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Deep Learning Methods for Calibrated
Photometric Stereo and Beyond
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Abstract—Photometric stereo recovers the surface normals of an object from multiple images with varying shading cues, i.e.,
modeling the relationship between surface orientation and intensity at each pixel. Photometric stereo prevails in superior per-pixel
resolution and fine reconstruction details. However, it is a complicated problem because of the non-linear relationship caused by
non-Lambertian surface reflectance. Recently, various deep learning methods have shown a powerful ability in the context of
photometric stereo against non-Lambertian surfaces. This paper provides a comprehensive review of existing deep learning-based
calibrated photometric stereo methods utilizing orthographic cameras and directional light sources. We first analyze these methods
from different perspectives, including input processing, supervision, and network architecture. We summarize the performance of deep
learning photometric stereo models on the most widely-used benchmark data set. This demonstrates the advanced performance of
deep learning-based photometric stereo methods. Finally, we give suggestions and propose future research trends based on the
limitations of existing models.

Index Terms—Photometric stereo, deep learning, non-Lambertian, surface normals.

✦

1 INTRODUCTION

A CQUIRING three-dimensional (3D) geometry from two-
dimensional (2D) scenes is a fundamental problem in

computer vision. It aims to establish computational models
that allow computers to perceive the external 3D world.
Unlike geometric approaches (such as multi-view stereo and
binocular) that use different viewpoint scenes to compute
3D points, photometric stereo [1] perceives the shape of an
object from varying shading cues observed under different
lighting conditions with a fixed viewpoint. Compared to
geometric methods that generally reconstruct rough shapes,
photometric methods can acquire more detailed local recon-
struction. Therefore, photometric stereo plays a mainstream
role in many high-precision surface reconstruction tasks,
such as cultural relic reconstruction [2], seabed mapping
[3], moon surface reconstruction [4], and industrial defect
detection [5], etc. As shown in Fig. 1, photometric stereo
methods obtain detailed shape reconstructions from multi-
ple images under different illuminations. In this survey, we
take the object “Reading” from the DiLiGenT benchmark [6]
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Fig. 1. The schematic of photometric stereo. The orange box shows the
general surface reflectance.

as a visual example, which has spatially varying and non-
Lambertian materials with strong specularity and shadow.

Classic photometric stereo [1] assumed that only the
Lambertian (diffuse) reflectance exists on the surface of the
target object. Under the Lambertian assumption, the surface
normal can be easily solved by the least squares method,
because the reflection intensity M is linearly proportional
to the angle between the normal n and incident light l, as
follows:

M ∝ l⊤n. (1)

However, real-world objects barely have the property
of Lambertian reflectance. The non-Lambertian property of
surfaces (as shown in the orange box in Fig. 1) affects
the proportional relationship of Eq. 1. Mathematically, we
express the non-Lambertian property via the bidirectional
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Fig. 2. Overview of the main deep learning methods for calibrated photometric stereo.

reflectance distribution function (BRDF), depending on the
material of the object. According to the previous taxonomies
[6], [7], [8], plenty of work has addressed non-Lambertian
photometric stereo by modeling BRDF [9], [10], [11], reject-
ing outlier regions [12], [13], [14], or setting exemplars [15],
[16]. Nevertheless, designing appropriate reflectance models
using general parametric BRDFs for photometric stereo is
challenging, since these non-learning models tend to be ac-
curate only for specific materials and often involve unstable
optimization processes. In this context, early nonparamet-
ric attempts based on shallow artificial neural networks
were introduced to establish a mapping between complex
reflectance observations and surface normal [17], [18], [19].
However, these models were restricted to limited materials
that lack practical applications or require pre-training with
a reference object with the same material as the target.

In 2017, DPSN [20] first attempted to use modern deep
neural network architecture in the context of photometric
stereo. It established the learning-based photometric stereo
framework that more flexible mapping from reflectance
observations to surface normal, breaking through the per-
material-per-train limitation in early methods. DPSN [20]
showed superior performance on non-Lambertian surfaces
compared with traditional hand-crafted models which ex-
plicitly estimate the BRDF parameters and decouple the
surface normals. However, this method required a fixed
number and order of illumination directions during training
and testing, which limited its generalization.

To enhance the generalization, various deep learning-
based approaches have been introduced. This paper specifi-
cally concentrates on deep learning-based calibrated photo-
metric stereo methods utilizing orthographic cameras and
directional light sources. We categorize and summarize
these methods from different perspectives, including in-
put processing, supervision, and network architecture, the
overview framework is shown in Fig. 2.

In this paper, we first categorize these deep learning-
based calibrated photometric stereo methods based on how
they process the input images, as per-pixel methods (i.e., by

the observation map operation [21] to record the intensity
of each pixel) or all-pixel methods (i.e., by using aggrega-
tion model [22] to fuse whole patches). Different from the
recent summary [23] that only five calibrated learning-based
photometric stereo models were listed, we comprehensively
summarize and discuss the pros and cons of the various
methods and how they evolve within these two categories.
Additionally, we introduce a new classification, known as
hybrid methods, which leverage both pixel- and patch-wise
characteristics to enhance performance.

Second, the complexity and the number of parameters in
learning-based models have significantly increased. Many
advanced modules were integrated into surface-normal re-
covery tasks, such as ResNet [24], DenseNet [25], HR-Net
[26], Transformer [27], etc. Similarly, the selection of syn-
thetic training data sets for photometric stereo became more
diverse, i.e., rendering with MERL BRDF [28] or Disney’s
principled BSDF [29]. In this paper, we also conduct a
comprehensive summary and discussion of the network ar-
chitectures and data sets utilized in previous deep learning-
based photometric stereo methods.

In addition, we analyze the literature from the perspec-
tive of supervision, i.e., how the methods optimize the
network (Section 5). Most deep photometric stereo net-
works are trained with paired photometric stereo images
(input) and surface normals (ground truths), i.e., supervised
learning. Whether a photometric stereo network can be
optimized in a self-supervised way? Whether additional in-
formation can be added to simplify the learning of surface-
normal recovery? On these sides, this paper reviews re-
cent attempts to expand and break through the supervised
frameworks [30], [31], [32], [33] and gives suggestions for
future developments.

Based on the classifications and summaries provided
above, we then evaluate more than 30 deep learning mod-
els for photometric stereo on the widely used benchmark
[6] in dense input condition (Table 3) and sparse input
condition (Table 4), respectively. We found that compared
with traditional non-learning methods, deep learning-based
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photometric stereo models are superior in estimating sur-
face normals. Finally, we point out the future trends in the
field of photometric stereo. Our aim with this survey is
to help researchers understand the state-of-the-art methods
and position themselves to develop in this growing field,
as well as highlight opportunities in future research. The
project of this survey can be found in https://github.com/
Kelvin-Ju/Survey-DLCPS.

2 PROBLEM FORMULATION

Consider a pixel on a non-Lambertian surface with the
normal n illuminated by a directional incident light l. When
a linear-response camera photographs this surface in the
view direction v, the pixel-measured intensity m in image
M can be approximated as follows:

m = ρ (n, l,v) ·max
{
n⊤l, 0

}
+ ϵ, (2)

where ρ represents the BRDF, and max
{
n⊤l, 0

}
denotes

the attached shadows, and ϵ represents global illumina-
tion effects (e.g., cast shadows and inter-reflections) and
noise. Traditional photometric stereo methods computed the
surface normals of general objects by solving the imaging
model Eq. 2 inversely, using more than three input images,
but unknown BRDFs make the model difficult to fit (as
shown in Fig. 1). Similarly, deep learning-based calibrated
photometric stereo methods aimed to learn a neural net-
work model f from n different observations, as follows:

f : Agg(M i, li) → N , i ∈ {1, 2, · · · , n}, (3)

where f is the optimized deep neural network by the
training data sets. Usually, the aggregation models (Agg) are
determined by how they process the input images, such as
observation maps, max-pooling models, or hybrid methods,
which will be discussed in Section 3. Most of the existing PS
methods, i.e., calibrated photometric, relied on having prior
knowledge of the light directions and intensities for each
image, while uncalibrated photometric stereo can estimate
surface normals without lighting information. Note that the
model f becomes f : Agg(M i) → N , i ∈ {1, 2, · · · , n}
when addressing uncalibrated photometric stereo. Although
uncalibrated photometric stereo has the advantage of not
requiring pre-calibration of lighting conditions, it does face
additional challenges because it needs to disentangle the
lighting information from shading cues, making it a more
complex problem to solve. In this paper, we mainly focus
on the deep learning-based calibrated photometric stereo
since it provides more universal frameworks and feature
extraction models that can be extended to uncalibrated and
other photometric stereo tasks. A brief discussion of the
uncalibrated condition can also be found in Section 3.2.4
for a more comprehensive overview.

