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1. Introduction

Tactile sensing is one of the core perception abilities for
robots,[1–4] which have developed rapidly in recent years.[5–8]

Camera-based tactile sensors can provide subtle texture of target
surface and dense force distribution in interactions,[9] which
greatly improve the performance of environment perception
and dexterous manipulations for robots. Camera-based tactile

sensors utilize the camera to capture the
image of silicon gel deformation in the con-
tact process under the illumination (such
as light-emitting diodes (LEDs)) from vari-
ous directions with different colors and
then construct the surface details with
image intensity and color information, as
shown in Figure 1a,b.

Since camera-based tactile sensors are
proposed[10] and present the high-density
perception ability, researchers have begun
to explore their potential for robotics.[11]

Based on the perception mechanism,
diverse designs and improvements are pro-
posed. Researchers minimized the size of
GelSight and introduced it into robot grip-
per[12] grasping and manipulation, which
paves the way for robotic applications.
After that, researchers began to explore
the rich tactile information from camera-
based tactile sensors, such as shear
force,[13] sliding[14] and hardness,[15] to
improve the reconstruction accuracy,[16,17]

and propose algorithms for surface texture
perception,[18] geometry reconstruction,[19]

and force distributions.[20] To facilitate
the combination with robots, especially with robot grippers,
advanced designs are proposed, such as GelSlim 3.0,[21]

GelSight 360,[22] and DigiTac.[23] Besides, camera-based tactile
also empowers the high-resolution tactile to the dexterous and
integrate with robot fingers[24,25] and hands,[26–29] which presents
significant potential applications. With those rapid develop-
ments, the design and performance optimization have attracted
extensive attention.
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Camera-based tactile sensors attract the attention of the robotics communities by
the high-density tactile perception, in which image quality and reconstruction
accuracy are significantly determined by the illumination design. However, the
influence of illumination has not yet been systematically analyzed, and most
existing sensors adopt empirical design and subjective evaluation to determine
the light configuration. Herein, a photometric stereo-based modeling, optimi-
zation, and evaluation system is proposed to explore the best illumination
for typical camera-based tactile sensors. First, this article constructs a tactile
benchmark dataset, simulates the contact deformation of elastomer surface,
rendering the tactile imaging under various illuminations, and constructs a
metrics system to evaluate the performance. Then, the relationship between
reconstruct accuracy and illumination direction distribution on the benchmark is
depicted, and the best illumination is optimized. The optimized sensor is fab-
ricated and evaluated by standard metrology experiments, which exhibits high
reconstruction accuracy and convincingly demonstrates the effectiveness of the
proposed design and optimization approach. Furthermore, intensive experiments
are conducted on diverse objects, which additionally indicate the generality and
adaptability of the designed sensor. Herein, the illumination design can simplify
and improve the performance of camera-based tactile sensors.
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However, researchers have gradually discovered that the direc-
tion, distribution, and emit (incident) angular of light strongly
affect the imaging process of camera-based tactile sensors[30]

and lead to the tactile performance dramatically changing. The
illumination design significantly determines the performance
of camera-based tactile sensors.[12,31] It is important to model
the illumination and optimize sensor design, but existing tactile
sensors still depend on an empirical approach and subjective
vision evaluation for illumination design. From the early stage,
researchers have empirically designed the light positions and

angles. The GelSight mini[12] takes an optical waveguide to
illuminate the gel surface from the side. Then, the improved ver-
sion[16] takes a large tilt angle to increase the uniformity of illu-
mination and provide color variance for different surface
geometries. Besides, the reflection optical path is introduced
to reduce the sensor thickness.[17] To increase adaptability,
non-planer designs are proposed. For the round head shape,[32]

side illumination is designed with the help of total internal reflec-
tion. The transparent shells not only support the structure but
also prevent the light escape in the complex sensor shape.[33]

Figure 1. Camera-based tactile sensors can provide high-performance tactile performance for robots. a) High-density tactile sensing is significant for robot hand
perception and dexterous manipulations. b) The sensing mechanism of the camera-based tactile sensor involves using the camera to observe the pressed
deformation of the gel surface under colorful LED illuminations and reconstructing the deformation. c) Section view of the designed typical camera-based tactile
sensor in detail (blue region is the section face). d) Illumination distribution, incident angle, and pose optimization of camera-based tactile sensor. e) The
optimized illumination of camera-based tactile sensor. f ) Accurate tactile sensing performance (surface geometry reconstruction accuracy less than 50 μm).
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Besides, more complex light strips are adopted to illuminate
curved surface shapes.[22,24] Researchers also introduce the illu-
mination uniformity matrices and automatic optimized process
to design the optical path.[21] However, existing illumination
designs strongly depend on the sophisticated experience of
researchers. The influence of illumination on reconstruction
accuracy is still unclear.

Although some researchers have proposed related design cri-
teria[22,31] and evaluation processes,[16,34,35] most of them have
only optimized a single characteristic of sensor design space
or just presented limited perspectives on tactile performance,
without a systematic and theoretical analysis of illumination.
Without systematic quantity metrics, artificial design and subjec-
tive evaluation not only slow the sensor optimization but also
obstacle the automatic algorithm to accelerate the evaluation pro-
cess. Besides the lack of an effective design pipeline, researchers
cannot conveniently adopt a pipeline to design customized sen-
sors to satisfy diverse applications, which also impedes applica-
tions of camera-based tactile sensors in the robotics community.
It is expected to build a benchmark and systematic metrics to
analyze and evaluate the illumination performance, as well as
an effective design and operational optimization method for
camera-based tactile sensors.

On the other hand, the physical-based simulation environ-
ment of camera-based tactile sensors is significant for illumina-
tion design, analysis, and optimization efficiently at low cost.
There are famous works such as Taxim,[36] FOTS,[37] and early
Sim2Real,[35] but most of them are fit for predefined illumination
settings of special sensors. TACTO-[38] and PBR-based meth-
ods[30] provide more flexible imaging simulation, but their ren-
dering is based on the depth map (such as those from Pybullet)
and fine tune with real sensors. Their main target is to generate a
large amount of dataset for training downstream tasks, instead of
optimizing the sensor characteristics. To optimize the illumina-
tion, we need to build a sensor-independent simulation environ-
ment with high-accuracy mechanical deformation simulation of
the gel layer under contact force (such as FEM-based method[39])
and a rendering system to image the deformation under
flexible and controllable illuminations. Furthermore, quantitative
metrics are indispensable for optimization and evaluation.
Camera-based tactile sensors adopted simplified photometric
stereo[40] to reconstruct the geometry of contact surface,[10] essen-
tially. Consequently, we will refer to the theoretical method of
photometric stereo[40] to build the evaluationmethod andmetrics
for illumination design and optimization.

