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Abstract

Event-intensity asymmetric stereo systems have emerged as a promising approach
for robust 3D perception in dynamic and challenging environments by integrating
event cameras with frame-based sensors in different views. However, existing
methods often suffer from overfitting and poor generalization due to limited dataset
sizes and lack of scene diversity in the event domain. To address these issues, we
propose a zero-shot framework that utilizes monocular depth estimation and stereo
matching models pretrained on diverse image datasets. Our approach introduces
a visual prompting technique to align the representations of frames and events,
allowing the use of off-the-shelf stereo models without additional training. Fur-
thermore, we introduce a monocular cue-guided disparity refinement module to
improve robustness across static and dynamic regions by incorporating monocular
depth information from foundation models. Extensive experiments on real-world
datasets demonstrate the superior zero-shot evaluation performance and enhanced
generalization ability of our method compared to existing approaches.

1 Introduction

Stereo matching has witnessed significant advancements in recent years, driven by deep learning
techniques and the availability of extensive training datasets in the image domain [18, 16, 20].
These advancements have enabled widespread applications in various fields, including mapping [10],
navigation [21], 3D reconstruction [14, 9], motion estimation [7, 29], and image restoration [42, 19,
38]. Additionally, the abundance of unlabeled data on the internet has recently fueled the progress of
monocular depth estimation [37, 25].

Event cameras report per-pixel relative intensity changes asynchronously at high temporal resolutions
within a wide dynamic range [12], providing complementary sensory information alongside conven-
tional frame-based cameras that capture absolute intensity values synchronously. Event-intensity
asymmetric stereo matching has emerged as a promising approach to achieve robust performance
in challenging conditions such as ultra-wide dynamic range and fast-moving scenes that cannot be
faithfully captured by conventional frame-based cameras alone, by leveraging the complementary
strengths of event and frame cameras in different views [30, 17, 46, 40, 4]. Despite the potential
benefits, existing event-intensity asymmetric stereo approaches often rely on supervised learning
or fine-tuning, requiring large amounts of labeled training data. Unfortunately, the shorter history
of event-based sensors in commercial markets poses a scarcity of large-scale datasets essential for
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Figure 1: The proposed Zero-shot Event-intensity asymmetric STereo (ZEST) framework estimates disparity
by finding correspondences between RGB frames and event data. (a) Our method conducts stereo matching by
utilizing off-the-shelf stereo matching and monocular depth estimation models with frozen weights, and feeding
them visual prompts tailored to the physical formulation of frames and events (temporal difference of frames
and temporal integral of events, respectively). (b) In contrast, existing methods (e.g., [40]) that rely on training
data with known ground truth disparities often suffer from limited annotated data availability, thus leading to
unsatisfactory results.

effective training and generalization. The scarcity of large-scale datasets in the event domain has
resulted in overfitting and poor generalization to new environments or unseen disparity ranges [6].

Stereo models estimate disparity by establishing feature similarities between views, assuming that
the two inputs are aligned in feature representation space. As events and frames capture relative
differences and absolute values of intensity, respectively, they inherently possess a strong physical
connection. This connection can be leveraged to convert them into intermediate representations with
comparable appearance patterns. In the context of event-intensity asymmetric stereo, where training
data are significantly limited compared to images, it is crucial and beneficial to develop a zero-shot
approach that does not necessitate training data for modifying the underlying architecture or weights
of the models. Considering the recent progress in image-based stereo matching [18, 16], where
models trained on extensive datasets have exhibited effective zero-shot generalization, as well as the
emerging techniques of “visual prompting” [32, 36, 1], which aims to adapt off-the-shelf models to
new domains or modalities without modifying the model architecture or weights, we are motivated to
utilize off-the-shelf models from the image domain with only modified inputs, rather than altering the
weights, which requires substantial data.

Yet, several challenges impede the introduction of off-the-shelf models from the image domain to
event in a zero-shot manner: 1) Significant modality gaps exist between events and frames (the red
boxes in Figure 1), where events are triggered by temporal differences between frames exceeding
predefined thresholds, compounded by sensor imperfections and stochastic electric noise. 2) In static
regions where events cannot be triggered (the green boxes in Figure 1), no correspondences can
be established, necessitating hallucination from the monocular model processing frames. However,
these models typically provide relative disparities, whose distances from the actual metric are mostly
calculated up to a global scale and bias.

In this paper, we propose a Zero-shot Event-intensity asymmetric STereo (ZEST) framework that
leverages both monocular depth estimation and stereo matching models from the image domain,
which is shown in Figure 1. To address the appearance gap between frames and events, we introduce
a representation alignment module that considers the physical formulation from frames to events.
The disparity map is then estimated from frames and events in different views using an off-the-shelf
stereo model in the image domain. We further propose a monocular cue-guided disparity refinement
module that re-renders these disparities by rescaling the relative depths predicted by a monocular
depth estimation foundation model, enhancing robustness in regions with few events or textures.
Our framework demonstrates superior performance among training-free methods for intensity-event
asymmetric stereo matching and enhanced generalization across diverse real-world scenes. The
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Figure 2: Overview of the proposed ZEST framework. The representation alignment module aligns frames
and events, considering exposure time and event properties. This enables using an off-the-shelf stereo model
to find correspondences. Disparity refinement then improves the estimates by minimizing differences between
monocular depth prediction rescaled by an optimized scale map and binocular depth predictions, guided by event
density confidence.

flexibility of our approach allows for seamless upgrades of the stereo and monocular models alongside
advances in the related fields. Our main contributions are as follows:

• We present the first zero-shot event-intensity asymmetric stereo matching method that
leverages off-the-shelf depth estimation models from the image domain.

• We introduce a visual prompting method for representation alignment between events and
frames, enabling the utilization of off-the-shelf stereo models without modification.

• We propose a monocular cue-guided disparity refinement method for robustness in regions
with few events or textures, inspired by recent advancements in monocular depth estimation.