In the following subsections, we will discuss these deep
learning-based calibrated photometric stereo methods from
different perspectives.

3 CATEGORIZATION BY INPUT PROCESSING

The first deep learning method, DPSN [20], made the or-
der of illuminations and the number of input images un-
changed, by a seven-layer fully-connected network. There-

fore, the following methods focused on handling any num-
ber of input images with arbitrary light directions. In fact,
this problem is equivalent to how to fuse a varying number
of features in the networks. It is known that convolutional
neural networks (CNNs) cannot handle a varying number
of inputs during training and testing. Therefore, two ap-
proaches have been proposed in photometric stereo, i.e., to
process the input images pixel-wise or patch-wise. Follow-
ing the concept proposed in [23], we also call the pixel-wise
and patch-wise processing methods as per-pixel methods
(Section 3.1) and all-pixel methods (Section 3.2), respectively.
We provide an in-depth summary of the development of
these two approaches, in reference to the drawbacks of the
initial methods (i.e., the observation map from CNN-PS [21]
and the max-pooling from PS-FCN [22]). In addition, we
propose a new class, for hybrid methods (Section 3.3), which
fuse pixel- and patch-wise characteristics. As tabulated in
Table 1, we also summarize the algorithms and formulas of
representative methods for each direction in Fig. 2.

3.1 Per-pixel methods
The per-pixel strategy was first implemented using the
observation map in CNN-PS [21]. The observation map
essentially fused all observations pixel-by-pixel, capturing
the inter-image intensity variations for each pixel. Obser-
vation maps were also widely used in recent near-field
photometric stereo [34] and multiview photometric stereo
[35] tasks. Fig. 3 illustrates the fusion rule, which is based on
both the pixel intensity and the orthogonal projected light
direction. Specifically, observation maps [21] are determined
by projecting light directions from a 3D space (hemisphere)
onto a fixed-size observation map plane (along the axis-z
direction). Each observation map can represent the feature
at a single-pixel position. The observation map proves to
be effective in photometric stereo for three reasons. First, its
size is independent of the number of input images. Second,
the values are independent of the order of the input images.
Third, the information on the light directions and intensities
is embedded in the observation map [21]. Recently, Ikehata
[33] further took advantage of the physical interpretability
of the observation map, making the observation map parse
the physical intrinsic attributes to form a self-supervised
inverse rendering pipeline.

3.1.1 Problem of sparse input
However, the observation map in the initial method [21] also
encounters some limitations. First, light directions are rep-
resented by unstructured vectors, while observation maps
are grid data as images. When projecting a light vector
onto a 2D coordinate system, the projected direction can not
exactly correspond to the grid observation map. To improve
the accuracy of projected light directions, the size of the
observation map has to be large enough to approximately
represent the unstructured projected vectors. Unfortunately,
the number of input images (light directions) is sparse
compared to the size of the observation map, which creates
difficulties in extracting features. In fact, the sparse obser-
vation map affects network performance. The accuracy of
CNN-PS drops significantly when inputting a small number
of images (sparse condition), compared with the all-pixel
methods.

https://github.com/Kelvin-Ju/Survey-DLCPS
https://github.com/Kelvin-Ju/Survey-DLCPS
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Fig. 3. The illustration of the observation maps [21]. Here, a, b, and c
represent the number of input images (lights), while 1, 2, and 3 denote
the index of pixel positions.

In this regard, some works were proposed to solve the
sparse input images problem, such as SPLINE-Net [36] and
LMPS [37]. These two methods adopted opposite strate-
gies to solve this problem. SPLINE-Net [36] proposed a
lighting interpolation network to generate dense lighting
observation maps when the input was sparse (as shown
in the red arrow of Fig. 4). To optimize the lighting inter-
polation network and normal estimation network, SPLINE-
Net further utilized a symmetric loss and an asymmetric
loss to consider general BRDF properties explicitly and
outlier rejections, respectively. On the other hand, LMPS
[37] reduced the demands on the number of images by only
learning the critical illumination conditions. The method
employed a connection table to select those illumination
directions that were the most relevant to the surface normal
prediction process (as shown in the blue arrow of Fig. 4).
Furthermore, a more thorough method [38] was to replace
the structured observation map with an unstructured graph
network, which will be introduced in Section 3.3.

3.1.2 Problem of global information
On the other hand, since original per-pixel methods [21]
operate in isolation, which means the estimated normal
vector of a surface pixel relies solely on the features ex-
tracted from that pixel itself, without leveraging information
from adjacent pixels. As a result, it may lose the local
context information of neighboring pixels when computing
the feature map.

When the input observations exhibit deviations in pho-
tometric cues, per-pixel methods might exhibit reduced
robustness compared to all-pixel methods, which consider
all pixels in the input patch. For example, as mentioned
in [21], where the first 20 images of the “Bear” object in
the DiLiGenT benchmark data set [6] were less accurate:
the intensity values around the bear’s stomach region were
lower than the adjacent regions, even though they should
be higher due to specularities. When all 96 images of ”Bear”
were fed into the per-pixel method CNN-PS [21], the mean
angular error increased dramatically, from 4.20 (with the
first 20 images discarded) to 8.30, an increase of 97.62%. In
contrast, all-pixel methods demonstrated better robustness,
e.g., with PS-FCN [22], the error increased from 5.02 to 7.55,

Sparse observation map

Dense observation map

Connection 
Table

Lighting 
Interpolation

Fig. 4. Per-pixel methods for sparse input images. SPLINE-Net [36]
uses the lighting interpolation network to generate dense observation
maps, while LMPS [37] applies the connection table used to select the
most relevant illuminant directions in the sparse observation maps.

by only 50.40%. This experiment illustrates the robustness
of adjacent pixels.

To solve this limitation, some recent works incorpo-
rated global information into observation map-based per-
pixel methods, which led to superior performance, such
as PX-Net [39]. PX-Net proposed an observation map-
based method that considers global illumination effects,
such as self-reflections, surface discontinuity, and ambient
light, which enabled global information to be embedded
in the per-pixel generation process. Additionally, PX-Net
performed well in handling sparse conditions, in contrast
to the original observation map-based method [21]. Other
methods, such as HT21 [40] and GPS-Net [38], learned
global information (intra-image features) by combining the
per-pixel and all-pixel strategies. We will discuss these
methods in Section 3.3.

