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(a) Short exposure, high ISO (b) Unaligned events, upsampled (c) Long exposure, low ISO (d) Short exposure, low ISO, fill light

(e) Result of [12] from only (a) (f) Result of [63] from only (a) (g) Result of [64] from only (b) (h) Our result from (a) and (b)

Figure 1. Comparison among different camera settings for capturing fast-moving scenes and different methods (conventional image enhancement [12],
deep-learning-based video enhancement [63], event-to-video reconstruction [64], and the proposed event guided video enhancement) for low-light dynamic
imaging. (a) and (b) are the inputs of the proposed method. Please refer to our project page1 for the corresponding animations.

Abstract

With frame-based cameras, capturing fast-moving scenes
without suffering from blur often comes at the cost of low
SNR and low contrast. Worse still, the photometric con-
stancy that enhancement techniques heavily relied on is frag-
ile for frames with short exposure. Event cameras can record
brightness changes at an extremely high temporal resolution.
For low-light videos, event data are not only suitable to help
capture temporal correspondences but also provide alter-
native observations in the form of intensity ratios between
consecutive frames and exposure-invariant information. Mo-
tivated by this, we propose a low-light video enhancement
method with hybrid inputs of events and frames. Specifi-
cally, a neural network is trained to establish spatiotemporal
coherence between visual signals with different modalities
and resolutions by constructing correlation volume across
space and time. Experimental results on synthetic and real
data demonstrate the superiority of the proposed method
compared to the state-of-the-art methods.

∗Corresponding author
1 https://sherrycattt.github.io/EvLowLight

1. Introduction
Capturing fast-moving scenes without introducing blurry

artifacts (Figure 1 (c)) is challenging, especially in an envi-
ronment with insufficient illumination. A fast shutter speed
helps to freeze motion (Figure 1 (a)), but it also causes exces-
sive noise and low contrast. A popular choice in professional
photography, such as sports recording and filmmaking, is to
place large fill lights to allow sufficient illumination (Fig-
ure 1 (d)), however, they are limited in their portability and
power requirements in uncontrolled environments.

Video enhancement aims at improving the degraded
quality, in which the key is to exploit the temporal co-
herence [27, 59]. Its performance heavily depends on
the quality of image-based optical flow estimation that as-
sumes spatiotemporally small translation and brightness con-
stancy; however, it becomes fragile for low-light frames
whose features such as edges are less distinctive and are
contaminated by noise (Figure 1 (e)). Despite recent ad-
vances in learning-based low-light video enhancement meth-
ods [63, 49, 20, 30, 5], it remains challenging to improve the
quality of frames capturing fast-moving scenes where the
pixel displacements are large (Figure 1 (f)).
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Event cameras asynchronously record logarithmic bright-
ness changes with a high dynamic range, low latency, and
low power cost [39], which raise promising directions for
low-light imaging with events [64, 67]. Their unique advan-
tage of high temporal resolution in the order of microseconds
benefits motion estimation (Figure 2), providing reliable tem-
poral coherence between frames in fast-moving scenes for
video enhancement. They are free of the notion of exposure
time and thus do not suffer from the well-known trade-off
between strong blur using long exposure and low SNR using
short exposure, which remains hard to be handled by existing
deblurring or multi-exposure fusion methods. In this paper,
we propose to utilize the high temporal resolution and high
dynamic range information from events to guide low-light
video enhancement. Specifically, motion is jointly estimated
from events and frames for capturing temporal coherence
as guidance to warp and integrate multimodal observations
according to the same scene points for noise reduction.

However, it is non-trivial due to three types of misalign-
ment: i) Modality. Events asynchronously record bright-
ness changes, while frames synchronously record absolute
brightness. They are inherently different modalities, whose
gap is further increased by noise from their mechanisms
in low-light conditions, making their translation [64] or fu-
sion [37, 36] hard (Figure 1 (g)). ii) Sensor. Hybrid sensors
with precisely aligned events and frames have low spatial
resolutions (e.g., 346 × 260 [14]). Although hybrid camera
systems [48, 47] have high-resolution frames (e.g., 2448 ×
2048 [67]), online registration for each scene (with different
depths and arbitrary lighting) that is important in obtaining
stable results becomes fragile in low-light conditions since
features for matching are too weak to be precisely extracted
(Figure 1 (a) vs. (b)). iii) Temporal resolution. Pixels corre-
sponding to the same scene points in events and frames are
recorded in different temporal resolutions, between which
the established correspondences should be robust to inaccu-
racy in motion estimation caused by limited photons.