2 Related Work

Intensity-based stereo and monocular depth estimation. With the development of deep learning
technology, significant progress has been made in stereo matching, with methods categorized based
on their cost construction and aggregation approaches. Correlation-based methods [27, 35, 39, 8] and
those using 3D convolutions [3, 5, 33] have achieved impressive performance. Recently, iterative
optimization-based networks [20, 34, 41] have demonstrated superior accuracy and robustness. In
monocular depth estimation, models like Depth Anything [37] and MiDaS [25] leverage extensive
unlabeled data to estimate relative depth, enabling generalization across domains at the cost of
unknown scale and shift.

Event-based symmetric stereo. Event cameras capture pixel-level brightness changes asyn-
chronously, offering advantages over conventional frame-based cameras. Event-based stereo depth
estimation has emerged rapidly. Representative works include utilizing camera velocity [44] or
estimating depth without explicit event matching [43]. Deep learning solutions have considered novel
sequence embedding [28] and fusion of frame and event data [22, 23] for improved depth estimates
in challenging scenarios. Recent efforts explore integrating off-the-shelf models from the image
domain [6] to improve stereo matching performance by leveraging the inherent connection between
frame and event data.

Event-intensity asymmetric stereo. Event-frame asymmetric stereo matching leverages the comple-
mentary strengths of event and frame cameras. Traditional methods focused on aligning and fusing
asynchronous event data with synchronous frame data using hand-crafted features [17] and traditional
stereo matching algorithms [30]. Deep learning approaches [46, 40, 4] have been employed to learn
complex mappings for event-frame fusion and dense depth estimation. However, these methods
often suffer from overfitting and poor generalization due to limited dataset sizes and scene diversity
in the event domain. Our work proposes a zero-shot approach that leverages disparity estimation
models from the image domain by visual prompting, eliminating the need for additional training and
improving generalization.
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3 Method

Overview The proposed method aims to estimate depth from a frame-based camera and an event
camera in different views, separated by a baseline distance. Without loss of generality, we assume
that the frames are in the left view and the events are in the right view. Given consecutive rectified
event-intensity pairs (IL(τi), E

R(τi) and (IL(τi+1), E
R(τi+1)), our goal is to infer the corresponding

disparity map D(τi) at timestamp τi.

The overall framework of the proposed ZEST for event-intensity asymmetric stereo is shown in Fig-
ure 2, consisting of two components: the representation alignment module for aligning the frames in
the left view and events in the right view into an intermediate representation space (Sec. 3.1), and the
disparity refinement module for improving stereo matching results under the guidance of monocular
model predictions (Sec. 3.2).

3.1 Event-intensity representation alignment for stereo matching
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Figure 3: Visual comparisons of the disparity predicted by a
stereo model [16] fed with inputs in the first two rows, where the
inputs are aligned in the space of raw data, intensity (via [26]),
events (via [15]), and intermediate (via the proposed method),
respectively.

Stereo matching estimates depth by tri-
angulation using pixel space represen-
tations, where stereo correspondence is
established by finding similar patterns
on a pixel-wise basis. With the advances
in deep learning, modern stereo match-
ing models are trained on massive data
to estimate disparity. Due to the amount
of training data and the diversity of real-
world scenes, off-the-shelf models with
frozen weights maintain robustness to
different representations ranging from
absolute values to relative changes in
intensity, as shown in Figure 3. How-
ever, directly using these representations
may not be optimal for event-intensity
asymmetric stereo. This is because the
event and frame data have fundamen-
tally different characteristics, and a care-
fully designed intermediate representa-
tion can better bridge the appearance
gap between them.

Inspired by this, we design an intermediate representation as a “visual prompt” to align the modalities
in two views, enabling off-the-shelf stereo matching models to work for event-intensity asymmetric
stereo. We will detail the formulation of the proposed intermediate representation in the following.

An event e = (t,p, σ) at the pixel p = (px,py)
⊤ and time t is triggered whenever the logarithmic

change of irradiance I exceeds a pre-defined threshold c (> 0), i.e.,

∥log Ip(t)− log Ip(t−∆t)∥ ≥ c, (1)

where I(t) denotes the instantaneous intensity at time t, and the polarity σ ∈ {−1,+1} indicates
{negative, positive} brightness changes. We define ep(t) as a function of continuous time t such that,

ep(t) = σδτ (t), (2)

whenever there is an event e = (τ,p, σ). Here, δτ (t) is an impulse function, with unit integral, at
time τ , and the sequence of events is turned into a continuous-time signal, consisting of a sequence
of impulses. There is such a function ep(t) for each position p in the image. Since each pixel can be
treated separately, we omit the subscripts p. Given a reference timestamp τi, assuming that there are
latent sharp image sequences I(τ) with infinitesimal exposure time, their relationship between the
corresponding events can be expressed as

I(τi+1) = I(τi) exp (c

∫ τi+1

τi

e(t)dt). (3)
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Define the logarithmic brightness increment ∆Li(t) from two consecutive frames as

∆Li(t) = log I(τi+1)− log I(τi). (4)

It can be approximated by events triggered during these frames as

∆L̂i(t) = c

∫ τi+1

τi

e(t)dt. (5)

In Eq. (5), the left-hand side represents the temporal difference of frames, while the right-hand
side denotes the temporal integral of events. This formulation establishes an explicit intermediate
representation that bridges the gap between frames and events with similar appearance, enabling
correspondences to be found for stereo matching.

