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Abstract

The spiking camera is an emerging neuromorphic vision sensor that records high-
speed motion scenes by asynchronously firing continuous binary spike streams.
Prevailing image reconstruction methods, generating intermediate frames from
these spike streams, often rely on complex step-by-step network architectures that
overlook the intrinsic collaboration of spatio-temporal complementary information.
In this paper, we propose an efficient spatio-temporal interactive reconstruction
network to jointly perform inter-frame feature alignment and intra-frame feature
filtering in a coarse-to-fine manner. Specifically, it starts by extracting hierarchical
features from a concise hybrid spike representation, then refines the motion fields
and target frames scale-by-scale, ultimately obtaining a full-resolution output.
Meanwhile, we introduce a symmetric interactive attention block and a multi-
motion field estimation block to further enhance the interaction capability of the
overall network. Experiments on synthetic and real-captured data show that our
approach exhibits excellent performance while maintaining low model complexity.
The code is available at https://github.com/GitCVfb/STIR.

1 Introduction

High-speed imaging has become a high-profile topic in fields such as autonomous driving, industrial
monitoring, and robotics, due to its ability to precisely capture the continuous light intensity behaviour
in a scene. Conventional digital cameras often rely on expensive specialized sensors when capturing
fast-moving objects, so the trade-off between frame rate and cost has limited the widespread adoption
and further development of high-speed cameras. In recent years, neuromorphic cameras, especially
event cameras [31, 40, 1, 19] and spiking cameras [7, 26], have emerged as innovative vision sensors.
They possess characteristics such as high temporal resolution, high dynamic range, and low latency,
opening up new possibilities for high-speed imaging of consumer-grade cameras.

The spiking camera achieves integral sampling with 40000Hz by emulating the central fovea’s
sampling mechanism in the retina [34, 47]. Each photoreceptive unit continuously and independently
captures photons, and asynchronously fires spikes once the accumulated intensity exceeds a given
threshold. Unlike event cameras that only record relative changes in light intensity (i.e., differential
sampling), spiking cameras have the ability to encode the absolute light intensity because the spike
firing rate is proportional to the scene brightness. Consequently, the spiking camera can preserve
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Figure 1: Different paradigms of spike-to-image
reconstruction. (a) Prevailing step-by-step network
architecture (e.g., Spk2ImgNet [55]). (b) Our pro-
posed joint motion-intensity learning framework. A
simple yet effective hybrid spike embedding repre-
sentation (HSER) is also proposed as a link between
the binary spikes and the deep model.

Figure 2: Model comparison of PSNR, run-
time, and model size. The PSNR is calculated
on the SREDS dataset [57]. The runtime is
tested using an RTX 3090 GPU on real-captured
data [66] with a spatial resolution of 400× 250.
Our model achieves favorable results in terms
of accuracy and efficiency.

more sufficient scene texture information, making it highly promising for pixel-level tasks, such
as image reconstruction [65, 55, 3, 8], depth estimation [53, 46], semantic segmentation [52, 64],
and optical flow estimation [23, 59, 49]. However, spiking cameras solely record dense binary
time-sequence information, making it difficult to directly apply existing vision algorithms designed
for conventional frame-based cameras. To reconstruct dynamic scene content from asynchronous
spike streams, traditional methods either exploit the temporal statistical characteristics [65], e.g.,
texture from playback (TFP) and texture from inter-spike-intervals (TFI), or mimic the human
physiological mechanisms, e.g., retina-like visual imaging [66] and short-term plasticity [63, 62].
Nonetheless, noise and motion blur frequently present a tricky trade-off throughout the dynamic
scene reconstruction process, which could lead to less than ideal reconstruction results. In contrast,
deep learning-based methods [55, 4, 57], with their powerful representation capabilities to mine latent
spatio-temporal cues from spike streams through end-to-end learning, offer a more promising way to
address the dynamic scene reconstruction problem of spiking cameras.

Deep learning-based methods usually cascade three independent modules: spike embedding represen-
tation (SER), temporal motion estimation, and spatial intensity recovery, as illustrated in Fig. 1 (a).
The first module [56, 52, 60, 59, 58, 49] typically extracts time-series information from the spike
stream, serving as an essential bridge between the binary spikes and the deep model. The temporal
motion estimation module either explicitly estimates the motion field [56, 9] or implicitly establishes
temporal motion correlations (e.g., deformable convolution [55, 60], attention [4, 5]), aiming to align
context in the feature space. Following this, an additional spatial intensity recovery module [56, 4, 60]
is added to reconstruct the intermediate frame from the aligned feature representations. Although this
design paradigm of first estimating motion and then reconstructing images has achieved reasonably
good results, it hinders the information interaction and joint optimization in time and space, creating
a bottleneck for further improving the image reconstruction quality of spiking cameras. On the one
hand, motion estimation and intensity recovery are inherently a “chicken-and-egg” problem: more
accurate motion modeling will lead to better intermediate frame reconstruction, and vice versa. On the
other hand, this step-by-step combination tends to reduce inference efficiency, which is detrimental
to efficient deployment in real-world applications.