To overcome the above challenges, the paper proposes to
establish the spatiotemporal coherence between events and
frames by following strategies:

• A multimodal coherence modeling module that estab-
lishes multiscale all-pair coherence between events and
frames in the feature space to compensate for modality
misalignment in sensing ability and the sensor-level
misalignment under low-light conditions.

• A temporal coherence propagation module that sam-
ples features of consecutive events and frames cor-
responding to the same scene point for realizing
coherence-aware aggregation in the local displacement
field to improve the SNR of the reconstructed video.

The modules newly designed above extract comple-
mentary information from events and frames, enable a
misalignment-robust hybrid-imaging setting, and integrate

(a) Low-light frame (b) Events (c) Our result

(d) Flow from (a) [45] (e) Flow from (b) [9] (f) Our flow result

Figure 2. Comparison of optical flow estimation. Optical flow (d) and
(e) are estimated from (a) low-light frames and (b) events by using the
state-of-the-art methods [45] and [9], respectively, while (f) is estimated by
the proposed joint optical flow estimation module from both (a) and (b).

information across time for effective denoising. They com-
pose our contribution to the first event guided low-light video
enhancement method that captures high-quality videos in
fast-moving scenes with short exposure. The superior per-
formances against state-of-the-art methods for synthetic and
real data make it potentially useful as an alternative to fill
lights for low-light photography.

2. Related Work
Low-light image enhancement. The most straightforward
method to enhance low-light videos is to apply the low-light
image enhancement method in a frame-by-frame manner. In
recent years, deep-learning-based methods have achieved
impressive results [29, 6]. Lore et al. [29] trained a stacked
denoising auto-encoder to fit the desired intensity mapping.
Chen et al. [6] used a U-Net to learn the mapping, with a
focus on raw input instead of RGB. Cai et al. [2] and Xu et
al. [57] proposed learning the mapping from low-light image
to low/high-frequency parts of the normal-light reference
sequentially. Xu et al. [58] introduced a transformer for
SNR-aware low-light image enhancement. Some works
attempt to relax the prerequisite on paired training images for
deep-learning-based low-light image enhancement [21, 28].
Several methods [42, 52, 66, 50, 60, 54, 31] applied the
Retinex decomposition model to incorporate more priors to
alleviate ill-posedness.
Low-light video enhancement. Low-light video enhance-
ment is a more difficult problem than image tasks. Chen et
al. [5] proposed a paired low-light video dataset by captur-
ing short- and long-exposure video pairs for static scenes.
Lv et al. [30] replaced the commonly used 2D convolution
layers for images with 3D layers for videos. Wang et al. [49]
proposed a high-quality low-light video dataset in which
the paired low-light and normal-light videos are obtained by
mechatronic alignment of the cameras. The above methods
focus on dynamic scenes where motion is caused by camera
movement. Zhang et al. [63] focused on enhancing low-light
videos where motion is caused by moving objects. Due to
the difficulty in extracting distinct features for motion es-
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timation, exploration of temporal redundancy in low-light
videos for better noise reduction is still limited.
Event guided video enhancement. Event cameras have
distinctive advantages in sensing scenes in high dynamic
range with high temporal resolution and low power consump-
tion [8]. Some works proposed directly reconstructing video
from events by optimization [33], supervised [39, 40, 53, 43]
and unsupervised [38, 64] learning. However, it is highly ill-
posed to estimate the absolute intensity values in video from
only brightness changes recorded in events. A more promis-
ing solution is to integrate events as brightness increments
into the absolute intensity values of its neighboring frame by
event double integral model [37, 36] and its deep-learning-
based extensions for deblurring [22, 23, 41, 44, 56, 46],
frame interpolation [61], and both [26, 65]. These works
are designed for hybrid imaging sensors with events and
frames aligned pixelwise, which have low spatial resolu-
tion partially due to consideration of data transmission effi-
ciency [14]. Recently, hybrid camera systems with an event
camera and a frame camera have been adopted for signal
processing [51, 7, 1], video frame interpolation [48, 17, 47],
high dynamic range imaging [15, 13], rolling shutter cor-
rection [69], pose estimation [62], and deblurring low-light
images [67]. Currently, the question of how to utilize events
for both noise reduction and exposure compensation for
video enhancement remains unsolved.