Now we turn to the frames captured in the real world, which have a non-negligible exposure time 2T .
A frame Iτ,T (t) with exposure time [τ − T, τ + T ] can be represented as the average of the latent
image I(t) over the exposure duration given a latent frame with a timestamp τ0 as reference [24],
which can be formulated as

Iτ,T (t) =
1

2T
I(τ0)

∫ τ+T

τ−T

exp (c

∫ t

τ0

e(s)ds)dt. (6)

Then, the difference between two consecutive logarithmic frames Lτi , Lτi+1
with exposure time 2T

with the middle latent frame Iτ0 as reference can be formulated as

∆L̂i(t) = log

(∫ τi+T

τi−T

exp

(
c

∫ t

τ0

e(s)ds

)
dt

)
− log

(∫ τi+1+T

τi+1−T

exp

(
c

∫ t

τ0

e(s)ds)dt

))
. (7)

We use the temporal difference map ∆L(t) defined by consecutive frames in Eq. (3) and its ap-
proximation version defined from the temporal integral of events in Eq. (7) as explicit intermediate
representations, respectively. In practice, the calculations are done in discrete form, whose details
can be found in the appendix. We normalize the event and image representations using percentile
normalization to improve robustness.

Specifically, the disparity Dbino at timestamp t is estimated by stereo matching model Fbino as

Dbino(t) = Fbino(∆LL(t),∆L̂R(t)). (8)

As shown in Figure 3, the proposed event-intensity alignment method successfully finds appropriate
visual prompts for the stereo models from the image domain, which helps to establish correspondences
between the frames and events.

3.2 Monocular cue guided disparity refinement

In the context of event-intensity asymmetric stereo, stereo matching often faces challenges in
establishing reliable correspondences, particularly in textureless regions of left images and static
regions with sparse events in the right view. In contrast, monocular depth estimation directly infers
depth maps from single images by leveraging monocular cues such as texture variations, gradients,
occlusion, known object sizes, haze, and defocus. Off-the-shelf monocular depth estimation models,
such as Depth Anything [37] and MiDaS [25], have demonstrated impressive “zero-shot cross-dataset
transfer” capabilities, thanks to the relaxed requirements for training data in unsupervised learning.

Inspired by this, we propose a monocular cue-guided disparity refinement approach. However, there
may be unknown scale and shift discrepancies between the predictions of the stereo and monocular
models, which may vary spatially due to the absence of physically measurable information during
monocular depth estimation. To address these factors, we model the desired refined disparity map as
a locally linear transformation of the estimation from the monocular cue. Let Dmono represent the
disparity map predicted by a monocular depth estimation model Fmono from frame I , i.e.,

Dmono = Fmono(I), (9)

whose relationship with the binocular estimation Dbino is assumed a linear transform as

Dbino ≈ W ⊙ (Dmono +B), (10)
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Figure 4: From left to right, our model exhibits impressive generalization abilities across a broad spectrum of
varied scenes, encompassing sparse event scenes, richly textured environments, dimly lit settings, close-range
captures, and high dynamic range situations.

where ⊙ denotes the element-wise multiplication operation, and W and B denote the scale map and
the shift map, respectively.

To estimate the scale map W and shift map B, we minimize the following loss function:

W ∗, B∗ = argminW,B Lconst + αLsmooth, (11)

where the loss function involves several priors about the desired disparity map, and α is a regulariza-
tion parameter to balance between them. Note that Dbino is predicted by establishing correspondence
between frames and events, which is more reliable where there are more events. Therefore, the
temporal difference map ∆LL(t) of frames is utilized to construct a confidence map C to identify the
density of events. Firstly, the estimated scale map W and shift map B should be consistent with the
model defined in Eq. (10), which can be constrained by

Lconst =
∑
p

∣∣Cp(Wp(D
mono
p +Bp)−Dbino

p )
∣∣, (12)

where the ℓ1 distance is utilized for its robustness to outliers. Secondly, the scales and biases for
neighboring pixels should be similar, which can be derived by an edge-ware smoothness as

Lsmooth =
∑
p

(
(|∂xWp|+ |∂xBp|)e−(∂xD

mono
p )

2

+ (|∂yWp|+ |∂yBp|)e−(∂yD
mono
p )

2)
. (13)

This regularizer encourages local smoothness in the scale and shift maps. To ensure stability in the
optimization steps for only one sample, a good initialization is necessary. While the shift map B is
simply initialized as all ones matrix B(0) = 1, the scale map W is initialized as

W (0) =

∑
p∈Ωp

(
CpD

bino
p /(Dmono

p +B
(0)
p )
)

∑
p∈Ωp

Cp
, (14)

where Ωp is a window centered at position p. This loss term ensures the consistency modeled
in Eq. (10) in regions with more events measured by ∆L in the beginning of the optimization. At the
end of the optimization, the refined disparity map D̂ can be obtained by

D̂ = W ∗ ⊙ (Dmono +B∗). (15)

The proposed method effectively combines the strengths of both stereo matching and monocular
depth estimation, leveraging the accurate but sparse disparity estimates from stereo matching to guide
the refinement of the dense but relative depth estimates from monocular depth estimation.
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Table 1: Quantitative comparisons of disparity estimation results with state-of-the-art methods from both event
and image domains. The end-point-error (EPE), root mean square error (RMSE), 3-pixel error (3PE, %), and
2-pixel error (2PE, %) are adopted for evaluation. Zu, In, and Th denote the Zurich City, Interlaken, and Thun
sequences on the DSEC [13] dataset, respectively. Red and orange highlights indicate the first and second
best performing technique for each metric. ↑ (↓) indicates that higher (lower) values are better. The method with
a gray background is the only one that does not adhere to the cross-dataset evaluation protocol.