3.2 All-pixel methods

In contrast to per-pixel methods, which analyze each pixel
individually in observations, all-pixel methods keep all the
pixels together. All-pixel methods have the advantage of
exploring intra-image intensity variations across an entire
input image. The original all-pixel method was introduced
in PS-FCN [22] through the use of a max-pooling layer,
which operated in the channel dimension and fused features
from an arbitrary number of inputs. At each position in the
fused feature, the value was determined as the maximum
among all the input features at that position. Consequently,
this method allowed a convolutional network to work with
features from any number of inputs. The max-pooling layer
was inspired by aggregating multi-image information in
other computer vision tasks [41], [42]. Compared to variable
input methods like RNN [43], the adopted max-pooling
operation was order-agnostic, meaning it was not sensitive
to the order in which the input images were provided.
This attribute made it particularly suitable for photometric
stereo. The all-pixel max-pooling operation offers several
advantages. Firstly, it can handle an arbitrary number of
input images without being affected by their order. Sec-
ondly, the use of whole image features includes valuable
local context information, which enhances surface normals
estimation. Thirdly, the patch-based input accelerates the
training process compared to per-pixel methods. Lastly,
all-pixel methods handle the input images and lighting



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

5.98                  4.76                 4.49 

GT              PS-FCN    PS-FCN(Norm.)   NA-PSN

90

45

0

Cat

PS-FCN        PS-FCN(Norm.)       NA-PSN

15.85                     12.39                  12.28 GT

Harvest

Fig. 5. Examples of the predictions and error maps on spatially varying
BRDF, from the object “Harvest” in the DiLiGenT data set [6]. NA-PSN
is short for NormAttention-PSN. The numbers reveal the mean angular
error in degrees.

directions (as extra information) separately, making them
capable of predicting photometric stereo under unknown
illuminations (uncalibrated photometric stereo).

3.2.1 Problem of spatially varying BRDF
However, the original all-pixel method PS-FCN [22] had
some limitations. To begin with, PS-FCN cannot handle
surfaces with spatially varying materials. Since all-pixel
methods leverage convolutional networks to process input
in a patch-based manner, they may have difficulties in
dealing with steep color changes caused by surfaces with
spatially varying materials. It can be seen as the nega-
tive effect of considering observations in the neighborhood
when computing the feature maps. As shown in Fig. 5, the
head and collar region is with spatially varying BRDF. The
original per-pixel method PS-FCN [22] was less effective in
handling regions with spatially varying BRDF, where the
color change of the beard influenced the surface normal
map. While improved methods, such as PS-FCN (Norm.)
[44] and NormAttention-PSN [45], showed significantly en-
hanced reconstruction results. This problem may be rooted
in two key factors. Firstly, the feature extraction network
encounters difficulty in decoupling the changes between
the photometric shading cues and BRDFs. In other words,
the feature extraction network may struggle to differentiate
between changes in pixel values due to variations in sur-
face structures and those resulting from different material
properties. Secondly, the per-pixel methods inherently in-
corporate local context information, where each estimated
surface normal vector depends on neighboring pixels when
computing feature maps. Consequently, surface normal es-
timations can be influenced by spatially varying BRDF.

To solve this limitation, Chen et al. further proposed PS-
FCN (Norm.) [44]. Rather than creating a large-scale training
set with spatially varying materials, an observation nor-
malization method, which concatenated all the observations
and normalizes them, was introduced, as follows:

m′
i =

mi√
m2

1 + · · ·+m2
n

, i ∈ {1, 2, · · · , n}, (4)

where mi and m′
i represent the original and normalized

pixel intensities in the n images. Under the assumption
of Lambertian reflectance, the effect of albedo can be re-
moved. However, PS-FCN (Norm.) [44] cannot perfectly
handle the condition of non-Lambertian surfaces. In re-
gions with specular highlights, the denominator of Eq. 4

Object            Original Norm.    Double-gate Norm.

B
al

l
R

ea
d

in
g

Fig. 6. Comparison of the original normalization method [44] and the
double-gate normalization method [45], with the input object “Reading”
and “Ball”. The red boxes represent the regions exhibiting specular
highlights.

becomes larger, leading to the suppression of observations
after normalization [44]. As shown in the red boxes in
Fig. 6, the original normalization method [44] excessively
suppressed the highlighted regions, whereas the double-
gate normalization method [45] provided more reasonable
shading cues in these regions. Although max-pooling can
naturally ignore non-activated features, the suppressed ob-
servations are not equal to the suppressed features, i.e., the
changing appearance of an observation may cause larger
feature values. Therefore, Ju et al. [45] proposed a double-
gate observation normalization to better handle the non-
Lambertian surfaces with spatially varying materials. In the
method, two gates were set at the lowest 10% (P10) and the
highest 10% (P90) grayscale values of all pixels and put them
on the denominator of Eq. 4, as follows:

m′
i =

mi√∑
k m

2
k

, k ∈ S, (5)

where the set S is controlled by the two gates, such that
mi ∈ S if Gate(P10) < mi < Gate(P90), for i = 1, 2, · · · , n.
It can be seen that the non-Lambertian effects are removed
in the red boxes in Fig. 6. However, this method has to
concatenate with the original images, since discarding some
grayscale values in the denominator can be viewed as a
nonlinear process, which may affect the shading cues for
photometric stereo [45].

3.2.2 Problem of blurry details
The second limitation of original all-pixel methods is
that they may cause blurred reconstructions in complex-
structured regions. We believe that the reasons mainly lie in
three. (1) The convolutional models process patch-based in-
put, which means that all normal points will mutually affect
each other and cause blurring, especially in high-frequency
areas. (2) The widely used Euclidean-based loss functions
can hardly constrain the high-frequency (i.e., complex-
structured) representations, because of the “regression-to-
the-mean” problem [46], which results in blurry and over-
smoothed images. (3) Previous network architectures pass
the input through high-low-high resolutions, i.e., through
an encoder-decoder architecture, which leads to the loss of
prediction details and causes blurring.
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Fig. 7. An example of an attention map from Attention-PSN [47]. w is the
weight of the pixel-wise attention-weighted loss (Eq. 6).

In this regard, two different strategies were proposed to
deal with the problem of blurred reconstruction in all-pixel
methods. The first approach was to employ adaptive loss for
different kinds of surfaces. Attention-PSN [47] was the first
to propose an attention-weighted loss to produce detailed
reconstructions, as follows:

L = wLgradient + (1− w)Lnormal, (6)

which learned a higher weight (w) for the detail-preserving
gradient loss Lgradient and a lower weight (1 − w) for the
cosine loss Lnormal for high-frequency regions. As shown in
Fig. 7, Attention-PSN [47] learned an attention map from
input images, whose pixel values became the weights of the
attention-weighted loss. However, the surface materials of
an object may change rapidly in a flat or smooth region,
which affects the gradient loss with a large weight in the re-
gion and dilutes the penalty on surface normals. Therefore,
Ju et al. further employed the above double-gate observation
normalization to eliminate the influence of spatially varying
surface materials, namely NormAttention-PSN [45].

On the other hand, the second approach was to preserve
the high-resolution features via novel network architectures.
CHR-PSN [48] proposed a parallel network structure for
maintaining both deep features and high-resolution details
of surface normals, inspired by the High-resolution Net
(HR-Net) [26] for human pose estimation. Full-resolution
features can always be preserved in the network, avoiding
features passing layers from high to low resolution and
blurring.

3.2.3 Problem of fusion efficiency
The third is that the fusion mechanism of all-pixel methods,
i.e., max-pooling, discards a large number of features from
the input, reducing the utilization of information and affect-
ing the estimation accuracy. Therefore, how to retain more
features with key information is essential. Some methods
[38], [49] fused max-pooling and average pooling via a con-
catenation operation. However, the improvement of adding
average-pooling is limited because averaging features may
smooth out saliency and dilute valuable features. Dif-
ferent from adding averaging information, Manifold-PSN
[50] introduced nonlinear dimensionality reduction [51] to
convert features from high-dimensional feature spaces to
low-dimensional manifolds. However, the manifold method
truncated the backpropagation of the network. Therefore,
the authors had to use the max-pooling layer to pre-train
the extractor of the network, which was cumbersome and
inefficient.