3. Method
3.1. Physical Formulation of Events and Frames

The relation between a low-light frame L and its ground
truth I is formulated as:

L = fCRF(f
−1
CRF(I)⊙ P ) +N, (1)

where fCRF denotes the underlying camera response function
that maps scene radiance in the linear domain into intensity
in the nonlinear domain for better human perception, ⊙ de-
notes the Hadamard multiplication, N is the zero mean noise,
and P is the exposure parameter determined by camera set-
ting, e.g., exposure time ∆ · I .

An event e = (t, p, σ) at the pixel p = (px, py)
⊤ and time

t is triggered whenever the logarithmic change of irradiance
R exceeds a pre-defined threshold θ (> 0),

∥logR(p)
t − logR

(p)
t−δt∥ ≥ θ, (2)

where Rt denotes the instantaneous intensity at time t, and
the polarity σ ∈ {−1,+1} indicates {negative, positive}
brightness changes. Similar to previous works, we use the
representation of the 3D voxel grid for events[70]. By dis-
cretizing duration ∆t = tK−1−t0 spanned by K events into
B temporal bins, each event ek = (tk, pk, σk) distributes its
polarity σk to the two closest voxels as follows [39]:

E
(p)
t =

∑
pk=p

σk max (0, 1− |t− t̃k|), (3)

where t̃k := B−1
∆t (tk − t0) is the normalized timestamp.

Given two consecutive frames Lti , Ltj , the events Eti→tj

triggered within the period from ti to tj can be integrated as
intensity increments, whose relationship is:

L
(p)
tj = L

(p)
ti exp (θ

∫
E

(p)
ti→tjdt). (4)

3.2. Method Overview

In this paper, our objective is to recover a frame It
with reduced noise and increased contrast from neighboring
low-light frames {Li}t+N

i=t−N and their corresponding events
Et−N→t+N in the form of voxel grids in Eq. (3) with B bins,
where N is the temporal radius. Following [48, 47], we con-
sider a hybrid camera system in which the two cameras are
not precisely aligned. Additionally, we consider a situa-
tion where the event camera has a lower spatial resolution
compared to the frame camera. Without losing generality,
we describe how to generate a high-quality image It from
multimodal observations of frames Lt, Lt+1 and the corre-
sponding events Et→t+1.

The overall method is shown in Figure 3. First, two
modal-specific feature encoders FL

enc and FE
enc extract fea-

tures ϕL
t , ϕ

E
t→t+1 from frames Lt and events Et→t+1, re-

spectively. The multimodal coherence Cmodal is estimated
for global and local alignments. The global coherence to
coarsely align ϕE

t→t+1 into ϕL
t is fit to compensate for the

resolution gap and possible sensor misalignment. Pixelwise
correspondences are modeled to fuse complementary infor-
mation from optical flows SE

t→t+1, S
L
t→t+1 estimated from

events and frames, respectively.
With the temporal coherence C temp estimated from con-

secutive frames, events and frames according to the same
scene points across time are warped into the middle frame
based on jointly estimated optical flows St→t+1. They are
then integrated into latent frames according to Eq. (4) im-
plicitly and propagated temporally for noise reduction. The
noise-reduced features ϕI

t are then used to reconstruct a de-
noised frame L̃t by a decoder Fdec. Finally, the frame It can
be generated from an exposure parameter map Pt predicted
by network Fexp by inverting Eq. (1):

It = fCRF(f
−1
CRF(L̃t)⊙ P−1

t ). (5)