Method
EPE↓ RMSE↓ 3PE↓ 2PE↓

Zu In Th All Zu In Th All Zu In Th All Zu In Th All

SHEF [30] 10.43 11.93 14.61 10.66 18.05 18.22 24.42 18.10 51.07 74.54 55.98 54.37 60.21 80.12 65.93 63.01
HSM [17] 8.65 8.34 8.42 8.60 19.11 17.96 19.16 18.95 32.55 36.40 30.87 33.08 42.10 45.77 38.15 42.60
DAEI [40] 12.43 12.09 13.89 12.39 15.66 15.44 17.12 15.63 87.10 86.02 89.97 86.96 91.48 90.74 93.58 91.39
DAEI [40]† - 1.93 - - - 2.94 - - - 16.82 - - - 29.16 - -

Translate event into intensity on the right view

PSMNet-ETNet 29.58 30.27 19.68 29.64 44.80 44.67 34.23 44.74 80.09 85.98 75.93 80.90 89.33 91.95 87.14 89.69
CR-ETNet 27.99 19.20 5.25 26.67 34.31 26.93 12.31 33.19 31.90 25.44 12.75 30.92 40.46 35.64 20.42 39.71
DS-ETNet 20.84 24.04 2.93 21.22 29.32 40.45 5.67 30.78 34.19 36.18 23.00 34.42 43.46 47.43 33.10 43.98
PSMNet-E2VID 29.50 26.69 25.07 29.09 44.84 38.74 39.42 43.96 81.43 84.43 82.31 81.86 90.15 91.33 90.53 90.32
CR-E2VID 24.65 7.70 3.67 22.20 30.60 12.17 8.15 27.94 27.78 12.75 9.51 25.60 35.06 21.23 15.18 33.05
DS-E2VID 13.30 17.40 2.37 13.83 20.02 30.72 4.28 21.46 28.20 28.83 20.23 28.25 36.38 38.70 29.09 36.68

Translate intensity into event on the left view

CFF-v2e 9.86 12.07 7.81 10.17 14.69 16.55 11.36 14.93 60.34 71.95 62.77 61.97 68.55 79.73 73.03 70.14

ZEST: Translate into intermediate representation on both views (Ours)

Ours-CR-MiDaS 3.64 8.79 2.21 4.35 4.60 9.68 3.23 5.30 28.68 33.07 21.61 29.26 48.02 51.52 41.12 48.48
Ours-DS-MiDaS 2.24 7.66 1.68 3.00 3.46 12.07 2.82 4.66 14.48 17.57 12.46 14.91 26.31 28.58 22.39 26.61
Ours-CR-DA 3.18 9.00 1.31 3.99 4.27 9.93 2.40 5.05 9.75 10.48 7.26 9.84 18.76 18.05 14.23 18.64
Ours-DS-DA 2.24 7.66 1.71 2.99 3.44 12.05 2.86 4.64 14.67 17.44 13.11 15.05 26.14 28.21 22.83 26.41

DAEI-DSEC Ours-CR-Mi Ours-CR-DA DAEI-MVSEC Ours-DS-Mi Ours-DS-DA 

Event (Right) Ground Truth HSMFrame (Left) SHEF DS-E2VID

Figure 5: Visual quality comparison of disparity estimation results among state-of-the-art methods (HSM [17],
SHEF [30], DAEI [40] trained on MVSEC [45] and DSEC [13], respectively) and the proposed ZEST with
various stereo matching models (CR and DS) and monocular depth estimation models (Mi and DA). The baseline
method with the best EPE and RMSE metrics, i.e., DS-E2VID, is also included for comparison.

4 Experiments

Dataset. We evaluate the proposed ZEST framework on the widely-used benchmark dataset for
event-intensity stereo matching, the DSEC dataset [13], a large-scale high-quality driving dataset
with challenging scenes. It consists of synchronized event and frame streams captured from a stereo
setup in a wider range of challenging scenarios, including fast motion, high dynamic range, and
low light conditions. Specifically, it provides high-resolution (640 × 480) stereo event streams
captured in outdoor driving scenes using Prophesee Gen 3.1 event cameras. It contains 53 driving
scenarios taken in various lighting conditions. Without specification, all 41 sequences in the training
set are adopted for evaluation. To demonstrate our method’s generalization capabilities, we conduct
additional evaluations on the MVSEC [45] and M3ED [2] datasets. MVSEC [45], the pioneering
stereo event dataset, includes ground truth depth maps across diverse scenarios. It offers event streams
at a spatial resolution of 346× 260 captured with DAVIS346 event cameras. We use three subsets
for MVSEC evaluation: indoor_flying1 (500–1500), indoor_flying2 (500–2000), indoor_flying3
(500-2500) (denoted as S1, S2, and S3, respectively). Since the image frame rate and ground truth
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Table 2: Quantitative results of the proposed zero-shot disparity estimation method on the MVSEC [45] dataset.

Method
EPE↓ RMSE↓ 3PE↓ 2PE↓

S1 S2 S3 All S1 S2 S3 All S1 S2 S3 All S1 S2 S3 All

HSM [17] 9.64 12.98 9.09 10.57 11.43 15.81 10.87 12.70 82.22 83.75 79.48 81.82 85.96 89.03 83.68 86.22
DAEI [40] 1.08 - - - 1.55 - - - 7.73 - - - 15.73 - - -
CR-E2VID 16.33 23.62 18.01 19.32 16.94 24.64 18.55 20.04 79.31 88.24 83.39 83.64 82.12 92.05 88.42 87.53
Ours-CR-DA 3.34 7.19 5.13 5.22 3.83 7.83 5.60 5.76 19.06 41.72 28.66 29.82 33.22 61.38 43.97 46.19

Table 3: Quantitative results of the proposed zero-shot disparity estimation method on the M3ED [2] dataset.

Method EPE↓ RMSE↓ 3PE↓ 2PE↓

HSM [17] 12.39 14.27 90.87 92.58
DAEI [40]† 20.07 22.19 93.12 95.47
CR-E2VID 2.10 4.02 17.69 25.45
Ours-CR-DA 2.06 3.39 19.04 29.02

depth frame rate of MVSEC are different, for each frame we use the depth frame with the closest
timestamp. The M3ED [2] dataset provides evaluation to unique urban and forest environments,
providing high-resolution (1280 × 720) event streams captured with Prophesee EVK4 HD event
cameras. We use the car_urban_day_horse (300-700) sequence for evaluation.