In this paper, we point out that temporal motion estimation and spatial intensity recovery can be
mutually reinforcing, as shown in Fig. 1 (b). To this end, we design an efficient Spatio-Temporal
Interactive Reconstruction network, termed STIR. Specifically, we first deliver a concise hybrid spike
embedding representation (HSER) into a hierarchical feature encoder to obtain pyramid features
at different granularities. Then, a spatio-temporal interactive decoder is proposed to enable the
joint refinement of spatio-temporal complementary information from coarse to fine. In particular,
inter-frame feature alignment and intra-frame feature filtering can be performed simultaneously. The
former mainly focuses on temporal motion cues to complete warping-based feature registration,
while the latter progressively maintains purer image features through synthesis. In addition, we
integrate a symmetric interactive attention block at the top-level pyramid and introduce a multi-motion
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field estimation block at the bottom-level pyramid, further upgrading the network’s spatio-temporal
interaction ability. To fully harness the network’s potential, a simple yet effective HSER module is
also devised, which incorporates the common advantages of explicit spike representation based on
internal statistics (with better certainty and explainability) and implicit spike representation based
on neural networks (with stronger expressive power). Extensive experimental results on synthetic
and real-captured data demonstrate that our approach significantly outperforms state-of-the-art
(SOTA) image reconstruction methods, with a 1.35dB improvement in PSNR while also enjoying
fast inference speed, as shown in Fig. 2.

The main contributions of this paper can be summarized as follows:

1) We propose STIR, an efficient and flexible framework for image reconstruction of spiking cameras,
which facilitates joint learning of complementary motion and intensity information.

2) We design a symmetric interactive attention block that enhances the bilateral correlation between
the intermediate frame and temporal contextual features.

3) We develop a simple yet effective hybrid spike embedding representation module with both good
interpretability and strong expressive power.

2 Related Works

Neuromorphic Cameras. Neuromorphic cameras mimic neurobiological structures and functionali-
ties of the retina. Different from conventional frame-based cameras, they operate asynchronously at
the pixel level, allowing each pixel to act independently. Two main types of neuromorphic cameras in-
clude event cameras, e.g., DVS [31], DAVIS [37], ATIS [40], CeleX [31], and spiking cameras [7, 26].
Event cameras utilize a differential sampling approach, triggering events only when changes in
illuminance surpass a specific logarithmic threshold. Conversely, spiking cameras follow an integral
sampling method, where photon accumulation leads to spike firing once a given threshold is reached.
Therefore, event cameras produce sparser outputs, while spiking cameras provide a more regular
input format for reconstructing absolute light intensity.
Event-to-image Reconstruction. Deep learning-based methods for reconstructing intensity images
from events have demonstrated significant progress. E2VID [41] is a seminal work for this purpose by
using a recurrent fully convolutional network. Following E2VID, numerous studies have augmented
it from various angles, including FireNet [42], E2VID++ [43], FireNet++ [43]. Also, SPADE layers
and Transformer were integrated into E2VID in [2, 48], which enhanced the quality but at a higher
cost. HyperE2VID [10] used hypernetworks to generate per-pixel adaptive filters and adopted a
dynamic neural network architecture. However, since event cameras solely record changes in relative
light intensity, they struggle to reconstruct the texture details of visual scenes.
Spike-to-image Reconstruction. In the task of spike-to-image reconstruction, traditional methods
usually leverage the temporal statistical properties of spiking cameras. Zhu et al. [65] explored the
spike generation principle and proposed two basic methods, a.k.a., TFP and TFI. Zhao et al. [56]
hierarchically merged short- and long-term filtering. Another line of work focuses on mimicking
human physiological mechanisms [66, 65, 63, 62]. Deep learning techniques have also propelled
advancements in this challenging task. Spk2ImgNet [55] was the first CNN-based architecture
and achieved impressive results. The wavelet transform was combined with CNN-based learnable
modules in [52]. Recently, an energy-efficient scheme was developed [57] based on the spiking
neural network (SNN). High-dynamic-range and high-frame-rate videos were generated in [3] by
introducing the rolling readout mechanism [13, 11, 16, 14, 15, 17, 18, 12]. Furthermore, several
self-supervised CNNs [4, 5] have also been developed to alleviate the dependence on synthetic
datasets. However, due to the step-by-step paradigm, the above CNN-based architectures inevitably
have higher model complexity, blocking them from mobile and real-time applications. In contrast,
our single-stage model jointly considers temporal motion estimation and spatial intensity recovery,
thus facilitating the intrinsic collaboration of spatio-temporal complementary information.

3 Preliminaries

3.1 Working Mechanism of the Spiking Camera

The spiking camera employs an “integrate-and-fire” mechanism. Each pixel independently and
continuously receives photons from the scene and converts them into photoelectrons, which are then
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(c) Symmetric Interactive Attention Block

(b) Motion-Intensity Interactive Block

(a) Overall Architecture of STIR
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Figure 3: Overview of our STIR framework (a) and details of the key components (b), (c), and (d). In
our joint learning architecture, spatio-temporal features are refined progressively from coarse to fine,
where warping-based inter-frame feature alignment (Orange line) and synthesis-based intra-frame
feature filtering (Purple dashed line) are simultaneously performed in (b). Integrating (c) and (d) at
the top and bottom pyramids, respectively, can boost the spatio-temporal interaction of the network.

accumulated via an integrator. When the accumulated photoelectrons exceed the predetermined
threshold, the spiking camera asynchronously fires a spike, while clearing the pixel’s photoelectrons
to start a new accumulation cycle. The working mechanism can be formulated as [56, 26, 61]:

At(x) =

∫ t

0

αIτ (x)dτ mod θ, (1)

where At(x) reflects the number of photoelectrons accumulated at pixel x = (x, y) in the integrator.
Iτ (x) represents the light intensity at pixel x at timestamp τ . The photoelectric conversion rate is
denoted as α and the firing threshold is set to θ. Assume that δ (in microsecond level) is used to
quantify a spike accumulation cycle, the spiking camera can output a dense binary spike plane with
a spatial resolution of H ×W at timestamp nδ, n ∈ N. As a result, during an “integrate-and-fire”
process with a temporal length of N , the spatio-temporal resolution of the spike stream SN

t will reach
H ×W ×N , where t denotes the central timestamp of SN

t .