3.3. Multimodal Coherence Modeling

Multimodal coherence estimation. We propose to estab-
lish coherence between Lt and Et→t+1 across all the spatial
support within the same duration, whose key component is
a learned 4D correlation volume that models all-pair cor-
respondence between the events and frames. First, feature
maps φL

t , φ
E
t→t+1 with different spatial resolutions for cap-

turing visual similarity between events Et→t+1 and frames
Lt are extracted by the feature extractors of the unimodal
optical flow estimators FE

flow and FL
flow. Then, the correlation
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Multimodal coherence modeling Temporal coherence propagation

resampled points
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flow-guided integration
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Figure 3. An overview of the proposed method. All-pair correlation volumes between each pixel of events and frames are computed from their features by
using the proposed multimodal coherence modeling module firstly, which enables the event features to be aligned and the optical flow to be jointly estimated.
In the subsequent module of temporal coherence propagation, observations corresponding to the same scene point are sampled and propagated across time to
estimate the underlying clean frame. Parallelly, exposure parameters are extracted from both events and frames to produce a high-quality frame.

volume can be obtained by:
Cmodal

t (Lt, Et→t+1)pq = exp((φL
t )

⊤
p (φ

E
t→t+1)q), (6)

where p and q are pixel indices of the features extracted
from events and frames, as shown in the red box in Fig-
ure 3. The exponent of the inner product between them is
computed to rectify the magnitude of strong correlations
and suppress the weak ones caused by misaligned pixels or
modality discrepancy. To further enlarge the perceptive field,
the volume is average-pooled along the spatial dimension
of events by a factor of 2 for 3 times. Then new volume
Cmodal

t,s ∈ Rh×w×(h′/2s)×(w′/2s) on a coarser scale s is ob-
tained. Such a design helps to model correspondence across
different scales while maintaining fine-grained image details
in high resolution. The volumes in four scales are used in
subsequent stages for correlation-aware aggregation.

This design is inspired by the recent work in dense cor-
respondence matching [45] from frames of the same modal-
ity and resolution, which is different from our setting of
cross-modality and cross-resolution. Comparatively, modal-
ity misalignment is handled by concatenation-based feature
fusion [47] and channel-wise cross-attention [44], which ig-
nore the spatially-unaligned and localized affinity between
events and frames that benefits denoising.
Global feature alignment. We consider a situation where
there is possible misalignment between the sensor of events
and frames. Global misalignment caused by sensor misalign-
ment or camera movements can be effectively regularized
by a projection matrix with a few parameters. Consider-
ing robustness to error and noise in low-light conditions,
we perform the global alignment in the feature space with
low resolution. Specifically, the 3 × 3 projection matrix
Mt is parameterized by a 2× 2× 2 displacement cube Dt

containing vectors of the four corner points of an image,
which can be conveniently transformed into the projection

matrix as in [25, 3]. The displacement cube Dt is initialized
from an identical transform and then iteratively updated by
module Fglobal from the correlation feature indexed from
Cmodal

t , which is downsampled into a fixed small spatial size
of (32× 32)× (32× 32) for regularization and robustness.
After the projection matrix Mt is obtained, the event features
ϕE
t→t+1 are aligned by:

ϕ̃E
t→t+1 = P(ϕE

t→t+1,Mt), (7)
where P denotes the projection transform.

Given global feature alignment for modeling the sensor
misalignment and camera movement between events and
frames, we additionally use pixelwise motion integration for
the remaining correspondences caused by object movement
within exposure time or patch recurrence.

Pixelwise motion aggregation. Event cameras have over-
whelming advantages for motion estimation, especially for
large displacements and occlusions. However, they usu-
ally have low spatial resolution and are only triggered in
regions with “moving edges” [32], lacking information in
the low-textured regions. Fortunately, although the features
are weaker, fine-grained appearance with high resolution re-
mains in low-light frames at the boundary timestamps, which
can complement the motion information in events. Therefore,
we propose to estimate the flow in the duration between t and
t+ 1 jointly from events and boundary frames by aggregat-
ing optical flows SE

t→t+1, S
L
t→t+1 estimated from features

of frames φL
t , φ

L
t+1 and events φE

t→t+1. Then, SE
t→t+1 on

the coarser scale is projected to coordinates of the frames
according to Cmodal

t and aggregated into SL
t→t+1.