On the other hand, some methods employed novel mod-
els to enhance feature fusion in their structures. MF-PSN
[52] introduced a multi-feature fusion network, utilizing
max-pooling operations at different feature levels in both
shallow and deep layers to capture richer information. Be-
sides, CHR-PSN [48], SR-PSN [53], and MS-PS [54] extended
max-pooling at various scales with different receptive fields,
rather than the depth. Furthermore, HPS-Net [55] intro-
duced a bilateral extraction module that generated positive
and negative information before aggregation to better pre-
serve useful data. Despite these advancements in feature
fusion, none of these methods fully address the essential
challenge of information loss, i.e., the max-pooling layer
only extracts the maximum value, ignoring the rest.

Recently, the Transformer architecture [27] has also been
used to fuse and communicate features from different in-
put images. PS-Transformer [56] first used a multi-head
attention pooling [57] to fuse an arbitrary number of input
features. In this way, the number of elements in a set was
shrunk from an arbitrary dimension to one, by giving a
learnable query Q rather than only retaining the maximum
value. Multi-head attention pooling [57] can be seen as a
global fusion method that considers all feature distributions,
instead of only retaining the maximum value.

3.2.4 Uncalibrated condition
Most of the existing methods, i.e., calibrated photometric
stereo, require knowledge of the light direction and intensity
for each image. However, calibrating the light involves com-
plex operations and relies on specialized instruments, which
may make it impractical for real-world applications. In con-
trast, uncalibrated photometric stereo can estimate surface
normals without requiring lighting information. However,
it encounters more challenges, such as the Generalized Bas-
Relif (GBR) ambiguity [58] and general non-Lambertian
surface reflectance.

As discussed in Section 3.1, per-pixel methods rely on the
projected light direction from 3D space onto the 2D obser-
vation map, where light directions are essential. Conversely,
all-pixel methods handle input images and light directions
separately. Therefore, the all-pixel strategy is first naturally
applied in uncalibrated conditions. The per-pixel method
PS-FCN [22] first addressed the uncalibrated problem by
directly learning the mapping from input images to surface
normals without concatenating light directions, denoted
as UPS-FCN. However, the performance of UPS-FCN is
far from satisfactory due to the complex interplay among
shading cues, which include unknown lighting directions,
surface normals, and reflectance properties. To address the
uncalibrated case more effectively, most deep learning-
based uncalibrated photometric stereo methods adopted a
two-stage strategy. This involves first estimating the light
directions and then estimating surface normals using both
the estimated light information and input images, based on
all-pixel networks [59], [60], [61], [62], [63], [64].

SDPS-Net [59] first proposed the two-stage deep learning
architecture to reduce the learning difficulty in uncalibrated
photometric stereo. It began by estimating light directions
and intensities via the light calibration network, then ap-
plied an all-pixel-based normal estimation network to ob-
tain the surface normal map. UPS-GCNet [60] used object
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Fig. 8. Hybrid methods for handling both per-pixel features and all-pixel
features. (a) Schematic of the 4D CNN to capture the global effect of
the observation maps used in HT21 [40]. (b) Schematic of the structure-
aware Graph Convolution network to extract a fixed-size feature map,
used in GPS-Net [38].

shape and shading information as guidance to improve
lighting estimation. Similarly, ReDDLE-Net [62] incorpo-
rated diffuse and specular cues to enhance light estimation.
Sarno et al. [61] employed differentiable neural architecture
search (NAS) to automatically discover the most efficient
neural architecture for both light calibration and normal
estimation networks. In addition to supervised methods,
a few uncalibrated methods were implemented in self-
supervised and multi-supervised ways. For example, Kaya
et al. [65] used an uncalibrated neural inverse rendering
approach to handle unknown lights, and Li et al. [64] al-
lowed re-rendered errors to be back-propagated to the light
sources and refined them jointly with the normals. Yang et
al. [66] utilized the neural reflectance field to realize the 3D
reconstruction from uncalibrated photometric stereo images
with the capability of recovering invisible parts. Tiwari et al.
[63] jointly trained the network with image relighting and
used multiple loss functions to optimize the network.

3.3 Hybrid methods

As discussed above, both per-pixel and all-pixel methods
come with their own sets of advantages and limitations.
Per-pixel methods primarily focus on analyzing inter-image
intensity variations at the pixel level. In contrast, all-pixel
methods pay more attention to extracting features related
to intra-image lighting variations. Hybrid approaches that
combine these strategies may have the benefits of both per-
pixel and all-pixel techniques.

In fact, the first mixed method can be found in learning-
based multispectral photometric stereo [67], which initially
estimated a coarse surface normal map and subsequently re-
fined it using a per-pixel approach, achieved through a fully
connected network. Recently, MT-PS-CNN [68] proposed
a two-stage photometric stereo model to construct inter-
frame (per-pixel) and intra-frame (all-pixel) representations.
Similarly, Yang et al. [69] introduced a tandem manner for
per-pixel and all-pixel feature extraction, namely PSMF-
PSN. This network employed 3D convolutional layers to

extract pixel-wise features. In addition, PS-Transformer [56]
introduced a dual-branch feature extractor based on the self-
attention mechanism [27], exploring both pixel- and image-
wise features. Honzatko et al. [40] built upon the observation
maps but incorporated spatial information using 2D and 4D
separable convolutions to better capture global effects. Dif-
ferently, GPS-Net [38] introduced a structure-aware graph
convolutional network [70] to establish connections between
an arbitrary number of observations per pixel, without
relying on observation maps. Subsequently, convolutional
layers were employed to extract spatial information. These
hybrid methods may benefit from per-pixel and all-pixel
approaches. As shown in Fig. 8, we summarize the hybrid
strategy of HT21 [40] and GPS-Net [38].

However, all existing hybrid methods follow a sequen-
tial and independent approach to extracting per-pixel and
all-pixel features. Future research may focus on effective
ways of combining these two feature types and consider the
learning process as a holistic approach, rather than treating
it as two separate stages.

4 NETWORK ARCHITECTURES

With the development of deep learning techniques, deep
learning-based photometric stereo networks have used
many advanced modules. In this Section, we will review
these modules and compare their advantages and draw-
backs in the task of surface normal recovery.

4.1 Convolutional networks

In the beginning, DPSN [7], [20] utilized Multilayer Per-
ceptron (i.e., fully connected layers) with dropout layers to
map the surface normals from observations pixel by pixel.
However, this architecture ignores adjacent information and
cannot handle a flexible number of input images. Therefore,
PS-FCN [22] and CNN-PS [21] were proposed to handle
an arbitrary number of input images by different strategies
(max-pooling and observation map). PS-FCN [22] applied
a fully convolutional plain network to learn surface nor-
mals, while CNN-PS [21] used a variant of the DenseNet
architecture [25] to estimate surface normals from an ob-
servation map. The DenseNet architecture [25] has been
widely used in subsequent networks, such as LMPS [37],
SPLINE-Net [36], MF-PSN [52], and PX-Net [39], due to its
excellent feature extraction capacity. Similarly, ResNet [24]
was also widely used in deep learning-based photometric
stereo methods [38], [47], [50], [71], which can effectively
avoid gradient vanishing in deep networks. However, the
above structures ignore keeping the high resolution of the
features, i.e., passing the features sequentially from high-
to-low resolution layers, and then increasing the resolution.
This operation is suitable for a high-level task that needs
semantic features. However, it may cause information loss
and blurring for the per-pixel prediction photometric stereo
task. Therefore, some works [45], [48] introduced a parallel
multi-scale structure, inspired by the improvement of HR-
Net [26] in the human pose estimation task. HR-Net [26]
employed a parallel network structure to extract features
at three scales, avoiding the feature map being changed
from low resolution to high resolution, where the feature
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Fig. 9. Comparison of the frameworks of supervised, self-supervised, and multi-supervised photometric stereo.

extraction process maintained both the deep features with
high semantic and high-resolution features having details
for surface-normal prediction.