3.2 Problem Statement

Given a continuous binary spike stream S3N
t1 ∈ {0, 1}H×W×3N with a spatio-temporal resolution

of H × W × 3N , centered at timestamp t1, similar to [4, 5], we divide it evenly into three non-
overlapping spike sub-streams SN

t0 , SN
t1 , and SN

t2 in chronological order, centered at timestamps t0, t1,
and t2, respectively. This paper aims to reconstruct an intermediate intensity frame It1 corresponding
to timestamp t1. Notably, under such a problem setting, in order to recover It1 successfully, SN

t1 can
be utilized to model the intrinsic representation of spatial features corresponding to t1, while SN

t0 and
SN
t2 can be exploited to complement the contextual information in the temporal domain.
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4 Methodology

4.1 Overview

The overall network architecture is depicted in Fig. 3. We first propose a hybrid spike embedding
representation module in Sec. 4.2, which characterizes the three spike sub-streams SN

t0 , SN
t1 , and

SN
t2 as feature maps Ft0 , Ft1 , and Ft2 corresponding to timestamps t0, t1, and t2, respectively.

Subsequently, to enable spatio-temporal interactions at more granularity, they are adopted to produce
multi-scale pyramid features, including intermediate features {F l

t1}
L
l=1 and temporal contextual

features {F l
t0}

L
l=1, {F l

t2}
L
l=1, through a weight-sharing hierarchical feature encoder in Sec. 4.3. Here,

L indicates the number of pyramid levels. Then, a compact symmetric interactive attention block
is leveraged in Sec. 4.4 to initially model the bilateral correlations between the top-level pyramid
features SN

t1 and
{
SN
t0 ,S

N
t2

}
. Finally, warping-based inter-frame feature alignment and synthesis-

based intra-frame feature filtering are jointly executed across the spatio-temporal interactive decoder
in Sec. 4.5. Therefore, progressive motion-intensity collaboration is achieved in a single encoder-
decoder. Additionally, we estimate G groups of motion fields at the bottom-level pyramid, which
helps to improve the performance and robustness of the model.

4.2 Hybrid Spike Embedding Representation

The spike embedding representation is dedicated to mining time-series information from the input
spike stream, serving as a crucial link between the spike stream and the deep network model. To
encode the corresponding light intensity features from the spike stream, a simple strategy is to utilize
explicit spike representation approaches based on internal statistics, such as TFP [65] or TFI [65]. This
approach builds on the temporal statistical characteristics of spiking cameras, which can physically
provide good interpretability and relatively stable intensity frames for spike-to-image reconstruction
tasks like video frame interpolation tasks [30, 29, 45]. Nevertheless, this strategy often struggles to
balance noise and motion blur, resulting in limited feature expression capabilities. Another more
effective way is to implicitly engineer more robust features via CNNs [52, 55, 5, 4, 49, 58, 60].
However, due to the lack of certainty, the spike embedding features obtained in this manner will
change when the network parameters are updated during training, limiting the efficient alignment of
context in the temporal motion estimation process. In summary, we hope to seek a tractable spike
embedding representation method that not only offers good certainty and strong expressive capability
but also maintains low computational cost.

To this end, we propose HSER to combine the advantages of explicit and implicit spike representations.
Specifically, for the input spike sub-stream SN

ti , i = {0, 1, 2}, we first obtain multiple explicit spike
representations using the widely-used TFP method [65] based on varying temporal windows. This is
inspired by [55, 4], because short windows give better details but bring noise, while long windows
can suppress noise but easily introduce blur. At the same time, we also feed SN

ti into a ResNet [21]
block for implicit modeling. Finally, these resulting features are concatenated along the channel
dimension, and then the spike embedding feature Fti is generated through a 2D convolution.

4.3 Hierarchical Feature Encoder

After obtaining the spike embedding features Ft0 , Ft1 , and Ft2 corresponding to the three continuous
spike sub-streams, we set them as the bottom-level features F 1

t0 , F 1
t1 , and F 1

t2 of the feature pyramid.
On this basis, a hierarchical feature encoder is designed to build an L-level feature pyramid, such that
multi-granularity feature representations {F l

t0}
L
l=1, {F l

t1}
L
l=1, and {F l

t2}
L
l=1 are extracted from the

spike streams. Note that the network parameters are shared across the three spike sub-streams. At
each level of the pyramid, we use a 3× 3 2D convolution with a stride of 2 for feature downsampling,
followed by a residual block [21]. Additionally, a PReLU activation [20] is appended after each 2D
convolution. The number of feature channels at the l-level pyramid is Cl. In the following, {F l

t0}
L
l=1,

{F l
t1}

L
l=1, and {F l

t2}
L
l=1 will facilitate inter- and intra-frame interactive learning from coarse to fine.

4.4 Symmetric Interactive Attention

Recently, the transformer has demonstrated its capability to model long-range correlations between
features in various visual tasks [32, 53, 33, 39, 48]. To inject prior motion-intensity guidance
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into the subsequent interactive decoder, we present an effective and efficient symmetric interactive
attention block. It leverages the multi-head cross-attention mechanism at the top-level pyramid to
symmetrically capture the mutual dependencies between FL

t1 and {FL
t0 , FL

t2}. Especially, we utilize
the intermediate feature FL

t1 as the query, while making temporal contextual features FL
t0 and FL

t2 as
key/value separately, to ensure symmetric interaction with the query.