For computational efficiency, we consider only the mostly
related local regions N (p′) with radius r centered in p′ of
SE
t→t+1 for each pixel p in the sensor coordinates of frames,

rather than all position correlations in self-attention [62] for

10618



jointly estimating depth from events and frames:
N (p′)r = {p′ + δp|δp ∈ Z2, ∥δp∥∞ ≤ r}, (8)

The indices of this local neighborhood are used to obtain
the correlation scores from the correlation volumes Cmodal

t ,
which are used as the weights to aggregate complementary
information from events to frames as the residual estimation:

S̃E
t→t+1(p) =

1

Z

∑
q∈N (p)r

SE
t→t+1(q)(C

modal
t )pq, (9)

where Z is a normalizing factor. It is updated by FL
flow

to obtain the fused flow St→t+1 for exploiting temporal
coherence subsequently. Such a correlation-aware scheme
allows a misalignment-robust motion estimation.

3.4. Temporal Coherence Propagation

We follow the basic assumption of denoising that the
noise has zero mean, which is expected to be filtered into
a clean one even by a simple integrating operation. Recall
that events record the logarithmic brightness changes of
the scene, which can provide an alternative observation of
intensity values for those scene points. However, the pixels
from different timestamps corresponding to the same scene
point have been shifted due to camera motion or moving
objects in the scene in both the captured events and frames.
Thus, for each pixel in the target frame to be denoised, we
need to resample the points corresponding to the same scene
point from neighboring events and frames according to the
optical flow estimated in the previous stage.

The resampling process is illustrated in the blue box
of Figure 3. Specifically, a pixel p in the target frame Lt

appears at the pixel p + ∆t+1(p) in the frame Lt+1 with
∆t+1(p) = St→t+1(p). However, for asynchronous events,
their duration of motion spanning t to t + 1 is usually not
constant, which is recorded with a temporal resolution of
the order of microseconds. To fill the temporal gap between
events and frames for more accurate motion estimation, we
decompose the optical flow of events into two parts: one with
constant velocity, which can be subsampled from St→t+1;
one with varying velocity across time, which can be learned
as a flow offset field.
Correlation-aware pre-warping. The features of events
and frames according to the same scene points across time
are warped into the middle frame based on the estimated
optical flows St→t+1 firstly. Specifically, the features of sup-
porting frames Lt+1 are pre-warped toward the features of
the target frame Lt using the estimated optical flow St→t+1

in duration t and t+ 1 as:
ϕ̃L
t = W(ϕL

t+1, St→t+1). (10)
For events, we estimate the motion at intermediate B times-
tamps between the boundary frames (+2). The event features
ϕ̃E
t→t+1 are warped towards target frame feature ϕL

t accord-
ing to the part with constant speed spanned in the space-time

neighborhood as:

ϕ̃E
t =

∑
τ∈[1,B]

W(ϕ̃E
t→t+1(τ),

τ

B + 2
St→t+1), (11)

where ϕ̃E
t→t+1(τ) denotes the event features in the τ th slice.

W denotes a correlation-aware variant of the back-warping
operation as:

W(ϕt+1, St→t+1)p =
1

Z

∑
q∈N (p)r

ϕt+1(q)(C
temp
t )pq, (12)

where Z is for normalizion, and the temporal coherence
C temp are estimated from consecutive frames:

C temp
t (Lt, Lt+1)pq = exp((φL

t )
⊤
p (φ

L
t+1)q). (13)

Flow-guided integration. To compensate for the tempo-
ral misalignment between events and frames, we propose
to predict the flow offsets Ot→t+1 from concatenation of
{ϕL

t , ϕ̃
L
t , ϕ̃

E
t } and St→t+1 along the channel dimension:

∆t→t+1 = Foffset(ϕ
L
t , ϕ̃

L
t , ϕ̃

E
t ). (14)

They are used as the residue to the flow, which jointly com-
poses the offset fields for the deformable convolution lay-
ers for implicitly integrating events and frames into latent
frames, and propagating temporal coherence across times-
tamps t for noise reduction as:

ϕI
t = Fprop(ϕ

I
t+1, ϕ̃

E
t→t+1; ∆t→t+1 + St→t+1). (15)

The features ϕI
t are then decoded into denoised frames.

3.5. Exposure Parameter Estimation

For simplicity, we use the gamma curve with parameter
1/2.2 to approximate the camera response function [11], and
the network to predict the parameters is chosen as a very
lightweight one [10]. As shown on the top of the blur box
in Figure 3, the exposure parameter grid in a low-dimension
space-range bilateral space is extracted from features of
events and frames on a pixelwise (spatial variant) basis:

Γt = Fexp(ϕ
L
t , ϕ̃

E
t→t+1), (16)

Then the exposure parameters Pt are sampled to the same
resolution of the input frame from the grid Γt under the
guidance of the spatial index as well as the input low-light
frame Lt:

Pt = S(Γt, Lt), (17)

where S denotes the slicing operation [10]. Then it is applied
to the estimated clean frame L̃t according to Eq. (5).