In this work, we establish an effective modeling and optimi-
zation framework for camera-based tactile sensor, especially for
the most widely used reflective type. Since the ability to recon-
struct geometry is one of the most important and distinctive fea-
tures of camera-based tactile sensors, we prioritize discussing
how to enhance the accuracy of static object reconstruction in
this work. To facilitate the design process, we first construct a
camera-based tactile simulation environment to simulate the
gel deformation under object pressure and the tactile imaging
with various illuminations. To evaluate the quality of image
and performance of tactile sensors under various illuminations,
we propose a tactile benchmark with typical surfaces and textures
and systematic quantitative metrics. Based on the previously
mentioned infrastructures, we utilize a typical camera-based

structure as a target sensor to present the design and optimiza-
tion process of illumination, where the light sources are usually
mounted on a ring with the same pose. We first consider the
ideal assumption (monochrome directional light and diffuse
reflection) and optimize the incident angle and the rotation
angle (circumferential distribution) of light by the surface normal
reconstruction accuracy with photometric stereo method.[41] To
fine-tune the illumination configuration, we then replace the
directional light with spotlight (with uniform RGB color
illumination) to describe the real situation more accurately
and optimize the mounted height of lights to increase the illu-
mination uniformity and linearity of color encoding, as well as
the surface reconstruction accuracy. Furthermore, we completely
analyze the influence of illumination factors and conclude a gen-
eral instructive design pipeline for camera-based tactile sensors.
Finally, we fabricated the camera-based tactile sensor with the
optimized illumination and verified its performance in real
world, which can achieve high accuracy better than 50 μm.
Intensive experiments exhibit the generality, adaptability, and
robustness of the optimized camera-based tactile sensor.

This work not only constructs a theoretical analysis framework
of illuminations, which strongly supports the optimization pro-
cess of light configuration, but also develops a general simulation
environment and a systematic benchmark dataset for camera-
based tactile sensors. These contributions may provide the com-
munity with effective tools and a practical pipeline for sensor
design, analysis, and optimization, potentially expanding related
research and promoting the further development of camera-
based tactile sensors.

2. Design and Modeling

We first describe the mechanism of camera-based tactile sensor
and present a typical sensor structure as the following research
target. To optimize the illumination, we build a deformation and
imaging simulation environment for the sensor and propose a
tactile benchmark for evaluation.

2.1. Sensor Design and Benchmark

2.1.1. Camera-Based Tactile Sensor and Task Formulation

To investigate the illumination characteristics of camera-based tac-
tile sensor, we first propose a typical design, as shown in Figure 1c.
The sensor mainly consists of the imaging module (camera), the
illumination module (LEDs ring), and the gel module (support
acrylic board, soft gel layer, with a diameter 50mm). The camera
is accommodated on the bottom base structure and toward the gel.
Then the LEDs ring fix on the middle base and connected on the
top of the bottom base. The top base holds the acrylic to support
the gel layer and provide an optical path for the camera to observe
the deformation of the gel surface. A thin layer is painted on the
gel surface to provide diffuse reflection. To simplify the analysis
and fabrication process, the demo is designed as a cylinder, and
the modules are assembled as a stack structure. In this design, we
take the LED as the illumination source. Considering the accessi-
bility of manufacturing and fabrication, in this work, the LEDs are
co-planar and have the same incident angle.
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The tactile sensing performance is strongly related to the char-
acteristics of the camera, illumination, and gel surface and their
relative pose. However, most of the existing camera-based tactile
sensors utilize commercial cameras, whose performance is fixed
upon purchase. Additionally, gel deformation and surface reflec-
tions are also determined by the relatively stable formulation and
fabrication process. On the other hand, the slight variations in
illumination can cause a significant shift in the captured images,
as well as in the modeling and the ultimate tactile performance.
Thus, the illumination has a more profound effect on the
camera-based tactile sensors than other aspects, which plays a
critical factor in tactile perception. This work is focused on
the design, modeling, and optimization of illumination. The fol-
lowing analysis is based on the predefined camera (field of view),
LED (angle of radiation), and the module size (the diameter of

the base), and we need to optimize the LED distribution and pose
(numbers, incident angle, and the accommodated height).

2.1.2. Benchmark Dataset for Evaluation and Optimization

A comprehensive and representative dataset is important to
effectively evaluate the performance of camera-based tactile
sensors and optimize the illumination configuration. The bench-
mark needs to cover diverse surface geometries and be suitable
for the characteristics of camera-based tactile sensors. Based on
the previous researches[35,36,38,42] and the observation of the sur-
face of the daily objects, we design a benchmark dataset with 10
objects, as shown in Figure 2a. We classify the surface into four
classes: simple geometry, regular array, periodical surfaces, and
complex details, and the shape design parameters are

Figure 2. Benchmark dataset and simulation environment. a) The benchmark dataset with 10 typical objects, which includes the simple, regular, period,
and complex array groups. b) Simulation process of the tactile contact process. c) Region-wise meshing of the gel for accurate tactile simulation. d) The
imaging process with ideal parallel directional illumination; e) the spot LED illumination with a light beam angle θ. The light l illuminates the deformable
surface with incident angle φ, reflected by the surface (normal vector n), and recorded by the camera (intensity I).
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determined by the gel thickness, mechanical characteristics, and
the deformation (details height scale: 1mm, region diameter:
35mm).

Simple Group contains a triangular step TSTEP and a spherical
crown SCROWN. The step with predefined height can evaluate the
depth reconstruction accuracy of tactile geometry, and the top
plane can also evaluate the perception variance. The spherical
crown has a rich surface normal direction, which can test the
spatial correlation of tactile sensing, and can exhibit the reflec-
tance change with normal vector.

Regular Array Group evaluates the tactile performance on
dense array geometries. The sphere shape contains nearly all
directions surface normal. The BALLVEX is convex ball array,
and the BALLCAVE is the concave ball array. The main array intro-
duces strong shadow in the imaging process, which could test the
robustness of illumination. Besides, the convex–concave can
evaluate the performance of camera-based tactile sensor in the
gel compressed and extruding state.

Period Group includes common patterns in daily life, such as
the graining and strip on the holder, the details on the non-slip
mat, and the texture of the clothes. We design three typical struc-
tures to represent them. WAVE provides circle-like pattern, which
has the omni-directional fluctuation; SINWAVE provides periodic
sine texture, which is widely existing on artificial and natural sur-
faces and can evaluate the lateral resolution of tactile sensing;
BSWAVE simulated the details on a nonplanar by the compound
of sine pattern and spherical surface, which may lead to more
complex contact and imaging behavior.