4.2 Self-attention mechanism
Transformer with a self-attention module [27] was first
proposed in the field of natural language processing. It
has also been widely used in many computer vision tasks,
where self-attention was employed in the spatial dimen-
sions to capture non-local feature dependencies. Recently,
two works [56], [72] introduced the self-attention mech-
anism to aggregate features under different lights in the
context of photometric stereo. SPS-Net [72] was the first
to propose a self-attention photometric stereo network,
which aggregated photometric information through a self-
attention mechanism. Ikehata et al. [56] then presented PS-
Transformer, which uses the self-attention mechanism to
capture complex interactions in sparse photometric stereo.
PS-Transformer [56] designed a dual branch to explore
pixel and image-wise features. Therefore, intra-image spa-
tial features and inter-image photometric features are better
extracted than with SPS-Net [72]. Recently, Ikehata intro-
duced two photometric stereo methods: UniPS [73] and
SDM-UniPS [74]. These methods can handle natural light-
ing conditions by learning global lighting contexts from
individual images by interacting with others, discarding
assuming specific lighting models. In these approaches, the
self-attention model [27] served as the backbone to facilitate
non-local interactions and as the aggregation method to fuse
arbitrary features.

4.2.1 Discussion
The Transformer module showed significant performance
improvements in other computer vision domains [75], [76].
Similarly, the photometric stereo task can leverage the self-
attention module effectively. Theoretically, the surface nor-
mal of a point only depends on itself, rather than its relation-
ship with distant points. However, due to the presence of

shadows and inter-reflections, capturing long-range context
becomes essential for accurate feature extraction. Therefore,
Transformer-based photometric stereo models can benefit
from both the non-local information acquired through the
self-attention module and the embedded local context infor-
mation obtained through traditional convolutional layers.
Furthermore, the effectiveness of the Transformer [56], [73],
[74] can facilitate communication and aggregation of fea-
tures flexibly, by using multi-head attention pooling [57].

However, Transformer-based photometric stereo meth-
ods face some limitations. The Transformer module has
greater modeling flexibility and can focus on the informa-
tion at any position. Consequently, in contrast to convolu-
tional networks, it requires larger-scale training data sets.
Furthermore, it is widely recognized that the Transformer
model imposes substantial computational demands, espe-
cially when dealing with a large number of elements [56].
Hence, future research should explore the adaptation of
Transformer-based photometric stereo methods to address
dense problems more efficiently.

5 CATEGORIZATION BY SUPERVISION

As a mapping task, conventional learning-based photomet-
ric stereo methods optimized the network by minimiz-
ing the distance between predicted surface normals and
ground-truth surface normals [20], [21], [22], supervised
by pairs of photometric stereo images and their surface
normals. However, learning-based 3D tasks face challenges
due to the difficulties in acquiring and aligning a large num-
ber of ground truths. To solve this issue, some researchers
have investigated self-supervised learning in photometric
stereo [30], [65], [77]. Besides, many works further improved
the performance by introducing additional supervision [32],
[33], [78] or additional information to simplify optimization
[31], [71], [79]. In Fig. 9, we summarize the differences
among supervised, self-supervised, and multi-supervised
photometric stereo networks.
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5.1 Supervised photometric stereo methods
Plenty of deep photometric stereo networks have been pro-
posed with improved performance, compared to traditional
handcrafted photometric stereo methods. These learning-
based models show the potential ability of deep neural net-
works with supervised optimization, i.e, a large amount of
data with ground-truth surface normals during the training
stage. Among these supervised models, some methods [7],
[20], [21], [37] utilized the L2 loss (i.e., mean squared error
loss), as follows:

L = ∥np − ñp∥22, (7)

while more methods applied cosine similarity loss, as fol-
lows:

L = 1− np ⊙ ñp, (8)

where ⊙ represents the dot-product operation. In this case,
np ⊙ ñp will be close to 1 when the predicted ñp is
similar to the ground truth np, and Eq. (8) will approach
0. Intuitively, the cosine similarity loss is more suitable for
surface-normal estimation, because it directly measures the
difference in orientation between two vectors. However, no
evidence from previous work shows that L2 loss reduces
the accuracy of estimated surface normals with the same
network architecture and settings.

5.1.1 Additional information
Recently, some supervised photometric stereo networks im-
proved performance with additional information to make
optimization more efficient [31], [71], [79]. The additional
information can be regarded as prior knowledge used to
simplify the optimization of deep networks through weight
parametrization. In contrast to previous deep learning ap-
proaches that solely derived the normal space from the
observed shading cues, these methods leveraged both ad-
ditional information and observations to learn the surface
normal. Consequently, these methods had the capacity to
reduce the learning hypothesis space, leading to easier fea-
ture extraction, faster convergence, and improved learning
accuracy.

Wang et al. [31] proposed a non-Lambertian photometric
stereo network with the additional collocated light image.
Their model leveraged the monotonicity of isotropic re-
flectance and the univariate property of the supplementary
collocated light to facilitate the decoupling of the surface
normal from the reflectance function, in conjunction with
the input photometric stereo images. Ju et al. [71] incorpo-
rated initial normal priors to enhance the accuracy of surface
normal predictions for objects. This approach relied on prior
surface normals based on Lambertian assumption [1] to
reparameterize network weights, enabling the alignment
of mappings in the same normal space and increasing the
focus on the errors in the prior normal. Similarly, Ju et al.
[79] proposed an additional reflectance-guided photometric
stereo network, which employed a dual-branch extractor
to combine information from both prior reflectance and
photometric stereo images. Furthermore, the inclusion of
prior reflectance helped eliminate the impacts of surfaces
with spatially varying reflectance for photometric stereo
methods. These methods can enhance performance by in-
corporating additional information to streamline the opti-
mization process.

In general, supervised photometric stereo methods can
achieve superior performance, but these methods are lim-
ited due to the difficulties in acquiring accurate ground
truth for the photorealistic training sets, and there is a gap
between real photo images and synthetic images due to
rendering techniques.

5.2 Self-supervised photometric stereo methods

As discussed above, deep learning techniques drastically
advanced the photometric stereo task. Current existing deep
learning methods usually solve the problem in a supervised
training manner. These methods relied on a large amount
of training data with ground truth. However, measuring
the surface normals of real objects is very difficult and
expensive, because it needs high-precision 3D scanners
to reconstruct the ground-truth shape, and requires much
manpower to align the viewpoints between surface normal
maps and multiple images (pixel alignment). Until now,
only three real-world scene data sets with ground truth
have been proposed [6], [80], [81]. However, these data sets
only contained 10 to 100 object scenes and were far from
being utilized for training a modern deep neural network.
Synthetic training data is a possible way [20], [21], [22],
but synthetic images should account for various realistic
BRDF, object shapes, cast shadows, and inter-reflections,
etc. Existing BRDF databases [28], [29] and renderers still
required efforts to generate photo-realistic synthetic images.

To overcome the above shortcomings, some researchers
introduced the self-supervised learning strategy, which only
needs photometric stereo images, rather than pairs with
ground truth surface normals [30], [65], [77]. The pipeline
of the self-supervised photometric stereo methods can be
described as Eq. 9, as follows:

MR = Ψ(Φ(M)), (9)

where Φ represents the model responsible for extracting
the surface normal, while Ψ denotes the method used to
re-render the reconstructed images MR. In this case, the
estimated surface normal Ñ = Φ(M) is optimized by
minimizing the reconstruction loss (e.g., L2 loss) between the
input images M and the re-rendered images MR, without
requiring the ground-truth surface normal of M .