3.6. Training Details

Loss function. To train the whole framework, we use a
combination of ℓ1 loss and gradient loss:

L = Lrec + λgradLgrad + λexposureLexposure, (18)
where λgrad = 10 and λexposure = 100 are hyper-parameters
to balance the contributions of different terms. The first
two terms are used to regularize the fidelity between the
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predicted normal-light frames It and the ground truth Ĩt in
both intensity and gradient domain:

Lrec =

t+N∑
i=t−N

∥Ĩt − It∥1, (19)

and

Lgrad =

t+N∑
i=t−N

∥∇(Ĩt)−∇(It)∥1. (20)

The third term is used to regularize the exposure parameters
to correctly enhance a blurred version of low-light frames
into its normal-light counterpart:

Lexposure =

t+N∑
i=t−N

∥fCRF(f
−1
CRF(G(Lt));Pt))− G(Ĩt)∥1. (21)

where G is a Gaussian blurring operation with variance 2 to
improve the robustness to noise of the exposure parameter.
Data preparation. The training dataset is constructed
following the protocol proposed in Zhang et al. [63], which
contains 107 pairs of synthetic normal-light and low-light
video (6208 frames). Their work focuses only on taking
low-light videos as input. The final dataset contains 87
videos randomly split for training and 20 for testing. Follow-
ing [63], we synthesize low-light frames Lt without noise
from normal-light ones It using gamma correction and linear
scaling with the same parameter setting:

Lt(p) = β × (α× It(p))
γ , (22)

where α, β, γ are sampled from a uniform distribution
U(0.9, 1),U(0.5, 1),U(2, 3.5), respectively. To meet our re-
quirement of hybrid inputs of events and low-light videos, we
further synthetic the events using the video to event simulator
v2e [19]. The spatial resolution of all frames is 854× 480,
while it is 427× 240 for events to simulate the discrepancy
in spatial resolution between the two modalities. The events
and frames of a hybrid camera system are hard to be per-
fectly aligned in practice. To take this into consideration, we
apply random perspective transforms between them as [25].
Noise simulation. Noise in low-light conditions is the
key factor that we take care of. For events, insufficient
illumination brings distinctive degradation such as limited
bandwidth, more leaky events, and shot noise, which we
simulate following [67]. For frames, the commonly used
noise model Gaussian-Poisson distribution can be modeled
by a signal-dependent Gaussian distribution [18]:

L(p) = N (I(p), σ2
r + σsI(p)), (23)

where N denotes the Gaussian distribution and the noise
parameters σr and σs are both sampled from uniform distri-
bution U(0.01, 0.04) in [63].

To enable the proposed method to generalize in complex
real-world scenarios, we propose to use a more practical
degradation process for low-light frames. First, when the

Table 1. Quantitative comparison on synthetic low-light video enhancement
dataset proposed in [63]. ↑ (↓) means higher (lower) is better.

Method PSNR↑ SSIM↑ LPIPS↓

Pure event
DVS-Dark [64] 9.84 0.2617 0.6205
E2VID [39] 11.63 0.3208 0.6154

Image-based

LIME [12] 15.08 0.3402 0.5327
SCI [31] 16.90 0.4187 0.5081
Transformer [58] 15.58 0.6146 0.3965
URetinex-Net [54] 20.20 0.5157 0.4797

Video-based

MBLLEN [30] 16.72 0.6051 0.5493
SDSD [49] 12.35 0.2604 0.7187
StableLLVE [63] 21.79 0.7176 0.3856