Complex Array Group introduces more complex artificial
structures. PCONVEX takes polygons convex to densely fill the
region, while the CCONVEX takes curved convex to sparsely fill
the region. QUCAVE utilizes quadrangle concave to simulate
the hollow surface. These complex surface structures can provide
more challenging contact and imaging process and lead to com-
prehensive evaluation for the tactile performance under different
illumination configurations.

With these representative objects, we can evaluate the tactile
sensing performance in simulation. We first simulate the contact
process between the object and the gel layer of sensor and gen-
erate the surface deformation of gel. Then, simulate the obser-
vation results of the deformed gel surface under different
illuminations. Finally, we evaluate the tactile performance by cal-
culating the geometry reconstruction error (such as the mean
angular error (MAE) of the surface normal) and the light unifor-
mity (such as the intensity contour map).

2.2. Modeling and Simulation

2.2.1. Gel Deformation Simulation

To accurately simulate the deformation process of elastomer
layer, we based on the approach from TacIPC[39] to develop
our mechanical simulator, which adopts the FEM-based incre-
mental potential contact (IPC) method.[43] This simulator can cal-
culate the gel surface deformation in the contact and press
process, as shown in Figure 2b. Unlike existing FEM-based sim-
ulation processes, TacIPC can provide a more accurate contact
process and deformation of the gel surface and prevent the
gel surface penetration and mesh distortion. In our method,

we model the sensor gel elastomer as a soft body represented
by a tetrahedral mesh, where its material is characterized by
the Neo-Hookean constitutive model. Since the benchmark
object is far stiffer and harder than the gel elastomer, we model
the object as an affine body, which is almost rigid and is
described in ref. [44]. The contact and interaction between the
sensor gel elastomer and the object are accurately handled by
IPC. IPC introduces a barrier energy term to solve the collision
contact, which can improve the numerical stability of the simu-
lator (see mathematical details in S1, Supporting Information).

In our simulation, as the design of Figure 1c, the thickness of
the gel is 5 mm, and the diameter of the contact surface is
50mm. To improve the resolution of the simulation and balance
the computation overhead, we take the region-wise mesh gener-
ation method, as shown in Figure 2c, and utilize dense mesh
(average edge length: 0.1 mm) in the center region (diameter:
35mm, which can cover the geometry region of the benchmark)
to obtain more delicate deformation. To enhance the simulation
efficiency, we also implement the algorithm on GPU, incorporat-
ing the region-wise meshing strategy.

2.2.2. Imaging Process Simulation

Camera-based tactile sensors capture the deformation image of
gel layer under different illuminations and reconstruct the defor-
mation based on photometric stereo.[40] To simulate the imaging
process and optimize the illuminations, a computer graphics-
based imaging simulation approach (rendering) is adopted.
Inspired by previous physical-based[35,38] and learning-based
methods,[36,37] the image simulation should provide fast and flex-
ible rendering ability. It is necessary to simulate the light char-
acteristics.[30] We can use the rendering equation to describe the
illumination and imaging process. The observed intensity of a
point on the reflection layer can be described by:

I ¼ f BRDF l,n, vð Þ ⋅ n ⋅ l (1)

where the f BRDF is the bidirection reflection distribution func-
tion, which describes the reflection characteristics of the surface.
The n ¼ nx , ny, nz

� �
, l ¼ lx , ly, lz

� �
T, v are the surface normal of

this position, the illumination light vector, and the observation
vector, respectively.

First, to simplify the theoretical analysis, we only consider the
directional (parallel), uniform and monochromatic light, which
means the light direction and intensity is constant. We also
assume the reflection layer of the camera-based tactile sensor
is lambertian, which means the reflection albedo can be consid-
ered as constant. We also put the surface on the top of camera,
which leads the v ¼ 0, 0, 1½ �. The reflection can be expressed as a
constant parameter ρ. So the Equation (1) reduces to:

I ¼ ρn ⋅ l ¼ ρ nx , ny, nz
� � lx

ly
lz

2
4

3
5 (2)

Based on Equation (2), we can simulate the deformation image
of the gel under different directional illuminations. This simula-
tion can support our coarse optimization and find the best
distribution, and the incident angle of lights is based on the
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reconstruction accuracy by photometric stereo method under
proposed tactile dataset, as shown in Figure 2d.

However, it is hard to ensure directional and uniform illumi-
nation in real world, especially for the common used LEDs in
camera-based tactile sensors. Considering the LEDs are diverge
and close to the reflection layer in the camera-based tactile sen-
sor, we improve the rendering Equation (1) to describe the real
situation with constant ρ and support the fine optimization.

I ¼ n ⋅ lθ z,φð Þ (3)

where θ is the divergence angle of LED, l z,φð Þ means a light
source is placed at the height z with incident angle φ, as shown
in Figure 2e. To achieve more uniform illumination, we can
adjust the height and the angle of the LEDs (we implement a
rendering pipeline with the Unity engine.). Specifically, we set
the uniform height and incident angle for all LEDs in the
camera-based tactile sensor because it is convenient and robust
to place LEDs on a ring in the fabrication process. We can
maximize the illumination uniformity on the gel surface and
minimize the reconstruction error of touch object to find the best
height of LEDs pose and angle.

With the modeling of mechanical press process on the gel and
optical imaging under illumination, we can simulate the tactile
sensing process, evaluate the performance under different
configurations, and optimize the distribution, pose, and angle
of illumination hierarchically, to improve the tactile accuracy.

2.3. Optimization Method

Camera-based tactile sensor utilizes the observations of gel sur-
face deformation under illuminations to calculate the target sur-
face geometry, as well as the force distribution.[9] The surface
reconstruction accuracy determines the performance of tactile
sensing and strongly depend the illumination configurations,
such as the incident direction, divergence, and the uniformity
of the light source. Based on previous simulations, in this sec-
tion, we will comprehensively analyze the effect of these factors
on reconstruction and optimize the illumination to achieve a
high-accuracy tactile sensor.

We adopt the hierarchical light optimization process. First, the
coarse optimization is processed under ideal setting, which
assumes that the illuminations are parallel and uniform. The
coarse optimization analyses the light distribution and the light
incident angle. Based on the optimized distribution and incident
angle, a more realistic setting (spotlight with divergence LED
angle) is introduced. We need to slightly adjust the height of
lights to achieve more uniform illuminations.