As illustrated in Fig. 3 (c), we linearly project each component (i.e., query, key, and value) by applying
layer normalization. In this way, the intermediate feature FL

t1 is projected into two queries, Qt0 and
Qt2 , respectively. At the same time, the temporal contextual features FL

t0 and FL
t2 are projected into

two keys, Kt0 and Kt2 , as well as two values, Vt0 and Vt2 , respectively. The attention-based bilateral
correlations can be symmetrically computed as follows:

Attentiont1→ti = Softmax

(
KT

tiQti

αi

)
Vti , i = 0, 2, (2)

where αi denotes the learnable scaling parameter used to control the magnitude of the dot product.
Similar to [51, 6, 50], we perform multi-head query-key feature interaction along the channel rather
than spatial dimensions, which can effectively enhance computational efficiency due to linear com-
plexity instead of quadratic. By aggregating local and non-local contexts, the final interaction feature
χL ∈ RH/2L−1×W/2L−1×3CL can be yielded as:

χL = Conv
([

Attentiont1→t0 , F
L
t1 ,Attentiont1→t2

])
, (3)

where [ ] denotes a channel-wise concatenation operation and Conv is a point-wise convolution layer
Note that the intrinsic intermediate feature FL

t1 is preserved through skip connections.

4.5 Spatio-Temporal Interactive Decoder

Instead of using a step-by-step network architecture like [56, 4, 5, 60], we propose to jointly and
progressively perform temporal motion estimation and spatial intensity recovery (cf., Fig. 1 (b)),
thereby maximizing their complementary advantages across spatio-temporal contextual features.
Specifically, we develop an efficient motion-intensity interactive block to simultaneously accomplish
warping-based inter-frame feature alignment and synthesis-based intra-frame feature filtering, which
is inspired by well-established event-based video frame interpolation methods [45, 44, 27]. Notably,
warping can integrate light intensity information over the time series, while synthesis can mitigate
the influence of spike fluctuations. By cascading multiple motion-intensity interactive blocks from
coarse to fine granularity, the intermediate frame can be progressively decoded. Moreover, at the
bottom-level pyramid, we propose to predict multiple motion fields to aggregate more comprehensive
temporal contexts, which is beneficial to further improve image reconstruction quality.

Motion-Intensity Interactive Block. The network details are depicted in Fig. 3 (a) and (b). At
the top-level pyramid, χL is input to the motion-intensity interactive block, which simultaneously
estimates the motion fields ML

t1→t0 ,M
L
t1→t2 and synthesizes the intermediate intensity frame ILt1

using a dense block [25]. Subsequently, at the L− 1 level of the pyramid, ML
t1→t0 and ML

t1→t2 are
upsampled to backward warp the temporal contextual features FL−1

t0 , FL−1
t2 , thereby registering the

spatio-temporal information around timestamps t0 and t2 to the intermediate timestamp t1. This
process is referred to as inter-frame feature alignment, where feature warping is expressed as:

F̃L−1
ti = W

(
FL−1
ti , ↑ML

t1→ti

)
, i = 0, 2, (4)

where ↑ indicates the upsampled variables, F̃L−1
ti represents the warped feature candidate at the L−1

level. Meanwhile, we bilinearly upsample ILt1 and then concatenate it with the corresponding interme-
diate feature FL−1

t1 , followed by a 2D convolution to reduce the influence of spike fluctuations. This
process essentially implements intra-frame feature filtering through the synthesis of the upsampled
frame ↑ILt1 and the intermediate feature FL−1

t1 . Formally,

SL−1
t1 = Conv2D

([
FL−1
t1 , ↑ILt1

])
. (5)

Note that motion-based warping is more effective in handling significant pixel displacements but is
less robust to occlusions. Conversely, intensity-based synthesis exhibits better robustness to occlusions
and inconsistent brightness but may degrade image quality in short-time spike sub-streams. To this
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Table 1: Quantitative comparisons against SOTA methods on the synthetic SREDS dataset [57]
and real-captured dataset [66]. Best and second-best results are boldfaced and underlined, respec-
tively. Thanks to the spatio-temporal interaction, our approach consistently demonstrates optimal
reconstruction performance, along with excellent parameter size, GPU memory usage, and FLOPs.

Method Params Memory FLOPs Synthetic Dataset Real Dataset
(M) (G) (T) PSNR↑ SSIM↑ LPIPS↓ NIQE↓ BRISQUE↓ NIQE↓ BRISQUE↓

TFP [65] – – – 25.35 0.690 0.2547 5.970 43.074 9.342 45.202
TFI [65] – – – 18.50 0.638 0.2590 4.518 44.933 10.09 58.309
TFSTP [63] – – – 20.68 0.618 0.2761 5.348 51.697 10.92 64.566
SSIR [57] 0.38 10.4 0.24 32.61 0.919 0.0500 3.467 15.664 5.750 25.341
ET-Net [48] 16.7 17.7 0.52 34.57 0.938 0.0535 3.400 17.155 6.512 17.393
HyperE2VID [10] 10.7 6.87 0.43 36.37 0.947 0.0506 3.126 16.774 6.306 17.020
Spk2ImgNet [55] 3.76 14.6 9.17 36.13 0.950 0.0294 3.084 15.348 5.662 16.518
WGSE [52] 3.85 19.7 3.93 37.44 0.958 0.0241 3.032 15.555 5.620 16.154
STIR (Ours) 5.11 9.20 0.42 38.79 0.966 0.0183 2.915 14.835 5.394 15.854

end, we further purchase a dense block to merge the complementary advantages of warping-based
and synthesis-based features, i.e.,

IL−1
t1 ,ML−1

t1→t0 ,M
L−1
t1→t2 = DenseBlock

([
SL−1
t1 , F̃L−1

t0 , F̃L−1
t2 , ↑ML

t1→t0 , ↑M
L
t1→t2

])
. (6)

Therefore, information sharing and mutual collaboration of spatio-temporal features can be achieved
by progressively refining the motion-intensity interactive blocks from L-level to 1-level pyramids.