Hybrid Ours 22.81 0.8180 0.2747

intensity is small, the Poisson distribution has very differ-
ent characteristics from a signal-dependent Gaussian dis-
tribution. In our experiments, the shot noise is sampled
from the Poisson distribution with a noise scale sampled
from U(0.05, 2.5) instead of a Gaussian approximated one.
Second, JPEG compression often occurs in digital images.
The caused artifacts become more significant in low-light
conditions where the features are weak. We include JPEG
compression in the simulation process with a quality factor
sampled from U(50, 95).
Other implementation details. We apply random crop-
ping, horizontal flipping, and rotation for data augmentation.
The cropping size is 128× 128, and the rotation angles in-
clude 90, 180, and 270 degrees. The learning rate is set to
1× 10−4, and the model is trained by Adam Optimizer [24]
with default parameters for 50 epochs on a single NVIDIA
TITAN RTX GPU. Following the common practice in flow-
based video restoration [16, 35, 4, 68], the optical flow esti-
mators FE

flow and FL
flow are initialized from pre-trained mod-

els for events [9] and frames [45], respectively.

4. Experiments
In this section, we evaluate the effectiveness of the pro-

posed method using real and synthetic data. Ablation studies
are conducted to verify the effectiveness of the proposed
modules. Throughout all experiments, we adopt the com-
monly used metrics PSNR, SSIM, and LPIPS to evaluate the
performance of different methods quantitatively.

4.1. Comparison with State-of-the-Art Methods

We compare the proposed method with nine state-
of-the-art methods, including four image-based methods
LIME [12], SCI [31], Transformer [58], URetinex-Net [54];
three video-based methods MBLLEN [30], StableLLVe [63],
and SDSD [49]; and two event-based restoration methods
DVS-Dark [64] and E2VID [39]. All results for comparison
are produced from their official codes with recommended
hyperparameters. Note that LIME [12] is the state-of-the-
art conventional method, while the others are all learning-
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(a) Low (b) Events (c) DVS-Dark [64] (d) E2VID [39] (e) Ours (f) Ground Truth

(k) SDSD [49](j) MBLLEN [30](i) SCI [31](g) URetinex-Net [54] (h) Transformer [58] (l) StableLLVE [63]

Figure 4. Visual quality comparison of enhancement results on synthetic data.

based. DVS-Dark [64] and E2VID [39] can only reconstruct
grayscale frames; we convert the color frames into grayscale
ones for numerical comparison.

To quantitatively evaluate the effectiveness of the pro-
posed method, we conduct comparisons using synthetic
data proposed in [63] and the one synthesized by the pro-
posed noise simulation process for handling complex real-
world degradation. Quantitative results in the low-light video
dataset proposed in [63] are reported in Table 1, demonstrat-
ing the proposed method’s superior performance. Thanks
to the introduced visual modality of event streams for effec-
tive motion estimation and denoising, the proposed method
outperforms the others in terms of all metrics by a large
margin. To enable a noise-robust low-light video enhance-
ment with a more generalizable ability, we propose a noise
simulation process that better characterizes the real noise
and compression artifacts. The comparison results on the
synthetic dataset processed by the proposed noise simulation
are reported in Table 2. The superior performance further
demonstrates the effectiveness of the proposed method. The
corresponding visual comparison results are shown in Fig-
ure 4. Directly utilizing the high dynamic and high tem-
poral resolution property of events to reconstruct video is
quite ill-posed, which is evidenced in the results of DVS-
Dark [64] and E2VID [39]. Moreover, DVS-Dark [64] is
an adversarial learning method trained from unpaired data,
which could cause model collapse. Unlike the other video
enhancement methods, temporal redundancy in low-light
videos is hard to be solely exploited due to the weakened
features and significant noise. It can be seen that none of
the frame-based methods can well suppress the severe noise.
SDSD [49] produces inferior results, which might be due
to the use of an unsuitable upsampling layer [34] and batch
normalization [55], which have been found to produce ar-
tifacts in low-level tasks. In comparison, MBLLEN [30],
StableLLVe [63], and the proposed method successfully re-

Table 2. Quantitative comparison on our synthetic data with more severe
noise. ↑ (↓) means higher (lower) is better.