2.3.1. Coarse Optimization with Ideal Setting

To simplify the analysis process, we first take the parallel, uni-
form, and monochromatic light in the coarse optimization. As
shown in Figure 2d, the number of lights is n and their incident
angle is φ. The lights are uniformly distributed on a circle, which
leads to equal angular separation 360°=n between lights. The inci-
dent angle is the angle between light direction and normal of
acrylic bottom surface. Considering generality and practicability,
we choose the number of lights as n ∈ 3, 6, 9, 12, 15, 18, 21½ �,

which are multiples of three for further analysis (R, G, B
LEDs in the chromatic version). To cover a wider angular range,
we set the incident angles as φ ∈ 5°, 85°½ � with 8° step. The 0° and
90° are not easily to set in the real world. Based on the predefined
illumination space, we uniformly placed n lights on each incident
angle. Each light group is composed of n lights at a fixed incident
angle φ. The imaging simulation module renders the observed
images under the illumination from each light group Gφ,n by
sequential turning on and off the light.

To effectively evaluate the subtle geometry, we choose the sur-
face normal map and its error as the reconstruction target and
metric. With these observed images and the light directions, we
can reconstruct the surface normal map of the deformable gel
surface by classical photometric stereo method (such as
LSPS[40]), and calculate the MAE with the ground truth normal
(see details in S2, Supporting Information). For each pixel position
i, we can adopt the least-square based photometric stereo[40] to cal-
culate the surface normal ni of this point. For all the pixels of the
observed image, the surface normal mapN can be calculated pixel-
by-pixel. Based on the ground truth (GT) normal map from the
benchmark, we can obtain the reconstruction performance by
the MAE between the GT normal nigt and calculated normal ni:

MAE ¼ 1
HW

XHW

i

arccos
nigt ⋅ ni

jnigtjjnij
(4)

whereH andW are the height and width of the observed image, ni

and nigt denote the estimated, and the GT surface normal at pixel
position i. Based on the simulation and reconstruction, we can
obtain the error distribution under different light positions and
incident angles of the camera-based tactile sensor. The recon-
structed MAE heat map of SCROWN is shown in Figure 3a.
(The error changes from small to big with the color changing from
blue to red. We set the color map value in 0°, 30°½ �, which makes
the block show same color (red) when MAE > 30°.) In the heat
map, the number of light increases from 3 to 21 on the vertical
axis, and the incident angle increases from 5° to 85° on the hori-
zontal axis. The left image is the reconstructed MAE of SCROWN

under different light groups.
However, because the touched surface is close to planar and

the imaging process utilizes the ideal setting, the error is too
small to find the best light group (close to the modeling error).
Considering the in-homogeneous error distribution, for each
reconstructed surface normal map, we selected the top %5
and %1 locations to calculate more obvious MAE:

Err ¼ arccos
nigt ⋅ ni

jnigtjjnij
, i ∈ H �W

MAETop5 ¼ mean Err Err > P95 Errð Þ½ �ð Þ
MAETop1 ¼ mean Err Err > P99 Errð Þ½ �ð Þ

(5)

where P95 and P99 are the percentile, and Err is the angular error
matrix. We will statistic the angular error, find the top error
points, and calculate the MAETop5 and the MAETop1. The middle
and right heat maps in Figure 3 show the obvious trend under
different light groups, especially on MAETop1. Besides, the top
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errors determine the worst performance of the illumination
configuration and contribute the dominate component of the
error based on the histogram analysis, which value is represen-
tative for error evaluation. So, we will take the MAETop1 results
for the following analysis.

2.3.2. Fine Optimization with Real Setting

Based on the typical configuration in Section 2.1.1, we uniformly
put Red, Green, Blue LEDs on the rings and introduce spot-light
model to simulate real illumination. Camera-based tactile sen-
sor[9] needs uniform illumination intensity of channel to ensure
accuracy. However, the color-related perception mechanism also
needs a sufficiently colorful image. So we need to fine-turn the
illumination with the image variance and saturation. Then we
can use the standard deviation of illumination intensity δI on
the gel to evaluate the illumination uniformity of each color.

δI¼ δr þ δg þ δb

δr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

HW

PHW
i¼1 Iir � Îr

� �
2

q
,

δg¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

HW

PHW
i¼1 Iig � Îg

� �
2

q
,

δb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

HW

PHW
i¼1 Iib � Îb

� �
2

q

(6)

where the Iir and Ir are the intensity of each position and the

average illumination of the observed region for the red channel.
Because we can set same intensity and reflection coefficient, we
only need to optimize one channel to simplify the process.
Considering the low-intensity value will decrease the image qual-
ity, we will take the mean value to normalize the standard devia-
tion (the smaller intensity will lead to a higher normalized
standard deviation). The normalized standard deviation (NSD)
and saturation (SAT) are written as

NSD ¼ δI=mean Ið Þ
SAT ¼ max IR, IG, IBð Þ �min IR, IG, IBð Þ

max IR, IG, IBð Þ
(7)

where mean;max;min is the mean, maximum and minimum
function, and I is the image matrix. We integrated perception
requirements for uniformity and saturation, using NSD and
SAT as metrics for fine-tuning. Combining with the illumination
uniformity and color appearance, the height of LEDs will be
optimized. For generality, we focus on the illumination-based
metrics for the fine optimization by adjusting the mounted
height of LEDs.

Except for illuminations, the diameter of the calibration ball
and the pressed thickness of the gel layer are also important
for the reconstruction accuracy. To sense the target surface,
camera-based tactile sensor should transform the observed
image into geometry. We can take a calibration ball to build
the look-up table.[9] For a known-diameter dc calibrate ball, we
press it on the gel surface, calculate the gradient Gx ,Gy

� �
(see

Figure 3. a) Heat map of reconstructed mean angular error (MAE) on SCROWN under different light groups. The left part is the original MAE, the middle
and right part is the MAE of the top 5% and 1% error pixels. b) The calibration process could build the mapping look-up table ½fRi,Gi,Big, fGix ,Giyg� for
the camera-based tactile sensor. With the help of sphere, we can calculate the gradient for each pixel in the pressed region and record the corresponding
pixel value. c) Recorded maximum elevation angle changes with the calibration ball radius at different pressed depth.
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details in S3, Supporting Information) and record the pixel
intensity Ri,Gi,Bi½ � of the pressed region (the coordinates
of pixel can also be taken into consideration.), and build the
look-up table from intensity to the surface gradient, as shown
in Figure 3b.