Multi-Motion Field Estimation Block. Multi-motion field estimation has been proven to be a
feasible strategy to improve reconstruction quality in video frame interpolation tasks [30, 24, 29].
Inspired by this, we simply amplify the output channels in the bottom-level pyramid to estimate
G groups of motion fields

{
M1,g

t1→t0 ,M
1,g
t1→t2 | g ∈ [1, G]

}
. Hence, G groups of warped feature

candidates can be appended with diversity at full resolution, as shown in Fig. 3 (d). This is beneficial
for compensating additional details when local inaccuracies occur in a single group of motion fields,
thereby enhancing spatio-temporal interaction capabilities. The analyses are detailed in Sec. 5.3.

4.6 Loss Function

We employ the combination of reconstruction loss Lrec, perceptual loss Lper, and multi-scale consis-
tency loss Lmsc as the total loss function L to train our network, namely,

L = Lrec + λperLper + Lmsc, (7)
where we empirically set λper to 0.2. The ℓ1 distance between the final predicted image and the
ground truth image is measured in Lrec, i.e.,

Lrec =
1

HW

∥∥∥Î1t1 − I1t1

∥∥∥
1
. (8)

We also introduce Lper to mitigate the blurry effect and preserve more details, that is,

Lper =
1

HW
∥ϕvgg(Î

1
t1)− ϕvgg(I

1
t1)∥2, (9)

where ϕvgg is the feature extractor of the pre-trained VGG-Net. Furthermore, we propose Lmsc to
force the multi-scale intermediate intensity frames {I lt1}

L
l=2, synthesized from the 2-level to L-level

pyramids, to be consistent with the ground truth. The ℓ1 distance can be formulated as follows:

Lmsc =
1

HW (L− 1)

L∑
l=2

1

2l−1

∥∥∥Î lt1 − I lt1

∥∥∥
1
. (10)

5 Experiments

5.1 Implementation Details

Datasets. We adopt the recently released SREDS dataset [57], which is synthesized based on the
REDS dataset [38], for network training. It is divided into 240 training scenes and 30 testing scenes.
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Figure 4: Visual comparison on synthetic [57] (top) and real-captured [61] (bottom) data. Our method
reconstructs precise boundaries of fast-moving objects with higher fidelity. Zoom in for more details.

Each scene contains 24 consecutive frames, with a corresponding spike stream of N = 20 centered
around each frame. The spatial resolution is 1280× 720. During training, each scene is cropped non-
overlappingly to 96×96, yielding a total of 21,840 patches. We evaluate our model using real-captured
data, including: 1) The publicly available “momVidarReal2021” [61] and “recVidarReal2019” [66]
datasets (with 400× 250 resolution, containing high-speed motion of objects and cameras, and also
used in [62, 52]). 2) Real spike data (1000× 1000) collected by ourselves using a spiking camera.

Training Details. Our model is trained using the Adam optimizer [28] for 150 epochs with a batch
size of 8. The initial learning rate is 0.0001 and decays by a factor of 0.7 every 50 epochs. The
temporal length of the input spike stream is 60, i.e., N = 20. The number of pyramid levels is set to
5, i.e., L = 5. Note that the reconstruction loss Lrec, perceptual loss Lper, and multi-scale consistency
loss Lmsc are used together to train our network. In our HSER module, we construct a 5-channel
TFP-based explicit representation with a scaling step of 4, as well as an 11-channel ResNet-based
implicit representation, for each spike sub-stream. Thus, the number of feature channels is 16, 24, 32,
64, and 96, respectively. Besides, 3 groups of motion fields are estimated at the bottom-level pyramid,
i.e., G = 3. Spikes and ground truth images are randomly flipped vertically as well as rotated 90◦,
180◦, or 270◦ during training. All models are trained and tested on a single NVIDIA RTX 3090 GPU.

Evaluation Metrics. We apply standard PSNR and SSIM metrics and learned perceptual metric
LPIPS [54] to measure the visual quality quantitatively. Moreover, two non-reference image quality
assessment metrics NIQE [36] and BRISQUE [35] are employed. A higher PSNR/SSIM (↑) or lower
LPIPS/NIQE/BRISQUE (↓) score indicates better performance.

Comparison Methods. We compare our method with the following four types of baselines. 1)
Traditional methods: TFP [65], TFI [65], and TFSTP [63]. 2) SNN-based: SSIR [57], designed
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Table 3: Ablation studies on the SREDS dataset [57]. Underlining indicates our full model.

(a) Feature pyramid levels. The more granular
hierarchical features can promote superior results
due to finer feature alignment and refinement.

PSNR SSIM #Paras TFLOPs
3-level 37.99 0.960 0.832 0.377
4-level 38.02 0.962 2.119 0.403
5-level 38.79 0.966 5.107 0.419

(b) Motion-intensity interaction. Combining warping-
based and synthesis-based features for coarse-to-fine refine-
ment can significantly improve reconstruction quality.