Method PSNR↑ SSIM↑ LPIPS↓

Pure event
DVS-Dark [64] 9.81 0.2654 0.5748
E2VID [39] 16.20 0.5729 0.5077

Image-based

LIME [12] 15.66 0.4274 0.4817
SCI [31] 15.96 0.5166 0.4667
Transformer [58] 15.81 0.5847 0.4087
URetinex-Net [54] 20.87 0.5898 0.4499

Video-based

MBLLEN [30] 17.77 0.5896 0.3823
SDSD [49] 12.60 0.2822 0.7225
StableLLVE [63] 19.37 0.6992 0.3857

Hybrid Ours 23.98 0.8369 0.2794

cover global illumination. However, the noise is significant
in the results of MBLLEN [30] and StableLLVe [63]. In
comparison, our method can suppress noise well and recover
pleasing illumination. It validates the effectiveness of in-
troducing event cameras for better motion estimation and
alternative intensity observations.

The existing real-world dataset proposed in [20] is unsuit-
able for our task because it only takes events as input rather
than events and frames, and their released events are stacked
using a method different from ours. To evaluate the proposed
method for real-world scenarios, we build a hybrid camera
system consisting of an industrial camera (FLIR Chameleon
3 Color, with resolution 1920× 1280 at 20 fps) and an event
camera (DAVIS346, with resolution 346× 260) via a beam
splitter (Thorlabs CCM1-BS013) mounted in front of the
two cameras with 50% optical splitting. Visual comparisons
are shown in Figure 5. It shows that the proposed method
can suppress noise as well as compensate for the exposure
for high-quality output. The event-based video reconstruc-
tion methods cannot recover high-quality texture due to the
trigger mechanism in event cameras. The result shows that
while all other methods produce obvious artifacts or events
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(a) Low (b) Events (c) DVS-Dark [64] (d) E2VID [39] (e) Ours (f) LIME [12]

(k) SDSD [49](j) MBLLEN [30](i) SCI [31](g) URetinex-Net [54] (h) Transformer [58] (l) StableLLVE [63]

Figure 5. Visual quality comparison of enhancement results on real-captured data.

Table 3. Ablation results. ↑ (↓) means higher (lower) is better.

Methods PSNR↑ SSIM↑ LPIPS↓

w/o events 22.86 0.8147 0.3021
w/o global feature alignment 23.41 0.8241 0.2974

w/o pixelwise motion aggregation 22.89 0.8248 0.2976
w/o temporal coherence propagation 23.67 0.8231 0.2967
w/o exposure parameter estimation 19.83 0.7944 0.3248

w/o noise simulation 22.15 0.7290 0.3592
Ours 23.98 0.8369 0.2794

that magnify the noise, the proposed method can produce
smooth results with well-suppressed noise.

4.2. Ablation Study

To validate the effectiveness of each component, we com-
pare the proposed method with its five variants. Qualitative
results are shown in Table 3. Without the optical flows ex-
tracted from events, the results drastically decrease (the first
row). This is because the features of low-light frames are
weak, so extracting the optical flow solely from the frames
with low contrast and low SNR is unreliable. The two visual
modalities with totally different sensors and resolutions are
hard to be precisely aligned. A good spatial alignment mod-
ule to compensate for misalignment in low-light conditions,
a good spatial alignment module is essential to utilize the
high dynamic range and high temporal resolution property
of events (the second row). Without the pixelwise motion
aggregation module to jointly extract motion information
from events and frames, performance drops (the third row).
Figure 2 also shows its effectiveness in joint optical flow
estimation. For temporal coherence propagation, we pro-
pose a flow-guided integration module tailored to fill the
gap in temporal resolution between events and frames and

propagate temporal redundancy information across frames
(the fourth row). The exposure parameter estimation module
is crucial for enhancing low-light frames to achieve high
contrast and visually appealing results (the fifth row). The
proposed noise simulation process is effective for robustness
to noise, as shown in the sixth row.

5. Conclusion
In this paper, we present a deep learning framework for

low-light video enhancement from hybrid inputs of low-light
video and the corresponding events. Thanks to the proposed
multimodal coherence module to compensate for the sensor
misalignment between events and low-light frames and the
temporal coherence propagation module to utilize temporal
redundancy for improving SNR and contrast in low-light
videos, our method can successfully suppress noise under
challenging conditions of low-light videography.

Limitations. In this paper, we focus on utilizing high
temporal resolution and high dynamic range in event cameras
for noise suppression and exposure compensation in low-
light videos. However, we cannot handle the situation where
the visual signal is too weak to trigger enough events, for
example, less than 0.5 lux. Moreover, we do not consider
the color distortion that might occur in low-light conditions.
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