However, the pressed depth and the ball radius will affect
the recording range of the gradient (especially the elevation
angle range), which may influence the reconstruction accuracy.
In general, the compressible range dp of gel surface is around
1–3mm, so choosing proper calibration ball is necessary. The
maximum recording elevation angle can be expressed as the
following:

φemax ¼ arctan
re

Rp � dp
(8)

where Rp is the radius of calibration ball and the re is the radius
of pressed edge under depth dp. We can model and plot the max-
imum elevation angle variation tendency with these two factors.

The pressed depth in the calibration process is related to the
hardness and thickness of the gel layer. After designing the gel
layer and choosing the elastromer material, we could estimate or
measure the typical pressed depth under given load and then can
find the best calibration ball from Figure 3c. A good reconstruc-
tion result of camera-based tactile sensor needs the calibration
process records elevation angle not less than 60°,[16] which needs
small calibration ball.

However, the small ball may lead to pressed edge blur and lead
to inaccurate edge detection, which may affect the accuracy of the
look-up table (see details in S3, Supporting Information). A
larger calibration ball may help to alleviate this problem because
the edge may easily distinguish and the relative error is smaller.
Besides, large pressed depth leads to serve shadow effect, which
may decrease the accuracy of the high-latitude region on the cal-
ibrated ball (for example, with 29° incident angle of previous set-
ting, shadows will appear in areas over 71° elevation angle).
Considering the range of elevation angle, the accuracy of look-
up table, and the compressible range of gel layer (5 mm thickness
of this configuration), we choose the 4mm radius ball and press
2mm to calibrate the look-up table.

3. Results

3.1. Optimization Results

We implement the aforementioned design concept into a
simulation environment, thereby generating a model. Through
a hierarchical optimization, we determine themost favorable illu-
mination configuration. In the initial stage, utilizing the princi-
ples of photometric stereo, we conduct a coarse optimization of
the light distribution and the initial orientation. Subsequently,
considering the perceptual requirement of the camera-based
tactile sensor, we fine-tune the placement and orientation of
the light source, ultimately yielding the optimal illumination
setup.

3.1.1. Coarse Optimization Results

For the coarse optimization process, the light distribution and
the incident angle should be determined. We follow the previ-
ously presented method to evaluate the reconstruction perfor-
mance on the benchmark dataset and depict the heat map of
MAETop1% for each shape. Details are shown in Figure 4a. It
is clear that the reconstruction error decreases with the increase
of light number, but tends to be flat after exceeding 12 lights. On
the other hand, the error first decreases then increases with the
incident angle increasing, which means there is a best illumina-
tion angle for camera-based tactile sensor on this object. The
minimum error region is the mid-low latitude regions (top-left
region on the heat map), which could guide the design of
illumination distribution and incident direction in camera-based
tactile sensor.

The heat map can depict the surface geometries distributions.
For sample shapes, such as SCROWN and the SINWAVE, show
large blue region with small error. On the other hand, the red
region expands with the complexity of surface, such as the
CAVE and CCONVEX. The sample geometry with high frequency
may lead to large error, such as the simple TSETP with a rapid
changing step. Furthermore, comparing the heat map of
SINWAVE and BSWAVE, we can find that the low-frequency shape
may not obviously affect the accuracy.

We further analyze the performance trend with the incident
angle under different lights of each object, as shown in
Figure 4b. It is obvious that the small and big incident angles
are not friendly for camera-based tactile sensing. This is mainly
caused by the shadows under larger angles (side incident) and
the less contrast feature under small incident angles. The com-
plex surface, such as CCONVES and QUCAVE, shows a more severe
degradation curve with the increase of incident angle.
Furthermore, for each object, the best performance angular is
almost the same under arbitrary numbers of illuminations
and their performance variation larger than the difference under
light numbers. The design of camera-based tactile sensor should
pay more attention to the illumination design, especially the inci-
dent angle. We also average the performance on all benchmarks
and calculate the best incident angle as 32.2°.

On the coarse optimization stage, we balance the performance
degradation trend with the light number and incident angle and
determine the light number as 12 (ensure high accuracy and sim-
plify the fabrication process with small number of lights) and the
incident angle φ as 29° (most close to the average minimum
error). We will refine the illumination light field in the following
optimization process.

3.1.2. Fine Optimization Results

For the fine optimization process, we first analyze the intensity
variation of different colors under colorful spotlight simulation.
In the spotlight simulation, the gel layer is put at a height of
40mm (hg) from the camera, as shown in Figure 1c. We first
mount the led ring at a height of 20mm (hl) from the camera,
set the spotlight angle as 160°, and reference the radiation pattern
as.[45] With the measured irradiance distribution, we can
simulate the LED with high fidelity (Figure S9, Supporting
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Figure 4. Simulation and optimization results. a) Heat map of Top1% reconstructed mean angular error (MAE) on each object in the benchmark
under parallel and uniform illumination of light groups with different direction and distribution. The vertical axis represents the number of lights,
and the horizontal axis means the increase of incident angle. b) The performance changes with the incident angle on each object, with various light
numbers. To clearly show the trend, we set the y-axis as logarithmic coordinates. c) Simulation image of a standard plane (upper-left) and the intensity of
each channel with intensity contour line. d) Simulation images of objects from benchmark on 20mm height illumination. e) Simulation images at
different height (upper). The normalized standard deviation (NSD) and image saturation (STA) change trend are plotted on the bottom as blue
and red lines.
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Information). We take the previous best configuration: incident
angle 29°, 12 uniformly placed lights with [RRRRGGGGBBBB]
color from 0° to 360° anticlockwise. We first illuminate a standard
plane to measure the intensity variation of each channel. The dis-
tribution is shown in Figure 4c, which is consistent with LED
distribution.

We also render the images of objects from the benchmark as
shown in Figure 4d. We can clearly see color change with the
surface normal under the colorful spotlight illuminations.
However, the uneven color distribution and the intensity influ-
ence simulation results, such as the light color region on top and
bottom of the BALLVEX and BALLCAVE, and the strong red or blue
color region of wave-like shapes. We will further optimize the
illumination configurations.

The mounted height hl of LEDs will strongly impact the illu-
mination uniformity in the realistic spotlight, we then optimize
the mounting height hl ∈ 0, 36½ �mm. In this process, we also take
the standard plane to analyze the intensity distribution. Based
on the sensing mechanism of the camera-based tactile sensor,[9]

we prefer a more uniform intensity of each channel (related to
the stability and consistency in perception range) and a more col-
orful of the image (related to the direction-sensitive color value).