Taniai and Maehara [30] first proposed a self-supervised
convolutional network that took the whole set of images as
input, namely IRPS. The model directly generated surface
normals by minimizing the reconstruction loss between re-
rendered images obtained via the rendering equation and
input images. Furthermore, IRPS [30] avoided the unfixed
number of input photometric images through its physics-
based rendering approach. However, IRPS suffered from
expensive computation [23] and failed to model inter-
reflections. Moreover, its loss function was not robust and
susceptible to noise [65] because the surface normals were
initialized by using the Lambertian assumption [1]. There-
fore, IRPS was further extended by Kaya et al. [65] to
deal with inter-reflection by explicitly modeling the concave
and convex parts of a complex surface. However, both
[30], [65] implicitly encoded the specular components as
features of the network and fail to consider shadows in
the rendering process. To solve the limitations, Li et al. [77]



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

TABLE 1
Representative calibrated deep learning photometric stereo algorithms and formulations for each taxonomy.

Taxonomy Sec. Method Formulation

Fixed input 3 DPSN [20] np = f(m̃i
p), where m̃i

p means the order and the number of the inputs are fixed.

Per-pixel input 3.1 CNN-PS [21] np = f(obs(mi
p, l

i)), please see obs in Section 3.1.

Sparse input 3.1.1 LMPS [37] np = f(D(obs(mi
p, l

i))), where D stands for the connection table.

Global information 3.1.2 PX-Net [39] np = f(obs(G(mi
p), l

i)), where G stands for the global illumination effects.

All-pixe input 3.2 PS-FCN [22] N = fR(max{fE(Mi, li)}), please see max in Section 3.2, fE and fR mean the Extractor and Regressor.

Spatially varying BRDFs 3.2.1 PS-FCN (Norm.) [44] N = fR(max{fE(norm(
∑n

i (M
i)), li)}), where norm stands for the Observation Normalization.

Blurry details 3.2.2 Attention-PSN [47] N = fR(max{fE(Mi, li)}), with minimizing the adaptive loss L = λLgradient + (1− λ)Lnormal.

Fusion efficiency 3.2.3 MF-PSN [52] N = fR(maxd{maxs{fE(Mi, li)}, fE(Mi, li)}), where s and d mean shallow and deep, respectively.

Hybrid input 3.3 GPS-Net [38] N = f(∪H×W
p gcn(mi

p, l
i)), where gcn stands for the Structure-aware Graph Convolution filters.

Self-attention 4.2 PS-Transformer [56] N = fR(fE(mi
p, l

i), fE(Mi)), where fE and fR are layers with the Self-attention Mechanism.

Additional information 5.1.1 WZ20 [31] np = fR(max{fE(mi
p, l

i,m0
p}), where m0

p stands for the collocated light observation.

Self-supervised 5.2 IRPS [30] N = fP (Mi) = f−1
I (Mi), with minimizing the self-supervised loss L = fI(fP (Mi), li)−Mi.

Multi-supervised 5.3 DR-PSN [78] N = fP (Mi, li) = f−1
I (Mi), where fP and fI mean the Normal regression and Dual regression.

proposed a coordinate-based deep network to parameterize
the unknown surface normal and the unknown reflectance
at every surface point. The method learned a series of neural
specular basis functions to fit the observed specularities and
explicitly parameterized shadowed regions by tracing the
estimated depth map. However, the method may fail in the
presence of strong inter-reflections.

In summary, self-supervised photometric stereo models
alleviate the demand for extensive 3D data sets. However,
these self-supervised models face computational burdens
due to their relatively large parameter sizes, which may
restrict their applicability in industrial settings. We envision
that future progress in self-supervised photometric stereo
will involve the refinement of rendering equations for in-
creased accuracy, the creation of more lightweight models,
and the enhancement of the efficiency of reconstruction loss.

5.3 Multi-supervised photometric stereo methods

Previous research [31], [71] demonstrated improved perfor-
mance by incorporating additional input information within
supervised learning frameworks. Another approach to sim-
plifying the learning process is to introduce more forms of
supervision. In this paper, we refer to methods that utilize
multiple forms of supervision as “Multi-supervised” [32],
[33], [78].

In this context, Ikehata [33] proposed a network to
deconstruct the observation map into physical interpretable
components such as surface normal, surface roughness, and
surface base color. These components were then integrated
via the physical formation model [82]. Consequently, the
training loss for optimization consisted of the normal recon-
struction loss and the inverse rendering loss. On the other
hand, Ju et al. [78] introduced a dual regression network for
calibrated photometric stereo, known as DR-PSN. This net-
work combined the surface-normal constraint with the con-
straint of the reconstructed re-lit image. Additionally, GR-
PSN [32] utilized a parallel framework to simultaneously
learn two arbitrary materials for an object and included
an additional material transform loss. These methods em-
ployed an inverse subnetwork to re-render reconstructed
images based on predicted surface normals. In contrast to
previous inverse rendering methods [30], [33], [65], [77],
DR-PSN and GR-PSN used CNNs to render reconstructed
images rather than following the rendering equation.

Finally, based on the taxonomy discussed in Sections 3,
4, and 5, we formulate these representative deep learning-
based calibrated photometric stereo methods in Table 1. In
these formulas, the predicted surface normals are repre-
sented by N from input photometric images M i or np

from pixel mi
p, where p stands for the index of spatial

resolution H × W , i ∈ {1, 2, · · · , n} stands for the index
of inputs. f represents deep neural networks for learning
surface normals.

6 DATA SETS OF PHOTOMETRIC STEREO

The training and testing of supervised photometric stereo
networks require the ground truth normal maps of objects.
However, obtaining ground-truth normal maps of real ob-
jects is a difficult and time-consuming task. Although many
data sets have been established in other 3D reconstruction
tasks [85], [86], [87], most of their objects were simple in
reflectance and shape, and the number of different lighting
conditions was small [6]. This section will review data
sets for deep learning-based photometric stereo methods
and summarize them in Table 2. It is worth noting that
we mainly review these data sets for directional lighting
photometric stereo methods. Those for multiview photo-
metric stereo [88], near-field photometric stereo [89], and
multispectral photometric stereo [90] are not discussed here.

6.1 Training data sets

Training a deep photometric stereo network needs to ren-
der plenty of materials, geometries, and illumination. Re-
searchers have to establish synthetic training data sets by
rendering 3D shapes with different reflectance. There are
two mainstream data sets.

6.1.1 Blobby and Sculpture data set
The Blobby and Sculpture data set was proposed in DPSN
[20] and improved in PS-FCN [22]. PS-FCN applied 3D
shape models from the Blobby shape data set [91] and the
Sculpture shape data set [41], as well as the MERL BRDF
data set [28] to provide surface reflectance. The Blobby
shape data set contained ten objects with various shapes.
The Sculpture shape data set [41] further provided more
complex (detailed) normal distributions for rendering. The
MERL BRDF data set [28] contained 100 different BRDFs
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TABLE 2
Summary of data sets for deep learning photometric stereo.

Data set BRDF Ground Truth Number of Sample Trained methods

Blobby and Sculpture [22] MERL [28], homogeneous
Synthetic normal

85212 [22], [37], [44], [47], [50], [68], [71]
[31], [38], [45], [48], [52], [72], [78]

CyclePS [21] Disney [29], spatially varying 45 (75 in [56]) [21], [36], [39], [40], [56]
Gourd & Apple [83]

Real object, spatially varying
Not provide

3

Test sets
Light Stage Data Gallery [84] 9

DiLiGenT [6]
3D scanner

10
DiLiGenT-Π [81] 30

DiLiGenT102 [80] Real object, homogeneous CAD + CNC 100

with real-world materials, which can provide a diverse
set of surface materials for rendering shapes. The authors
used a physically based ray tracer, Mitsuba [92] to render
photometric stereo images. For each selected shape in these
two shape data sets [41], [91], the authors of PS-FCN [22]
used 1296 regularly-sampled views, randomly selected 2
of the 100 BRDFs in the MERL BRDF data set, and 64
light directions randomly sampled from the upper hemi-
sphere space to render 64 photometric stereo images with a
(cropped) spatial resolution of 128 × 128. The total number
of training samples for the first method was 85212.