Metrics We use the standard evaluation metrics for stereo matching, including the mean absolute
error (MAE), root mean squared error (RMSE), and the percentage of pixels with errors larger than a
threshold (e.g., 1, 2, or 3 pixels).

Compared methods. We compare the performance of the proposed ZEST framework with state-of-
the-art event-intensity stereo matching methods, including both traditional and deep-learning-based
approaches. For traditional methods, we consider SHEF [30] and HSM [17]. For deep-learning-
based methods, we compare against a state-of-the-art method trained on the S2 and S3 splits of the
MVSEC [45] dataset, DAEI [40]. A variant of DAEI trained on the Zurich and Thun sequences in
the training set of DSEC [13] (denoted by DAEI†) is also included.

Baselines. We also include several baseline methods that directly apply the off-the-shelf stereo
models to the event and frame images without extra representation alignment or disparity refinement.
To align the different modalities between the left and right views, we consider two cases, event-to-
intensity and intensity-to-event, respectively. In the case of event-to-intensity, events in the right view
are reconstructed into a gray image using E2VID [26] and ETNet [31], which are then fed to the
off-the-shelf image-based stereo models PSMNet [3], CREStereo (CR) [18], and DynamicStereo
(DS) [16] together with the frames in the left view. In the case of intensity-to-event, consecutive
frames in the left view are converted by v2e [15], which are then fed to the off-the-shelf event-based
stereo models CFF [23] together with the events in the right view. As for the proposed ZEST
framework, we adopt CR and DS for the stereo models, and Depth Anything (DA) [37] and MiDaS
(Mi) [25] for the monocular depth estimation models, respectively. Throughout this paper, we use
abbreviations to denote specific combinations of modality alignment techniques, stereo models, and
monocular models. For example, the combination of the proposed technique, CREStereo, and Depth
Anything is referred to as “Ours-CR-DA”. All results for comparison are produced from their official
codes with recommended hyperparameters provided on public available sources or from the authors.

4.1 Comparisons with prior arts

Quantitative results on the benchmark dataset DSEC [13] are reported in Table 1, demonstrating the
proposed method’s superior performance. The quantitative analysis revealed that our framework
consistently outperformed almost all compared methods and baselines across every metric, except for
DAEI† [40] and the baseline E2VID-CR. While all other methods are evaluated in a cross-dataset
manner, DAEI† [40] is the only method that is evaluated in an in-dataset manner, which is trained and
tested on the DSEC [13]. Therefore, it is not surprising that they achieve almost the best performance.
Surprisingly, most of the variants of the proposed ZEST framework outperform this method in terms
of 3PE metric, which demonstrates the effectiveness of the proposed method. The performance
of the baseline CR-E2VID achieves good performance in terms of the 3PE and 2PE metrics in
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Table 4: Quantitative results of ablation studies on the interlaken_00_c sequence of the DSEC [13] dataset.
Compared to Table 1, 1-pixel error (1PE, %) is also utilized for evaluation.

Setting Rep. alignment Monocular cue EPE↓ RMSE↓ 3PE↓ 2PE↓ 1PE↓

1) DS w/ E2VID-right ✗ ✗ 43.02 55.79 87.63 91.57 95.98
2) DS w/ v2e-left ✗ ✗ 13.90 20.26 72.68 81.44 90.65
3) DS w/ spatial gradients ✗ ✗ 19.01 23.76 78.88 86.24 93.05
4) DS w/ spatial gradients + DA_Large ✗ ✓ 19.09 23.57 81.38 88.20 94.49
5) DA_Large ✗ ✓ 35.85 41.34 99.05 99.35 99.65
6) DA_Large w/ GT scale ✗ ✓ 2.40 3.16 28.35 47.45 72.07
7) Ours-DS w/o DA ✓ ✗ 1.49 2.85 7.77 16.84 47.84
8) Ours-DS-DA_Large ✓ ✓ 1.41 2.62 7.22 16.00 46.37
9) Ours-DS-DA_Base ✓ ✓ 1.39 2.59 6.96 15.60 46.17
10) Ours-DS-DA_Small ✓ ✓ 1.42 2.64 7.30 15.94 46.95

Event (Right) Spatial Integ. (Right) Spatial-DS-DA Temporal Integ. (Right) Ours-DS-DA

Frame (Left) Spatial Grad. (Left) Spatial-DS Temporal Grad. (Left) Ours-DS

Figure 6: Visual comparison of the disparity results of a stereo matching method DS using different representa-
tions and the proposed approach. From left to right: inputs, spatial gradients of frames and spatial integral of
events (via [11]), their corresponding disparity result, the proposed representation, i.e., the temporal difference
of the frame and the temporal integral of the events, and their corresponding disparity result.

some sequences, although worse than the proposed method in all sequences. Evaluation results
for MVSEC [45] and M3ED [2] datasets are shown in Tables 2 and 3, respectively. These results
further confirm ZEST’s robust generalization across diverse scenarios and its adaptability to varied
environmental conditions.

The qualitative results presented in Figure 5 demonstrate the effectiveness of the proposed method.
For the baselines, we include DS-E2VID [16], which achieved the best performance in terms of
EPE and RMSE metrics. The visual comparisons highlight the superior quality of our framework,
generating depth maps with significantly enhanced sharpness, intricate details, and improved dynamic
accuracy compared to the compared methods.

4.2 Ablation study

To validate the effectiveness of each component in the proposed ZEST framework and analyze their
contributions to the overall performance, we conduct a series of ablation studies to evaluate the impact
of the representation alignment module and the monocular cue-guided disparity refinement module.

