics-Net PGAN

0.026 / 0.968 0.116 / 0.698 0.065 / 0.790 0.049 / 0.869 0.056 / 0.901 0.038 / 0.927 0.054 / 0.904 0.073 / 0.842

0.021 / 0.980 0.098 / 0.756 0.057 / 0.840 0.037 / 0.918 0.032 / 0.958 0.036 / 0.938 0.035 / 0.956 0.048 / 0.915

0.019 / 0.984 0.074 / 0.830 0.053 / 0.864 0.039 / 0.912 0.050 / 0.899 0.033 / 0.948 0.026 / 0.971 0.070 / 0.866

0.020 / 0.977 0.087 / 0.783 0.054 / 0.849 0.038 / 0.912 0.025 / 0.967 0.030 / 0.952 0.024 / 0.974 0.061 / 0.885

0.015 / 0.987 0.103 / 0.758 0.054 / 0.851 0.036 / 0.927 0.025 / 0.973 0.033 / 0.949 0.020 / 0.981 0.036 / 0.951

0.024 / 0.970 0.120 / 0.706 0.063 / 0.802 0.045 / 0.884 0.042 / 0.932 0.037 / 0.938 0.036 / 0.951 0.073 / 0.829

0.018 / 0.983 0.119 / 0.731 0.060 / 0.832 0.040 / 0.911 0.034 / 0.957 0.033 / 0.950 0.018 / 0.983 0.058 / 0.899

0.021 / 0.979 0.082 / 0.752 0.064 / 0.760 0.048 / 0.853 0.039 / 0.935 0.043 / 0.893 0.024 / 0.980 0.065 / 0.887

0.028 / 0.961 0.112 / 0.737 0.064 / 0.790 0.049 / 0.866 0.039 / 0.942 0.038 / 0.932 0.026 / 0.969 0.059 / 0.891

0.010 / 0.991 0.071 / 0.860 0.035 / 0.927 0.022 / 0.963 0.047 / 0.918 0.020 / 0.971 0.014 / 0.986 0.069 / 0.861

0.020 / 0.975 0.126 / 0.683 0.058 / 0.826 0.042 / 0.899 0.043 / 0.933 0.035 / 0.941 0.026 / 0.971 0.071 / 0.846

0.013 / 0.988 0.087 / 0.832 0.041 / 0.914 0.029 / 0.951 0.037 / 0.949 0.025 / 0.965 0.017 / 0.984 0.059 / 0.878

Fig. S8: Samples obtained from synthetic MNIST dataset under 5% noise level. From
left to right: ground truth, results obtained by our method, BP [2], Twofold SOM [68],
Gs SOM [8], BPS [60], CS-Net [53], Physics-Net [39], and PGAN [56]. RRMSE/SSIM
values are shown below each figure.
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Ground Truth Our method BP Twofold SOM Gs SOM BPS CS-Net Physics-Net PGAN

0.029 / 0.924 0.119 / 0.654 0.069 / 0.710 0.052 / 0.812 0.078 / 0.798 0.043 / 0.845 0.072 / 0.826 0.084 / 0.763

0.038 / 0.904 0.099 / 0.710 0.060 / 0.756 0.045 / 0.836 0.060 / 0.834 0.050 / 0.750 0.055 / 0.866 0.061 / 0.842

0.030 / 0.929 0.076 / 0.785 0.055 / 0.790 0.039 / 0.865 0.053 / 0.873 0.042 / 0.824 0.038 / 0.895 0.082 / 0.789

0.030 / 0.920 0.090 / 0.733 0.057 / 0.775 0.038 / 0.865 0.062 / 0.824 0.034 / 0.883 0.056 / 0.868 0.065 / 0.816

0.031 / 0.918 0.105 / 0.711 0.057 / 0.774 0.040 / 0.864 0.053 / 0.863 0.041 / 0.846 0.039 / 0.901 0.051 / 0.871

0.034 / 0.912 0.123 / 0.659 0.070 / 0.716 0.051 / 0.814 0.072 / 0.794 0.042 / 0.856 0.076 / 0.817 0.095 / 0.715

0.030 / 0.921 0.121 / 0.686 0.065 / 0.735 0.046 / 0.823 0.074 / 0.824 0.034 / 0.896 0.071 / 0.826 0.083 / 0.773

0.039 / 0.905 0.087 / 0.691 0.068 / 0.680 0.050 / 0.800 0.066 / 0.816 0.050 / 0.771 0.061 / 0.830 0.098 / 0.739

0.034 / 0.914 0.114 / 0.691 0.069 / 0.708 0.054 / 0.797 0.076 / 0.794 0.049 / 0.787 0.055 / 0.843 0.076 / 0.779

0.018 / 0.939 0.071 / 0.820 0.037 / 0.861 0.025 / 0.910 0.082 / 0.761 0.032 / 0.855 0.043 / 0.897 0.094 / 0.745

0.028 / 0.921 0.128 / 0.645 0.067 / 0.735 0.049 / 0.822 0.082 / 0.769 0.039 / 0.869 0.075 / 0.803 0.086 / 0.760

0.027 / 0.924 0.087 / 0.792 0.045 / 0.837 0.034 / 0.882 0.065 / 0.823 0.039 / 0.808 0.052 / 0.877 0.091 / 0.766

Fig. S9: Samples obtained from synthetic MNIST dataset under 30% noise level. From
left to right: ground truth, results obtained by our method, BP [2], Twofold SOM [68],
Gs SOM [8], BPS [60], CS-Net [53], Physics-Net [39], and PGAN [56]. RRMSE/SSIM
values are shown below each figure.
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