As in the previous setting, we change the LEDs height hl and
calculate the normalized standard deviation (NSD), and the
results are shown in Figure 4e. We can observe that the intensity
decreases with the distance because the LED’s maximum radia-
tion direction deviates from the target center, and the total
amount of light irradiated on the gel surface is reduced. So
we should put the illumination source as far away from the
gel surface as possible (in the sensor structure). On the other
hand, the saturation (SAT) of the image should have a proper
value. In Figure 4e, the images are fading on the upper-left with
a small light height and dim on the bottom-right corner with a
large light height. We also plot the saturation change of each
image as the red line. For qualitative observation, higher satura-
tion is preferred. However, higher saturation will present uneven
color distribution of the image, which leads adverse effects for
color intensity-based reconstruction (50% is preferable and the
default setting of common applications). Considering the deriva-
tion of each channel and the saturation of the whole image, we
properly choose saturation around 50% (light height hl around
20mm, with smaller NSD), as shown in Figure 5a.

3.2. Real-World Evaluation

Based on the previous optimized results, we fabricate a camera-
based tactile sensor and evaluate the reconstructed accuracy
in real-world experiments. The gel deformation under press,
imaging quality, illumination uniformity, and reconstruction
are comparable with simulation.

3.2.1. Fabrication

We first manufacture the mechanical parts and design electrical
components for camera-based tactile sensor, as shown in
Figure 5b. We cast and spray reflection coating for the gel layer,
assemble each module, and integrate them as the complete
sensor as shown in Figure 5c.

To facilitate the fabrication process, we take the 3D printer to
build the mechanical modules and gel casting mold. As shown in
Figure 5b(i), to cast the gel layer, we put a laser-cut acrylic
board (thickness 3mm, diameter 50mm) in the bottom of the
3D-printed mold and poured the mixed PDMS silicon gel
(Wesitru PDMS 0030) into the mold. After curing, we will spray
a thin layer gray of silicon ink on the gel surface as a diffuse
reflection layer. The processed gel will be mounted into the
printed gel module for the following integration.

For the camera module, we designed a self-lock buckle to host
the camera board and LED-driven board. We only need to insert
these PCB boards into the printed compartment and connect the
signal lines for assembly. Here we chose the camera with quite
similar parameters as the simulation (it is hard to find the
commercial camera module with exactly same parameters as
simulation, not to mentioned the non-ideal imaging process)
and put the camera in a precisely consistent pose and position
as the simulation configuration.

For the illumination module, because the optimized design
prefers the inclined incident angle (12 distributed lights, 29° with
normal), we designed a customized flexible printed circuit (FPC)
board with 12 programmable LEDs (WS2812B SMD5050) to
achieve this configuration. Because the inclined LEDs ring
should be placed on a side surface of truncated cone, so we
should expand it as the contour of the FPC. Details are shown
in Figure 5b(ii). After FPC manufacturing, we can fit the flexible
board into the mounting surface of the printed illumination
module, insert the LED signal pins into the tangential curved slot
to connect with the driven board, and achieve compact inclined
incident angle for the gel surface.

Based on the assembled modules, we can integrate them by
mortise and tenon structure. The camera module acts as the
sensor basis and assembles the illumination module on the
top. Finally, the gel module will cover the top of the illumination
module to complete the fabrication of a camera-based tactile
sensor, as shown in Figure 5b(iii). To improve the stability
and durability, we glue around the connection between
components and modules (real-world sensor is shown in
Figure S1, Supporting Information). The service performance
is also verified by a cyclic loading experiment (Figure S8,
Supporting Information).

3.2.2. Illumination Analysis

The observed image under optimized illumination is shown in
Figure 5d, which is close to the simulated results (The discrep-
ancy between real-world sensor and simulation is due to the sim-
ulation cannot perfectly model the camera response function,
LED wavelength, and the color bias of the reflection layer.).
The appearance of the observed image shows the uniformity
and consistency of illumination, which ensures the reconstruc-
tion accuracy. We quantitatively analyze the intensity distribution
of the observed image by the contour.

The average intensity distribution is stable, as shown in
Figure 5d, middle of the first row. We show the average intensity
with color-filled contour and plot the contour line with a value
label. To relieve the effect of noise and outliers, we blur the origi-
nal image before showing the contour. In the range of [0, 255],
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Figure 5. Optimized illuminations, fabrication process, and appearance of observed image. a) The optimized incident angle φ and mounted height of
proposed method. We adopt the 29° incident angle for illumination and 20mm to mount the illumination LEDs ring in implementation (the sensor
diameter D is 50 mm and the distance from camera to gel surface hg is 40mm). b) Fabrication process of designed sensor. We use the 3-D printer to
manufacture the mechanical base of the camera module, illumination module, gel module, and gel casting mold. We prepare the gel layer in (i), assemble
each module with key components in (ii), and integrate modules as the optimized camera-based tactile sensor in (iii). c) Camera-based tactile sensor
demo with optimized illumination. d) Uniformity analysis of designed illumination in real camera-based tactile sensor. The first row presents the original
observed image, the average intensity, and the 3D version (we enlarge the amplitude to show the slight intensity change, the intensity distribution is
uniform and only changes 15 (≈5%) from center to peripheral region (96.17% values locate in�2σ)). The second row shows the intensity of each channel.
The average intensity is uniform and stable with small variance. All the color intensity ranges are [0, 255].
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the mean intensity of the observed image is 159.02, and the stan-
dard deviation is 6.67. To quantitatively analyze the uniformity,
we count the number of pixels whose value is located between
mean value and standard deviation range�nσ and calculate their
percentage of the whole image that 64.05 % for �σ, 96.17 % for
�2σ, and 99.90 % for �3σ. The illumination intensity is stable
and dominates large observed area, which strongly verify the
effectiveness and progressiveness of the optimized illumination.
For each color channel, we also present their intensity distribu-
tion and plot the contour line with value label in the second row
of Figure 5d. The directional and continuously changed light can
effectively encode the surface deformation geometries on the
reflection layer.

3.2.3. Sensor Calibration

To reconstruct the target surface geometry from the tactile
image, we should calibrate the corresponding real-world size
of each pixel on the sensor surface and build the mapping rela-
tionship between the RGB image and the surface geometry. As
shown in Figure 6a, we first calibrate the pixel size with a cylinder
probe with an 8mm diameter. We press the probe on the sensor
surface in different locations, respectively, then manually
depict the edge and use circle-fitting algorithm to determine
the diameter in pixel Pd as 340.17 pixel (Pd = 340.17,
σ= 0.47). Then, we can calculate physical resolution of tactile
sensor as 0.02352mmpixel�1.