Impact of the representation alignment module. To assess the importance of the representation
alignment module, we compare the performance of ZEST with and without this module. Quantitative
results are shown in Table 4. In the absence of the proposed representation alignment, we feed the
off-the-shelf stereo matching model DS with: 1) original frames and frames generated from events in
the right view via E2VID (Figure 6); 2) events generated from frames in the left view via v2e and
events in the right view; 3) the spatial gradient of frames in the left view and the spatial integral of
events in the right view using [11]; and 7) the proposed representation alignment module. Among
these settings, the proposed module achieves the best performance. This highlights the effectiveness
of our approach in bridging the modality gap between events and frames, enabling the successful
application of off-the-shelf stereo matching models. The corresponding qualitative results are shown
in Figures 3 and 6, respectively.
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Event (Right) Scale Map DAFrame (Left) Ours-DS Ours-DS-DA

Figure 7: Visual comparison of the disparity results from the monocular model DA (fourth column), the proposed
method without (fifth column), and with DA (last column), demonstrating the effectiveness of the proposed
monocular cue-guided disparity refinement module. The corresponding optimized scale maps are shown in the
third column.

Impact of the disparity refinement module. To validate the effectiveness of each component, we
compare the proposed method with its five variants: 3) stereo matching model fed with the spatial
gradient of frames in the left view and the spatial integral of events in the right view; 4) the results
of 3) refined by a monocular depth estimation; 5) only the monocular depth estimation model DA;
6) the results of (5) rescaled by a global scale calculated from the ground truth disparity; 7) the
proposed method without disparity refinement; and 8) the proposed method with DA for disparity
refinement. The effectiveness of the introduction of monocular depth estimation can be shown by
comparing 7) and 8) and the corresponding qualitative results are shown in Figure 7, whose results
demonstrate more natural edges with DA. However, the disparity refinement module fails when the
stereo matching results are totally not reliable, as shown in the comparison between 3) and 4). As
shown in Figures 6 and 7, the disparity refinement module improves sharp depth boundaries for
objects, such as cars, in challenging scenarios with sparse events or low-texture regions.

Impact of monocular depth estimation model size for refinement. The modular design of our
framework supports flexible deployment with lighter-weight alternatives suited for resource-limited
environments. While results in Table 1 employ the monocular depth estimation model DA_Large
(335.3M parameters) with a ViT-L encoder, we also evaluated compact alternatives, DA_Base and
DA_Small with 97.5M and 24.8M parameters, respectively, as detailed in 9) and 10) in Table 4.
These alternatives provide substantial speed gains with acceptable accuracy trade-offs.

5 Conclusion

We introduce ZEST, a novel zero-shot event-intensity stereo matching framework that utilizes cutting-
edge image domain models for accurate disparity estimation without training data. ZEST addresses
the modality gap and labeled data scarcity in the event domain through representation alignment
and monocular cue-guided disparity refinement. Experiments on DSEC show ZEST outperforms
state-of-the-art methods in cross-dataset evaluation. Ablation studies validate the effectiveness of each
component, highlighting the importance of representation alignment, model integration versatility,
and monocular cue-guided refinement benefits.
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A Appendix

This appendix provides additional implementation details and extended experimental results for the
ZEST framework introduced in the main paper. We aim to facilitate the reproducibility of our work
and offer a more comprehensive analysis of the performance and robustness of ZEST under various
conditions.

A.1 Implementation Details

Intermediate representation for stereo matching. Considering the physical formulation from
frames to events, we design a representation that better captures the common information between
the two modalities while suppressing their differences. Specifically, the proposed intermediate
representation is designed to have the following properties: 1) It should be based on relative changes
in intensity, which is the primary information captured by event cameras. 2) It should incorporate
temporal information from the frames to match the temporal aggregation of events. 3) It should be
robust to the different dynamic ranges and noise levels of event and frame data. By designing an
intermediate representation with these properties, we aim to provide a more effective visual prompt
for the off-the-shelf stereo matching models to adapt to the asymmetric characteristics of event
and frame data. This can lead to an improved stereo matching performance in the event-intensity
asymmetric setting compared to directly using the existing representations.

Now we provide the discrete form of the explicit representation defined in Eq. (7), which is used in
practice since events with continuous time cannot be obtained. For convenience, we define the event
map E(t) as the integral of events between time τ and τ +∆τ as Eτ (t) to represent the proportional
change in intensity, which is equivalent to the sum of the polarity σk of the Nτ events ek = (tk,p, σk)
at position p in discrete form:

Eτ (t) =

∫ τ+∆τ

τ

e(t)dt =
∑

tk∈[τ,τ+∆τ ]

σk. (16)

Suppose that the duration of the exposure time 2T is discretized into N exp temporal bins with a
predefined unit duration ∆τ . By ignoring the logarithm effects of events, the temporal difference
∆Li(t) between two consecutive frames Lτi , Lτi+1

can be expressed into a reweighted sum form of
brightness increment E(t) as

∆L̂i(t) = c(

τi+1−T∑
τ=τi+T

N expEτ +

τi+1+T∑
τ=τi+1−T

⌊τi+1 + T − τ

∆τ
⌋Eτ −

τi+T∑
τ=τi−T

⌊τ − τi + T

∆τ
⌋Eτ ),

(17)
where ⌊·⌋ denotes the round down operation. Note that, compared to the commonly used event-based
double integral model [24] that uses trilateral weights to reweigh the event bin, the weights used in
the proposed method are trapezoidal, as shown on the left of Figure 2, where the events during the
readout time between frames are weighted equally according to the physical formulations. This new
formulation is especially useful when neither the exposure phase nor the readout phase is negligible
towards each other.

In real scenarios, the event trigger threshold c is often unknown. However, Eq. (17) still holds after
we normalize both sides of the equation, which eliminates the unknown c.

In summary, we use the temporal difference map ∆L(t) defined by consecutive frames in Eq. (3)
and its approximation version defined from the temporal integral of events in Eq. (17) as explicit
intermediate representations, respectively.

Loss minimization in disparity refining. To estimate the scale map and shift map used for disparity
refining, we minimize the loss function in Eq. (11). We perform this minimization using the gradient
descent algorithm, implemented with PyTorch and the Adam Optimizer. For each image, we run the
optimizer for 500 iterations.