PSNR SSIM LPIPS #Paras TFLOPs
w/o warping 37.74 0.960 0.023 4.872 0.263
w/o synthesis 12.19 0.414 0.685 5.088 0.416

Full model 38.79 0.966 0.018 5.107 0.419

(c) Symmetric interactive attention. Removing it or re-
placing it with independent cross-attention mechanisms
both result in lower reconstruction accuracy.

PSNR SSIM #Paras TFLOPs
Removing 38.09 0.962 4.967 0.4186

Independent 38.23 0.963 5.318 0.4218
Interactive 38.79 0.966 5.107 0.4194

(d) Multi-motion field estimation. We investigate
different groups of motion fields. More motion field
favours compensation for additional image details.

PSNR SSIM LPIPS #Paras TFLOPs
1 37.89 0.961 0.0211 4.944 0.273
3 38.79 0.966 0.0183 5.107 0.419
5 38.37 0.964 0.0207 5.366 0.654

(e) Model capacity. ×N denotes the width multiplier for
the feature channel. Our method offers good flexibility
and the performance is better with larger model capacity.

PSNR SSIM #Paras TFLOPs
×0.5 38.09 0.962 1.554 0.325
×1.0 38.79 0.966 5.107 0.419
×1.5 38.80 0.967 10.94 0.568
×2.0 38.86 0.967 19.06 0.770

(f) Loss function. Using the full loss term greatly
contributes to the best results. Lrec loss is crucial to
training an effective spike-to-image model.

PSNR SSIM LPIPS
w/o Lrec 36.43 0.957 0.0227
w/o Lper 37.30 0.954 0.0446
w/o Lmsc 38.54 0.964 0.0194
Total loss 38.79 0.966 0.0183

for energy-efficient spike-to-image reconstruction. Note that, except for SSIR, the other comparison
methods adopt CNNs. 3) Event-based: ET-Net [48] and HyperE2VID [10], where our proposed
HSER is cascaded with the classical event-to-image reconstruction architectures. 4) CNN-based:
Spk2ImgNet [55] and WGSE [52], which are SOTA spike-to-image reconstruction methods.

5.2 Comparison with SOTA Methods

As shown in Table 1, our approach significantly outperforms SOTA methods in terms of reconstruction
accuracy on both synthetic and real datasets. Apart from SNN-based SSIR [57], which has limited
performance despite being computationally efficient, our method enjoys the lowest model complexity
and competitive model size. CNN-based spike-to-image methods incur high inference costs due to
their step-by-step paradigm. Notably, on average, our model is 11× faster than Spk2ImgNet [55] and
5× faster than WGSE [52]. Moreover, event-based architectures have limited adaptability. Traditional
methods show unsatisfactory reconstruction quality due to restricted modeling power.

The qualitative results are presented in Fig. 4. We can see that our method produces perceptually more
pleasing and higher-fidelity images, especially for the edges of fast-moving objects. For instance, in
cases involving pedestrians, drones, and small balls, our method achieves sharper edges, less noise,
and fewer blurring and aliasing artifacts. Note that our method also ensures fast reconstruction of
intensity frames (cf., Fig. 2), which further highlights its potential for practical applications.

5.3 Ablation Studies
To verify the effectiveness of the proposed method, we conduct a series of ablation studies from the
perspective of network architecture and loss function on the SREDS dataset [57].

Table 2: Ablation on spike embedding representation.
Explicit Implicit PSNR↑ SSIM↑ LPIPS↓TFP Multi-dilated HiST ResNet

✓ 36.39 0.951 0.0260
✓ 36.71 0.953 0.0305

✓ 37.95 0.960 0.0212
✓ 38.01 0.962 0.0201

✓ ✓ 37.60 0.959 0.0225
✓ ✓ 38.06 0.962 0.0206
✓ ✓ 38.79 0.966 0.0183

Ablation on Spike Embedding Represen-
tation. We implement various spike em-
bedding representation methods, including
explicit, implicit, and combined. The multi-
dilated representation [49] stacks multi-
ple dilated convolutions for a larger recep-
tive field, while the hierarchical spatial-
temporal (HiST) representation [58] inte-
grates multi-scale 3D convolutions for fea-
ture fusion, both of which have been applied for optical flow estimation. As shown in Table 2, despite
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being straightforward, ResNet [21] proves to be a relatively more workable spike representation
method. Our HSER organically combines TFP and ResNet, which takes full advantage of both
explicit and implicit representations, thus achieving the best result. Note that, even using only the
simplest TFP [65], our method demonstrates competitive performance, which also demonstrates the
effectiveness of our spatio-temporal interactive learning architecture.
Ablation on Feature Pyramid Level. We investigate the influence of varying hierarchical features.
As shown in Table 3a, even with just a 3-level pyramid, our method significantly outperforms existing
CNN-based methods in terms of model size and computational efficiency, while still guaranteeing a
leading performance. As the pyramid level increases, it will introduce finer-grained spatio-temporal
interaction, which is conducive to achieving better image reconstruction quality.
Ablation on Motion-Intensity Interactive Block. As reported in Table 3b, removing the warping-
based inter-frame feature alignment results in sub-optimal performance, indicating that temporal
contextual information is beneficial for intermediate frame recovery. Notably, the overall performance
is severely degraded when the synthesis-based intra-feature filtering is removed, demonstrating the
essential role of intermediate features in reconstructing the target frame. When the motion-intensity
interaction is performed simultaneously from coarse to fine, a superior performance is obtained.
Ablation on Symmetric Interactive Attention Block. We either feed the top-level pyramid features
directly into the decoder or use a standard cross-attention beforehand that independently models
unilateral feature correlations. Due to the symmetric bilateral feature interaction, which facilitates
more accurate context awareness, our method achieves superior performance, as shown in Table 3c.
Also, our interactive attention has small parameters and FLOPs, ensuring lightweight network design.
Ablation on Multi-Motion Field Estimation Block. We propose estimating multiple motion fields
at the bottom-level pyramid to compensate for more contextual details. As shown in Table 3d, using
multiple groups of motion fields yields higher reconstruction quality, consistent with [30, 24]. As
the number of motion fields increases, the model exhibits minor performance fluctuations. Still, it
achieves gains over models based on a single group of motion fields.
Ablation on Model Capacity. We apply a width multiplier [22] to the feature channels based on
the current configuration. Table 3e presents that increasing the model capacity has a positive effect,
indicating that our architecture is highly flexible. Particularly, the parameter size and computational
cost of ×0.5 are ahead of SOTA methods, and it also has commendable reconstruction capability.
Ablation on Loss Function. We evaluate the impact of different loss terms in Table 3f. It is evident
that our total loss function is effective, as it performs the best when all loss terms are included.