Figure 6. Calibration, modeling, and reconstruction results. a) Calibration process of the camera-based tactile sensor. We first take the cylinder press the
surface to calibrate the real-world size of each pixel. Then, we utilized a ball to calibrate the mapping relationship between observed image and target
geometry, by fitting the pressed cycle region, matting the cycle, calculating the height map, and generating the gradient map in x direction and y directions.
b) The modeling process and the structure of proposed GelNet, which consists of five fully connection layers and a drop-out layer, with tanh activation.
c) Reconstruction analysis of proposed sensor. First row shows the observed tactile image of pressed ball, the ground truth (GT), and the reconstruction
(Est.) of pressed depth (the more white region means pressed more deeply), and the GT and Est. of surface normal map (Nx ,Ny ,Nz are colorized with R,
G, B). The second row shows the error map of depth with 0.02mm mean error, the error map of surface normal with 0.28° mean angular error, and the
section profile of depth reconstruction on the horizontal center line of the ball, which shows the optimized sensor can achieve an reconstruction accuracy
in micrometer scale.
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We then need to construct the mapping relationship between
the RGB value in the tactile image and the surface geometry (see
details in S3, Supporting Information). Although we have opti-
mized the illumination, we cannot totally eliminate the nonuni-
formity of light. As mentioned in refs. [17,22], we also record the
coordinates of each calibrated pixel and take the algorithm to fit-
ting the mapping between fRi,Gi,Bi,Pix ,Piyg and fGix ,Giyg. We
first take an 8mm diameter ball to press the sensor surface as
completely as possible and captured more than 100 pressed
images with different locations. The captured images are sub-
strate by the original image (without any object press) to obtain
a difference image. Then, we can take the sphere function to cal-
culate the gradient of each point in the pressed region, as
described in Figure 3b. We use a semiautomatic method
(manually initial labeling and machine vision-based detection)
to accurately fit the pressed circle in the image as much as possible
(see Figure S2, Supporting Information). Finally, we collected a
N-by-7 table with N ¼ 5, 702, 702 points from captured calibration
images, each row contains pixel locations, values, as well as the
corresponding gradient: fRi,Gi,Bi,Pix ,Piyg, fGix ,Giyg.

3.2.4. Nonlinear Mapping Modeling

The illumination intensity has unavoidable spatial nonunifor-
mity, which introduces the nonlinearity into mapping and
decreases the overhead of table look-up process, we build a neu-
ral network to model the mapping process between the
Ri,Gi,Bi,PixPiy
� �

and Gix ,Giy
� �

, as shown in Figure 6b.
Taking into account the dimensions and complexity of the

nonlinear mapping, we build a 5-layer fully connected neural net-
work named GelNet to model the nonlinear mapping between
the observation and the gradient. For each location in the tactile
image, the coordinates and observed value are concatenated as a
vector and sent into the neural network. To satisfy the range to
gradient, we take the hyperbolic tangent function (Tanh) as acti-
vation for each layer. The dropout layer is also introduced before
the last layer to alleviate the overfitting of the network
(implemented by pyTorch). The detailed structure is shown in
Figure 6b. We determined the optimal network parameters
through extensive experimentation.

Considering the compact size of GelNet, we take the CPU to
train the network with a 128 batch size over 150 epochs, set the
loss function as L1, and use the Adam optimizer with 10�6 learn-
ing rate. The captured dataset is spited with 9:1 for training and
testing phrase. It is worth noting that we have normalized the
original dataset to increase the training velocity, convergence,
and generality. With the help of the GelNet, we can quickly pro-
cess the observed values accurately, instead of the verbose table
look-up (see details in Figure S2, Supporting Information).

3.2.5. Evaluation of Reconstruction Accuracy

After modeling the nonlinear mapping, we take the calibrated
ball press the gel surface (obtain ground truth value from the
spherical equation), utilize the trained model to estimate the cor-
responding gradient, reconstruct the geometry of the pressed
region (2.5D depth map and 3D surface normal map), and

evaluate the reconstruction accuracy with the optimized illumi-
nation. Details are shown in Figure 6c.

We can observe the reconstructed depth map is very close to
the ground truth (the whiter regionmeans pressed more deep) in
the first row of Figure 6c. To meticulously analyze the details, we
can also calculate the surface normal map of reconstructed geom-
etry, which can obviously present the high-frequency change of
the surface.[41] The normal distribution is consistent with the
ground truth and even shows the surface tiny terrain in a
real-world tactile process (enlarge the estimated normal map
for details). Although the edge has a relative high error in the
second row of Figure 6c, which is caused by the unavoidable
shadows, the proposed illuminated design can significantly
alleviate these effects and ensure the error under a satisfying
range.[41]

The optimized sensor exhibits high-performance reconstruc-
tion accuracy under various metrics, such as the mean absolute
error of depth map (0.02mm), the MAE of surface normal map
(0.28°), as well as the section profile on the horizontal ball center
line.

3.3. Performance on Diverse Real-World Objects

3.3.1. Benchmark Surface

To further evaluate and exhibit the performance of the
illumination-optimized tactile sensor, we conducted rich real-
world experiments. We first fabricate the objects (see in
Figure S3a, Supporting Information) of the previously proposed
dataset by precise 3D printing (Photo-polymer resin, Kexcelled
Inc.), press them by the sensor, and reconstruct the geometry
by the proposed approach. The results are shown in Figure 7.
In each row, there are the original observed tactile image, differ-
ence image with reference image, estimated gradient, recon-
structed surface normal, and depth map, from left to right.
The regular shapes (TSTEP, SCROWN, BALLCAVE, BALLVEX) and
the period geometries (WAVE, SINWAVE, BWAVE) are clearly
reconstructed, which exhibit the sensor perception ability from
shape to details. These structures are representative of daily life
and provide a solid foundation for practical application.

Besides, the complex surfaces (PCONVEX, CCONVEX, QUCAVE)
are also be used to test the tactile ability on diverse geometry
features. The fluctuated and multiscale textures are challenging
for tactile. However, the optimized camera-based tactile
sensor can clearly reconstruct the detail (subtle elevations and
depressions), which evaluates the effectiveness of optimized
illumination.

3.3.2. General Surface

We also test the sensor’s capability on diverse ordinary-life
objects and surfaces (see Figure S3b–d, Supporting Information).
We selected typical elements, tools, and objects to test the perfor-
mance, such as screws, clothes, bobbins, knife hilt, as well as
human fingertips. We have classified these objects into four
groups (industrial elements surface, regular and period surfaces,
planar surface with subtle texture, and complex surface that
involves bio-metrics and complex texture.) and utilize the sensor
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press on the surface of the target, record the tactile image, and
reconstruct their surface geometry, as shown in Figure S4–S7,
Supporting Information.