Experimental setup. All models are tested on a single NVIDIA RTX 4090 GPU. The representation
alignment algorithm and the disparity refining algorithm are capable of running on either a CPU or
GPU, while the off-the-shelf stereo and monocular depth estimation models require GPU acceleration.
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Table 5: Computational complexity breakdown per stage. Runtime (ms), GPU memory usage (MB), number of
parameters (M), and equivalent FPS are reported.

Stage Memory Params Runtime FPS

Representation 0 – 39.06 25.59
DS 9224 21.47 8515.32 0.11
CR 2078 5.43 243.55 4.11
DA 3640 335.32 79.99 12.5
MiDaS 3344 344.05 31.14 32.10
Refinement 1736 – 306.82 3.25

Table 6: Computational complexity analysis across methods. 3PE performance, runtime (ms), GPU memory
usage (MB), number of parameters (M), and equivalent FPS are reported.

Method 3PE↓ Memory Params Runtime FPS

SHEF [30] 54.37 0 – 28944.85 0.03
HSM [17] 33.08 766 – 224.85 4.44
DAEI [40] 86.96 3238 11.25 75.15 13.3
Ours-DS-DA 15.05 14600 356.79 8902.13 0.11
Ours-DS-MiDaS 14.91 14304 365.52 8853.27 0.11
Ours-CR-DA 9.84 7454 340.75 630.36 1.58
Ours-CR-MiDaS 29.26 7158 349.48 581.51 1.71

Off-the-shelf model usage. In our experiments, we use stereo models PSMNet [3], CREStereo
(CR) [18], and DynamicStereo (DS) [16]. For PSMNet, we use the officially released checkpoint
trained on KITTI2015. For CR, we use the non-official implementation on https://github.com/
ibaiGorordo/CREStereo-Pytorch, which is converted from the original MegEngine implemen-
tation. For DS, we use the pretrained model trained on both DynamicReplica and SceneFlow. The
monocular depth estimation models we used are DepthAnything (DA) [37] and MiDaS (Mi) [25].
For DA, we use the pretrained model Depth-Anything-Large, which has 335.3M parameters. For Mi,
we use the the pretrained model BEiT-L-512 of MiDaS 3.1, which has 345M parameters.

Evaluation dataset. In the experiments, we use the “train" split of the DSEC dataset for evaluation,
as ground truth disparity is not provided for the official “test" split. The train split has 41 sequences,
including 5 Interlaken sequences, 1 Thun sequence, and 35 Zurich City sequences. As some of the
compared methods have border problems, for example, E2VID cannot reconstruct the first frame
since there are no events recorded before t = 0, we exclude the results of the first 10 frames and the
last 10 frames of each sequence when calculating metrics.

DAEI finetuning. The original DAEI [40] model was trained on MVSEC, and cannot generalize to
the DSEC dataset. We finetuned it on DSEC, using the Thun and Zurich City sequences, and tested it
on the Interlaken sequences. We trained on a single NVIDIA RTX 4090 GPU for 34 epochs until the
metrics converged.

A.2 More Qualitative Results

We provide additional qualitative comparisons of the disparity estimation results obtained by ZEST
and state-of-the-art methods on the DSEC [13] dataset. The qualitative results of the baseline methods
are shown in Figure 8 and Figure 9. Qualitative results of our methods and the compared methods
are shown in Figure 10 and Figure 11. More qualitative results of the representation alignment
method are shown in Figure 12. More intermediate results of the disparity refining method are shown
in Figure 13. More results on diverse real-world scenes of our method are shown in Figure 14. The
qualitative results of the proposed method on the MVSEC [45] and M3ED [2] datasets are shown
in Figures 15 and 16.

A.3 Computational Efficiency

We evaluated the computational efficiency of our framework’s modules on a machine with an Intel
i7-13700K CPU and NVIDIA RTX 4090 GPU, using an input resolution of 480 × 640. Unless
noted otherwise, performance metrics were derived from the interlaken_00_c sequence from the
DSEC dataset. Table 5 provides a breakdown of the computational cost per algorithm stage. The
Ours-CR-DA variant achieves an average runtime of 630.36 ms per frame, consuming 7454 MB of
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Table 7: Disparity refinement module computational cost across different iterations. EPE and 3PE performance,
runtime (ms), and equivalent FPS are reported.

Iterations EPE↓ 3PE↓ Runtime FPS

0 1.487 7.785 4.20 238.06
50 1.488 8.028 42.39 23.59
100 1.451 7.457 70.92 14.10
200 1.430 7.270 127.75 7.82
300 1.420 7.234 188.14 5.31
400 1.413 7.227 247.63 4.03

500 (Ours) 1.409 7.230 306.82 3.25

Table 8: Computational cost comparison at different input resolutions, reporting runtime (ms) and GPU memory
usage (MB).

Input
CRES DA Refinement

Runtime Memory Runtime Memory Runtime Memory

240×320 (1×) 156.59 2064 81.27 3640 300.96 1688
480×640 (4×) 243.55 2078 80.00 3640 306.82 1736
720×960 (9×) 624.11 2738 80.26 3640 311.70 1808

GPU memory. The disparity refinement module is the most computationally intensive component,
representing 48.6% of the total runtime. In the Ours-DS-DA variant, the DS model accounts for most
of the computational load, while the DA and refinement modules add minimal additional overhead.
In Table 6, we compare the total computational cost of existing methods and the proposed one.

Profiling results in Table 7 indicate that the disparity refinement module requires approximately
306.82 ms, or 48.6% of the Ours-CR-DA variant’s total inference time (630.36 ms). This module’s
overhead can be reduced without significantly impacting performance by limiting the number of
iterations.

We also evaluated the scalability of our approach with varying input resolutions. As illustrated
in Table 8, GPU memory usage and runtime increase marginally with larger resolutions. This is
primarily due to the DA model, which internally operates at a fixed inference resolution, keeping
memory usage stable.

A.4 Limitations

Despite the impressive performance of ZEST in event-intensity asymmetric stereo matching, there
remain several limitations that warrant further investigation.