6 Conclusion

In this paper, we proposed an efficient spike-to-image reconstruction method based on spatio-temporal
interactive learning. In particular, a joint motion-intensity learning architecture was designed to
perform inter-frame feature alignment and intra-frame feature filtering progressively. Moreover, we
introduced a symmetric interactive attention block and a multi-motion field estimation block for
bilateral correlation modeling and context detail compensation. Extensive experiments on synthetic
and real data have demonstrated that our approach has excellent performance in reconstruction quality
and inference speed, while also enjoying good flexibility and applicability.

Limitations. Our proposed HSER, similar to other spike embedding representation methods [56,
52, 60, 59, 58, 49], implicitly assumes that the scene has sufficient illumination, such that the image
reconstruction can be achieved based on spike streams with a fixed temporal length. However, in
extremely low-light scenarios, the limited accumulated light intensity within a fixed temporal length
results in darker reconstructed images and increased noise, adversely affecting the visual experience.
Note that this is a common problem for current spike-to-image reconstruction methods [56, 52, 65,
63, 57]. We plan to extend our model to handle these issues in future work.
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A More Visual Results

We additionally present more spike-to-image reconstruction results. Figs. 5, 6, and 8 show qualitative
comparisons on “momVidarReal2021” [61], “SREDS” [57], and “recVidarReal2019” [66] datasets,
respectively. It can be observed that compared to the baseline methods, our approach consistently and
robustly produces the most satisfactory image reconstruction results, with fewer aliasing artifacts and
clearer object outlines, e.g., the intricate structures of distant buildings, the tight and dense keycaps
of a keyboard, and the steel cables and railings of the bridge shot from a high-speed train (350km/h),
etc. In particular, the image reconstruction results on our real-captured spike data are exemplified
in Fig. 9. One can see that our approach also effectively recovers finer and more accurate image
details with less noise, providing a better visual experience. These experiments also fully validate the
excellent generalization ability of our proposed method.

B Further Analysis of Hybrid Spike Embedding Representation

In Table 2 of the main manuscript, we have demonstrated the simplicity and effectiveness of the
proposed hybrid spike embedding representation (HSER). Here, we further validate the superiority of
HSER by integrating different spike embedding representations into HyperE2VID [10] (i.e., replacing
the event voxel grid with our HSER). Note that HyperE2VID [10] is a recently proposed SOTA
event-to-image reconstruction method. As reported in Table 4, using the explicit TFP [65] alone yields
a seemingly feasible result. Notably, in the CNN-based implicit spike embedding representations
(e.g., [49, 58]), ResNet [21] remains a more effective strategy even as a regular tool. In contrast,
when the vanilla TFP is organically combined with ResNet (i.e., our HSER), the best reconstruction
accuracy is achieved. This is mainly because our HSER efficiently merges the certainty of explicit
representation with the strong expressive power of implicit representation. Note that our HSER also
ensures faster inference speed for the overall network. Additionally, our HSER can better adapt the
event-to-image reconstruction model to spike-to-image reconstruction, which is a good indication that
the key reconstruction module is transferable by adjusting the frontmost embedding representation.
In conclusion, our HSER is a concise and effective spike embedding representation paradigm, which
can be used to further enhance the performance of off-the-shelf image reconstruction methods.

C Visualization of Ablation Results

In Table 3 of the main manuscript, we have quantitatively evaluated the effectiveness of the proposed
network architecture and loss function. We recognize that the primary innovation of our single-stage
architecture lies in the interactive and joint perspective to handle temporal and spatial information
simultaneously. It is this holistic approach that sets our method apart and yields superior performance,
as opposed to depending solely on high-performing individual components. We also understand that
our model is handy to scale to fit into diverse scenarios. For instance, in scenarios that demand high
precision and have abundant computational resources, a larger model is preferred. Conversely, for
mobile or real-time applications, a simpler model can be employed.