6.1.2 CyclesPS data set
The second one was proposed in CNN-PS [21], namely
the CyclesPS data set. In this data set, the authors utilized
Disney’s principled BSDF data set [29] rather than the MERL
BRDF data set [28] to provide surface reflectance. Compared
to the MERL BRDF data set [28], which had 100 measured
BRDFs and thus cannot cover the tremendous real-world
materials, Disney’s principled BSDF data set integrated five
different BRDFs controlled by 11 parameters, which can
represent a wide variety of real-world materials. Although
the CyclesPS data set neglected some combinations of pa-
rameters that were unrealistic or did not strongly affect the
rendering results, Disney’s principled BSDF data set can
represent almost infinite surface reflectance. The number
of 3D model shapes was 15, selected from the Internet
under a royalty-free license. The CyclesPS data set [21] used
the Cycles renderer, bundled in Blender [93], to simulate
complex light transport, and included three subsets, dif-
fuse, specular, and metallic. Therefore, the total number of
samples for training was 45. Different from PS-FCN [22], it
divided the object region in the rendered image into 5000
superpixels and used the same set of parameters at the
pixels within a superpixel, i.e., 5000 kinds of materials in
one sample. Moreover, the number of light directions was
740, which means that 740 photometric stereo images were
rendered for each sample, with a spatial resolution of 256
× 256. The number of objects in the CyclesPS data set was
further increased to 25 in PS-Transformer [56], with the same
settings.

6.1.3 Discussion
Compared to these two data sets, we can find that the
strategy and attention are quite different. As summarized
in Table 2, the Blobby and Sculpture data set [22] contains
much more samples than the CyclePS data set [21] (85212
vs. 45). However, the number of illuminated images with
homogeneous reflectance is 64 in the Blobby and Sculpture

data set [22], while there are more than 700 very densely
illuminated images with spatially varying materials in the
CyclePS data set [21]. The Blobby and Sculpture data set
[22] is more suitable for all-pixel methods (see Section 3.2),
and the CyclePS data set [21] is better to be used by per-pixel
methods (see Section 3.1). There are two reasons. First, all-
pixel methods process input images in a patch-wise manner.
In contrast, per-pixel methods use the observation map to
learn the feature of a single pixel. Therefore, the number of
samples is irrelevant as long as the spatial resolution is large
enough. Second, before the introduction of the observation
strategy [44], all-pixel methods with patch-based inputs can-
not handle objects with spatially varying materials, while
per-pixel methods naturally avoid this problem. Therefore,
previous per-pixel methods usually chose the CyclePS data
set [21] to optimize their models, while all-pixel methods al-
ways used the Blobby and Sculpture data set [22] (Tabulated
in Table 2). However, the diversity of CyclePS [21] is much
better due to the powerful representation ability of Disney’s
principled BSDF data set [29], which can potentially lead to
better performance of per-pixel methods using the observa-
tion maps strategy. Thus, establishing Disney’s principled
BSDF [29] based data sets with more samples is important
and urgent in future work.

6.1.4 Settings and implementation details
When training photometric stereo networks, the preferred
optimizer was typically the Adam optimizer [94] with de-
fault settings (β1 = 0.9 and β2 = 0.999) due to its excellent
performance and ease of parameter tuning. However, some
networks, such as HT21 [40], opted for the RMSprop opti-
mizer.

For per-pixel methods, the size of observation maps
during training can influence optimization performance. In
CNN-PS [21], the authors tested and found that using ob-
servation maps with the size of 32 × 32 resulted in the best
performance. Consequently, subsequent per-pixel methods
usually adopted this size, or a slightly larger size (e.g., 48
× 48 in HT21 [40]) in their training configurations. Simi-
larly, for all-pixel methods, the size of input patches during
training impacts performance and training time. Usually, the
default size for input patches in all-pixel methods was set
to 32 × 32 to achieve optimal results. MF-PSN [52] made
a quantitative comparison of performance using different
input sizes, supporting the choice of a 32 × 32 patch size
as it can best balance both performance and computational
costs.

Photometric stereo networks are required to handle a
varying number of inputs. Consequently, choosing the num-
ber of inputs during training is also an important setting
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that has to be discussed. The experiments in [45], [52]
have demonstrated that different number of inputs during
training impacts the performance of photometric stereo
networks. Specifically, when the number of input images
used for training is close to the number used for testing,
the networks will achieve better performance. In order to
accommodate both sparse and dense input conditions, all-
pixel methods commonly select a training input number of
32 images. In contrast, per-pixel methods often use a larger
number of inputs, such as 50 to 1300, in many models that
rely on observation maps. However, there are exceptions
for methods specially designed for sparse inputs, such as
SPLINE-Net [36], which utilizes 10 inputs.

6.2 Testing data sets
Test data sets are also needed to quantitatively evaluate the
performance of different photometric stereo methods. These
data sets can be divided into two categories: synthetic data
sets and real data sets.

6.2.1 Synthetic data sets
Synthetic data sets were usually rendered with the same
settings as the Blobby and Sculpture data set [22] or the
CyclePS data set [21]. For example, the rendered objects
“Bunny”, “Dragon”, and “Armadillo” in the Stanford 3D
data set [95] by the MERL BRDF data set [28] as well as the
rendered objects “Sphere”, “Turlte”, “Paperbowl”, “Queen”,
and “Pumpkin” by Disney’s principled BSDF data set [29].

6.2.2 Real data sets
To effectively evaluate the robustness and performance of
the presented photometric stereo methods, a better choice
is to evaluate these methods on real photometric stereo
images rather than synthetic images. Some data sets, such
as the Gourd & Apple data set [83] and Light Stage Data
Gallery [84], have been proposed for over a decade. The
Gourd & Apple data set [83] consisted of three objects,
namely “Apple”, “Gourd1”, and “Gourd2”, with 112, 102
and 98 images, respectively. The Light Stage Data Gallery
[84] consisted of six objects and 253 images were provided
for each object. However, these data sets only provided cal-
ibrated light directions without ground-truth normal maps.
Therefore, one can only qualitatively compare methods on
these real data sets.

To quantitatively evaluate photometric stereo methods,
Shi et al. [6] first established a real photometric stereo data
set with ground truth, namely DiLiGenT, which was the
most widely used benchmark in the field of photometric
stereo. This data set included ten objects with varying
complexity, from simple spheres to intricate and concave
geometries, and a wide range of materials, including mostly
diffuse to strongly non-Lambertian surfaces with spatially
varying properties. The authors illuminated and captured 96
images for each object under different lighting directions. To
obtain the ground truth, the authors used a structured light-
based Rexcan CS scanner, synchronized with a turn table
to acquire 3D point clouds, which can calculate surface nor-
mals. Then, the shape-to-image alignment was performed to
transform the 3D shape from the scanner coordinate system
to the photometric stereo image coordinate system using the

mutual information method in Meshlab [96]. Furthermore,
the DiLiGenT benchmark [6] provided a test set, which is
from a different viewpoint of these photoed objects (except
for the object “Ball”) using the same lighting setup. How-
ever, using a small number of objects (10) of DiLiGenT [6] is
prone to overfitting in training deep neural networks, and
the shapes scanned by a 3D scanner may have errors and
blurring.

To address these limitations, Ren et al. [80] further pro-
posed a new real-world photometric stereo data set with
ground-truth normal maps, namely DiLiGenT102 because
it contained 10 times larger (one hundred objects of ten
shapes multiplied by ten materials) than the widely used
DiLiGenT benchmark [6]. The authors used ten shapes to
fabricate objects, from CAD models with selected materials,
through a high-precise computer numerical control (CNC)
machining process, rather than scanning existing objects,
which greatly avoided measurement errors. For each shape,
ten materials were used to make the objects, from isotropic
(diffuse and specular) and anisotropic, to translucent re-
flectance. Recently, Wang et al. [81] introduced a real-world
data set, DiLiGenT-Π, for detailed near-planar surfaces.
This data set was specifically designed to capture objects
with high-frequency detailed structures, such as coins and
badges. Similar to the DiLiGenT data set [6], the authors
used a 3D scanner to acquire ground-truth 3D models for
30 objects in this data set. The presented training and test
data sets for deep learning photometric stereo methods are
summarized in Table 2.