One challenge is handling noisy or sparse events, which can diminish the accuracy of visual prompts
and stereo matching. In cases of poor event data quality, such as significant noise or low event
density, the disparity refinement module may struggle to compensate, resulting in suboptimal depth
estimation. Representative failure cases are illustrated in Figure 17. Row 1 shows the impact of noisy
events on visual prompts, where noise increases the visual discrepancy between views. While the
stereo model manages these inconsistencies effectively in most cases (e.g., Rows 1 & 2), occasional
failures occur. In Row 1, the CR stereo model produced errors, with the monocular DA predictions
partially refining the disparity estimate. However, the final outcome remained suboptimal. Row 2
depicts the impact of sparse events, where the limited event information was insufficient for accurate
stereo matching, and the refinement module struggled to compensate.

Additionally, The representation alignment module employed in the current framework relies on
a fixed transformation, which may not fully capture the intricacies of the modality gap between
events and frames. Future research could explore more expressive modality alignment techniques,
such as learning-based approaches or domain adaptation methods, to improve the robustness and
generalization capabilities of the framework.

Furthermore, while we demonstrate ZEST using off-the-shelf image-domain models, their large
parameter counts contribute to a high computational load during inference. Nevertheless, ZEST’s
modular design allows for lightweight alternatives to be substituted in place of the stereo and monoc-
ular depth estimation models. This flexibility provides options for resource-limited deployments,
albeit with some trade-offs in accuracy.
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A.5 Broader Impacts

The proposed ZEST framework has the potential to significantly advance the field of event-intensity
asymmetric stereo matching and enable a wide range of applications in various domains. In au-
tonomous driving, the improved disparity estimation provided by ZEST can contribute to better
obstacle detection, 3D object location, and scene understanding, ultimately improving the safety
and reliability of self-driving vehicles. In robotics, the enhanced depth perception enabled by our
method can facilitate more precise object manipulation, navigation, and mapping tasks, particularly
in dynamic environments where conventional frame-based cameras may struggle. Furthermore,
the zero-shot learning approach of ZEST lowers the entry barrier for researchers and practitioners
to explore the benefits of event-intensity asymmetric stereo matching in their specific fields, as it
eliminates the need for large-scale labeled training data.

Frame (Left) Event (Right) Ours-CR-DA Ours-DS-DA

v2e (Left) E2VID (Right) CR-E2VID DS-E2VID

CFF-v2e ETNet (Right) CR-ETNet DS-ETNet

Figure 8: Qualitative comparison of our method and baseline methods. Our methods demonstrate better
robustness.
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Frame (Left) Event (Right) Ours-CR-DA Ours-DS-DA

v2e (Left) E2VID (Right) CR-E2VID DS-E2VID

CFF-v2e ETNet (Right) CR-ETNet DS-ETNet

Frame (Left) Event (Right) Ours-CR-DA Ours-DS-DA

v2e (Left) E2VID (Right) CR-E2VID DS-E2VID

CFF-v2e ETNet (Right) CR-ETNet DS-ETNet

Figure 9: Qualitative comparison of our method and baseline methods. Our methods demonstrate better
robustness.
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DAEI-DSEC Ours-CR-Mi Ours-CR-DA DAEI-MVSEC Ours-DS-Mi Ours-DS-DA 

Event (Right) Ground Truth HSMFrame (Left) SHEF DS-E2VID

DAEI-DSEC Ours-CR-Mi Ours-CR-DA DAEI-MVSEC Ours-DS-Mi Ours-DS-DA 

Event (Right) Ground Truth HSMFrame (Left) SHEF DS-E2VID

DAEI-DSEC Ours-CR-Mi Ours-CR-DA DAEI-MVSEC Ours-DS-Mi Ours-DS-DA 

Event (Right) Ground Truth HSMFrame (Left) SHEF DS-E2VID

DAEI-DSEC Ours-CR-Mi Ours-CR-DA DAEI-MVSEC Ours-DS-Mi Ours-DS-DA 

Event (Right) Ground Truth HSMFrame (Left) SHEF DS-E2VID

Figure 10: Qualitative comparison of our method and other methods.

19



DAEI-DSEC Ours-CR-Mi Ours-CR-DA DAEI-MVSEC Ours-DS-Mi Ours-DS-DA 

Event (Right) Ground Truth HSMFrame (Left) SHEF DS-E2VID

Figure 11: Qualitative comparison of our method and other methods.

Event (Right) Spatial Integ. (Right) Spatial-DS-DA Right-Temporal Integ. Ours-DS-DA

Frame (Left) Spatial Grad. (Left) Spatial-DS Left-Temporal Grad. Ours-DS

Event (Right) Spatial Integ. (Right) Spatial-DS-DA Right-Temporal Integ. Ours-DS-DA

Frame (Left) Spatial Grad. (Left) Spatial-DS Left-Temporal Grad. Ours-DS

Figure 12: Qualitative comparison of our method and other representations.
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Event (Right) Scale Map DAFrame (Left) Ours-DS Ours-DS-DA

Figure 13: Intermediate results of disparity refining.
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Figure 14: Results of our method in diverse scenarios.
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Event (Right)
Temporal Grad. 

(Left)
Frame & GT (Left)

Temporal Integ. 

(Right)
Ours-CR-DA 

Figure 15: Comparison of disparity estimation results for real data from the indoor_flying1 sequence of the
MVSEC [45] dataset.

Event (Right)
Temporal Grad. 

(Left)
Frame & GT (Left)

Temporal Integ. 

(Right)
Ours-CR-DA 

Figure 16: Comparison of disparity estimation results for real data from the car_urban_day_horse sequence of
the M3ED [2] dataset.

CR Predictions
Temporal Integ. 

(Right)
Frame & GT (Left) DA Predictions Ours-CR-DA 

Figure 17: Examples of failure cases for the proposed method.
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