Here, we further visually present more ablation results based on the “recVidarReal2019” dataset [66],
as shown in Fig. 7. It can be seen that removing the warping-based inter-frame feature alignment
as well as estimating only a single group of motion fields at the bottom-level pyramid hinders
the complementary exploitation of temporal contextual information, especially for fast-moving
objects, resulting in unpleasant visual artifacts. Note that removing the synthetic-based intra-frame
feature filtering leads to catastrophic failure of the model. Furthermore, removing the symmetric
interactive attention block impedes the construction of bilateral correlations, which adversely affects
the subsequent joint motion-intensity refinement. Lastly, removing the reconstruction loss Lrec is
also detrimental to the reconstruction of high-quality images. In contrast, thanks to our joint learning
architecture design, our full model can promote more efficient spatio-temporal interaction, thereby
reconstructing higher-fidelity intermediate images.

D Effectiveness Validation of High Frame Rate Video Reconstruction

When inputting a continuous spike stream, our approach is capable of reconstructing consecutive
video frames sequentially. In Fig. 10, we further illustrate the high frame rate video reconstruction
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Table 4: Quantitative comparisons of HyperE2VID [10] under different spike embedding repre-
sentations on the SREDS dataset [57]. The runtime is tested using a single RTX 3090 GPU on
real-captured data [66] with a spatial resolution of 400×250, similar to Fig. 2 in the main manuscript.

Explicit Implicit PSNR↑ SSIM↑ LPIPS↓ Runtime (ms)TFP [65] Multi-dilated [49] HiST [58] ResNet [21]

✓ 31.48 0.866 0.1523 6.14
✓ 35.62 0.940 0.0611 7.56

✓ 34.92 0.938 0.0616 14.6
✓ 36.18 0.946 0.0520 6.47

✓ ✓ 35.58 0.937 0.0692 8.19
✓ ✓ 35.19 0.940 0.0599 14.9
✓ ✓ 36.37 0.947 0.0506 6.84

Binary Spikes TFP SSIRTFSTPTFI

ET-Net HyperE2VID Spk2ImgNet WGSE Ours

Binary Spikes TFP SSIRTFSTPTFI

ET-Net HyperE2VID Spk2ImgNet WGSE Ours

Figure 5: More qualitative comparison on the real-captured “momVidarReal2021” dataset [61]. Our
reconstructed images exhibit sharper and clearer edge detail on objects like keyboards and footballs.
Please zoom in for more details.

results based on our real-collected spike data, including filming a rapidly spinning fan as well as
recording the instantaneous process when a water balloon bursts. It is evident that our approach can
generate smooth and consistent consecutive image sequences faithfully and accurately, in which rich
image content is restored, such as fan leaves and water splashes, demonstrating its effectiveness in
practical applications, such as capturing remarkable high-speed motion moments.

Broader Impact. The method proposed herein provides an efficient solution for dynamic scene
reconstruction by leveraging continuous spike streams with high temporal resolution. Our proposed
technique may hold potential benefits for a variety of real-world applications and users, especially in
scenarios involving high-speed motion. As the goal of spike-to-image reconstruction is to reproduce
real scene details, our method may not pose negative ethical implications if we do not discuss specific
scene content.
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HyperE2VID Spk2ImgNet WGSE Ours Ground Truth

Binary Spikes TFP ET-NetSSIRTFSTP

HyperE2VID Spk2ImgNet WGSE Ours Ground Truth

Binary Spikes TFP ET-NetSSIRTFSTP

Figure 6: More qualitative comparison on the synthetic “SREDS” dataset [57]. Our method shows
excellent reconstruction results for both the complex structures of distant buildings and the backpacks
of nearby pedestrians. Please zoom in for more details.

w/o Interactive attention w/o w/o warping Single-motion field Full model

w/o Interactive attention w/o w/o warping Single-motion field Full model

Figure 7: Visualization of ablation results based on the “recVidarReal2019” dataset [66]. From left to
right, we show the removal of symmetric interactive attention block, the removal of reconstruction
loss Lrec, the removal of warping-based inter-frame feature alignment, and the estimation of single-
motion field. Our full model reconstructs higher-fidelity images with fewer artifacts. Please zoom in
for more details.
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ET-Net HyperE2VID Spk2ImgNet WGSE Ours

Binary Spikes TFP SSIRTFSTPTFI

ET-Net HyperE2VID Spk2ImgNet WGSE Ours

Binary Spikes TFP SSIRTFSTPTFI

ET-Net HyperE2VID Spk2ImgNet WGSE Ours

Binary Spikes TFP SSIRTFSTPTFI

Figure 8: Qualitative comparison on the real-captured “recVidarReal2019” dataset [66]. Whether
photographing a high-speed rotating fan (2600 rpm) and a fast-moving car (100 km/h), or shooting
from a high-speed train (350 km/h), our method recovers more image details and more accurate
structure. Please zoom in for more details.
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Binary Spikes TFP SSIRTFSTPTFI

ET-Net HyperE2VID Spk2ImgNet WGSE Ours

Binary Spikes TFP SSIRTFSTPTFI

ET-Net HyperE2VID Spk2ImgNet WGSE Ours

Binary Spikes TFP SSIRTFSTPTFI

ET-Net HyperE2VID Spk2ImgNet WGSE Ours

Figure 9: Qualitative comparison on our real-captured spike data. Our method can suppress noise and
restore more accurate details more efficiently overall. Yellow dashed boxes and red arrows indicate
these regions. Please zoom in for more details.

19



1 6 11 16 21 26

31 36 41 46 51 56

61 66 71 76 81 86

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

Figure 10: High frame rate video reconstruction results on real spike data we captured with a spiking
camera. The temporal sequence of 18 intensity frames is visualized, including two high-speed scenes,
i.e., a bursting water balloon and a rapidly spinning fan (∼750 rpm). We add a yellow dot to indicate
the rotation of the fan leaves.
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