For the industrial elements in Figure S4, Supporting
Information, such as screws, connectors, and caps, are widely
used in various industries. We select typical elements for tactile

Figure 7. Experiments on real-world objects from proposed tactile dataset. The large-scale shape and small-scale details of each group (simple, regular
array, period and complex shapes with concave–convex regions) are clearly reconstructed (best viewed in color and zoom-in).
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experiments to show the perception ability and reconstruction
accuracy of the fabricated sensor with the proposed optimized
method. The thread of screws and the inscription of the connec-
tor can be clear reconstructed, which can provide robots with
high-density and precise tactile in industrial grasping and
manipulation.

For the regular and periodic surfaces in Figure S5, Supporting
Information, such as shape array, non-skid bars, and handle grip,
are common daily. They are attached to the surface of bottles,
handles, tools, and equipment for robust holding and grasping.
Typical patterns are selected to exhibit the perception ability of
ordinary life. Detailed tactile perception can help robot to recog-
nize the target and adjust the strategies and methods to interact
with them.

For the subtle planar surfaces in Figure S6, Supporting
Information, such as reliefs, coins, are popular in a wide range
of objects for decoration and information. We conduct experi-
ments on a common target to show the recovery capacity of sub-
tle texture, which shows the potential application on micro-scale
tactile and reconstruction, such as archaeology and cultural relief
conservation.

For the complex surfaces in Figure S7, Supporting
Information, such as human body surface and clothes, are
unavoidable in the human–robot interaction. We choose the fin-
gertip print, hair, and beard to exhibit the high-density tactile
potential applications on service robots and the tactile involved
personal care process. The optimized tactile sensor can support
extensive daily service tasks, such as clothes arrangement, sew-
ing, and shaving. This group experiments also show the possi-
bilities of bio-metrics and micro-scale measurement.

4. Discussion

4.1. Effectiveness of Illumination Optimization

Based on the proposed design and optimization method, the
distribution, the incident angle, and pose of light source are
adjusted to optimum. The observed tactile images are improved
with a more uniform appearance, which supports adaptive and
robust modeling and helps to achieve high-precision surface
geometry reconstruction. Based on the photometric stereo, we
establish a solid theoretical framework for systematic design
and optimization of camera-based tactile sensors. The proposed
design methodology and optimized approach may provide a
standard process for camera-based tactile sensors.

4.2. Dataset and Simulation Environment

To achieve highly efficient design and optimization, we propose a
tactile surface shape dataset and design metrics for evaluation
benchmark, implement a FEM-based mechanical simulation
and rendering-based imaging simulation pipeline, and demon-
strate the fabrication. The dataset is representative and covers
typical surface textures in daily and industrial environments.
Furthermore, we develop and combine the simulation of precise
deformation and illuminated imaging as a system for camera-
based tactile sensor. The simulation system is fast and accurate,
which can alleviate the dataset shortage in tactile-related

algorithms and decrease time-consuming experiments in fabri-
cation iteration. These evaluations benchmark and assistant com-
ponents can provide highly efficient tools to the camera-based
tactile community for further research. Although there is still
an unavoidable sim to real gap, which mainly arises from inac-
curate mechanical parameters, insufficient mesh density, the
color difference of LED, the variation in surface reflection,
and the simple camera response in the simulation system, this
gap can be regarded as a systematic bias in simulation. The
simulated illuminations and observations can reliably reflect
the primary features of the real-world sensor, and this gap does
not influence illumination optimization.

4.3. Generalization of Proposed Framework

This work provides generally qualitative insights and quantitative
findings for camera-based tactile sensor design, especially for the
illumination design and optimization. Our research focuses on
reflective camera-based tactile sensors with reflective coatings,
which are the most widely applied type. Various variants can
apply the proposed optimized approach to their illumination
optimization. Based on the photometric stereo theory and the
simulation results of this work, a uniformly distributed light
setup with inclined incident angle offers superior performance
for camera-based tactile sensor. This implies that a (axial or rota-
tional) symmetric design is preferable. It is better to design a
slope to host the light source. These insights offer foundational
guidance for researchers, especially new entries, embarking on
an initial design. With the proposed framework, researchers can
take their initial design parameters into this framework to
enhance their system’s performance. This work not only provide
an optimization process of a specific camera-based tactile sensor
but also present a distinctive perspective and a systematic
approach for the optimization of camera-based tactile sensor
in general.

4.4. Wide Range of Potential Applications

Intensive experiments on diverse targets and scenarios show the
high-density and accurate tactile performance can open big imag-
ing space for related fields, such as industry, daily life, personal
care, and bio-metrics. The proposed illumination optimization
method can provide a simple way to design high-performance
camera-based tactile sensors for various industries, lower the
barrier to entry tactile, and increase the widely application of
camera-based tactile sensors, which can provide robots with
high-performance tactile with rich physical information of the
target, and significantly improve their perception ability in com-
plex grasping, dexterous manipulation and safe human–machine
interactions, as well as emotion communication with touch
interfaces.

5. Conclusion

Camera-based tactile sensors can provide high-density tactile
information. To improve the performance of them, in this work,
we propose a systematic method for illumination design and
optimization, which significantly determinate the performance
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of camera-based tactile sensors. We build a benchmark with tac-
tile shape and metrics to evaluate their performance, implement
a simulation environment with press deformation and lamber-
tian imaging process, and finally obtain optimized illumination
configuration for demonstrate sensor. We fabricate the sensor
and model the tactile perception. Intensive experiments on
the standard meteorology and diverse target surfaces present
the accuracy and adeptness of sensors and verified the effective-
ness of proposed illumination optimization.

The proposed method systematically analyses the influence of
illumination, provides an effective design and optimization
approach for camera-based tactile sensor, and reduces the design
complexity of the most important part of the sensor. The
standard pipeline can lower the entrance difficulty of the
camera-based tactile sensor design. Furthermore, the assistant
components of this work will facilitate the community for further
research of camera-based tactile sensors.

Although the reconstruction efficiency and geometry distor-
tion still exist in the camera-based tactile sensor, intensive experi-
ments have convincingly demonstrated the application prospects
of high-precise and high-density tactile perception. In further
research, we will develop algorithms to eliminate the distortion
and increase the accuracy of geometry reconstruction, improve
the perception frequency, and explore the applications in various
industries.
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