7 BENCHMARK EVALUATION RESULTS

The evaluation metric is based on the statistics of angular
errors. For the whole normal map, the mean angular error
(MAE) is calculated as follows:

MAE =
1

T

T∑
p

cos−1(n⊤
p ñp), (10)

where T is the total number of pixels on the object, exclud-
ing the pixels at background positions, and np and ñp are
the ground-truth and estimated surface normal vector at
the position indexed p. In addition to MAE, some papers
also used the ratios of the number of surface normals with
angular error smaller than x◦, denoted as err<x◦ [45], [47].

In Table 3, we report the quantitative results of the
above-mentioned deep learning-based calibrated (marked
as red) and uncalibrated (marked as green) photometric
stereo methods on the DiLiGenT benchmark data set [6] un-
der all the 96 input images (dense condition). Similarly, we
review the performance of these calibrated deep learning-
based photometric stereo methods in the sparse condition
(10 input images) tabulated in Table 4. Note that not all the
methods report the results under 10 input images, and some
methods only provide the sparse condition without dense
input, such as PS-Transformer [56].

Besides deep learning methods, we also evaluate the
performance of some representative non-learning-based cal-
ibrated algorithms (marked as blue) and compare them
with deep learning-based methods. As shown in Table 3,
most of the learning-based methods are represented by
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TABLE 3
Performance on the DiLiGenT benchmark [6] with 96 images, measured in terms of MAE in degrees. The compared methods are ranked by the

average MAE of ten objects.
Method Ball Bear Bear-76 Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Avg.

Baseline [1] 4.10 8.39 - 14.92 8.41 25.60 18.50 30.62 8.89 14.65 19.80 15.39
IW12 [13] 2.54 7.32 - 11.11 7.21 25.70 16.25 29.26 7.74 14.09 16.17 13.74
WG10 [12] 2.06 6.50 - 10.91 6.73 25.89 15.70 30.01 7.18 13.12 15.39 13.35
HM10 [10] 3.55 11.48 - 13.05 8.40 14.95 14.89 21.79 10.85 16.37 16.82 13.22
KS21 [65] 3.78 5.96 - 13.14 7.91 10.85 11.94 25.49 8.75 10.17 18.22 11.62
IA14 [9] 3.34 7.11 - 10.47 6.74 13.05 9.71 25.95 6.64 8.77 14.19 10.60

ST14 [11] 1.74 6.12 - 10.60 6.12 13.93 10.09 25.44 6.51 8.78 13.63 10.30
SPLINE-Net† [36] 4.51 5.28 - 10.36 6.49 7.44 9.62 17.93 8.29 10.89 15.50 9.63

SDPS-Net [59] 2.77 6.89 - 8.97 8.06 8.48 11.91 17.43 8.14 7.50 14.90 9.51
DPSN [20] 2.02 6.31 - 12.68 6.54 8.01 11.28 16.86 7.05 7.86 15.51 9.41
SK22 [61] 3.46 5.48 - 10.00 8.94 6.04 9.78 17.97 7.76 7.10 15.02 9.15
IRPS [30] 1.47 5.79 - 10.36 5.44 6.32 11.47 22.59 6.09 7.76 11.03 8.83

UPS-GCNet [60] 2.50 5.60 - 8.60 7.80 8.48 9.60 16.20 7.20 7.10 14.90 8.70
LMPS [37] 2.40 5.23 - 9.89 6.11 7.98 8.61 16.18 6.54 7.48 13.68 8.41

PS-FCN [22] 2.82 7.55 5.02 7.91 6.16 7.33 8.60 15.85 7.13 7.25 13.33 8.39
ReDDLE-Net [62] 2.65 6.04 - 7.28 8.76 6.80 8.42 12.28 7.82 7.99 14.03 8.21

Manifold-PSN [50] 3.05 6.31 - 7.39 6.22 7.34 8.85 15.01 7.07 7.01 12.65 8.09
LERPS [63] 2.41 6.93 - 8.84 7.43 6.36 8.78 11.57 8.32 7.01 11.51 7.92

Attention-PSN [47] 2.93 4.86 - 7.75 6.14 6.86 8.42 15.44 6.92 6.97 12.90 7.92
DR-PSN [78] 2.27 5.46 - 7.84 5.42 7.01 8.49 15.40 7.08 7.21 12.74 7.90
GPS-Net [38] 2.92 5.07 - 7.77 5.42 6.14 9.00 15.14 6.04 7.01 13.58 7.81

JJ21 [71] 2.51 5.77 - 7.88 6.56 6.29 8.40 14.95 7.21 7.40 11.01 7.80
CHR-PSN [48] 2.26 6.35 - 7.15 5.97 6.05 8.32 15.32 7.04 6.76 12.52 7.77
CNN-PS† [21] 2.12 8.30 4.10 8.07 4.38 7.92 7.42 14.08 5.37 6.38 12.12 7.62
SPS-Net [72] 2.80 - - 6.90 5.10 6.30 7.10 13.70 7.50 7.40 11.90 7.60

MT-PS-CNN [68] 2.29 5.79 - 6.85 5.87 7.48 7.88 13.71 6.92 6.89 11.94 7.56
HS17 [15] 1.33 5.58 - 8.48 4.88 8.23 7.57 15.81 5.16 6.41 12.08 7.55

PS-FCN (Norm.) [44] 2.67 7.72 - 7.53 4.76 6.72 7.84 12.39 6.17 7.15 10.92 7.39
MF-PSN [52] 2.07 5.83 - 6.88 5.00 5.90 7.46 13.38 7.20 6.81 12.20 7.27
HPS-Net [55] 2.37 5.28 - 6.89 4.98 5.59 7.59 14.17 6.23 6.77 11.26 7.11

LL22b [64] 1.24 3.82 - 9.28 4.72 5.53 7.12 14.96 6.73 6.50 10.54 7.05
HT21† [40] 2.49 8.96 3.59 7.23 4.69 4.89 6.89 12.79 5.10 4.98 11.08 6.91

PSMF-PSN [69] 2.54 5.99 - 7.21 5.09 5.52 7.75 11.40 6.91 6.11 10.01 6.85
NormAttention-PSN [45] 2.93 5.48 4.80 7.12 4.65 5.99 7.49 12.28 5.96 6.42 9.93 6.83

WZ20 [31] 1.78 5.26 4.12 6.09 4.66 6.33 7.22 13.34 6.46 6.45 10.05 6.76
SR-PSN [53] 2.23 5.24 - 6.75 4.63 6.12 7.07 12.61 5.88 6.44 10.35 6.73

JZ23 [79] 2.26 4.57 - 7.07 4.72 5.83 7.73 11.35 5.68 6.39 11.38 6.70
IS22† [33] 2.30 - 3.90 7.70 4.20 5.70 7.20 13.80 5.00 5.40 10.70 6.60

GR-PSN [32] 2.22 5.61 - 6.73 4.33 6.17 6.78 12.03 5.54 6.42 9.65 6.55
LL22a [77] 2.43 - 3.64 8.04 4.86 4.72 6.68 14.90 5.99 4.97 8.75 6.50

PX-Net† [39] 2.03 4.13 3.57 7.61 4.39 4.69 6.90 13.10 5.08 5.10 10.26 6.33

their networks’ names. For non-learning methods and some
learning-based methods without given names, we present
them by the first letter of the authors’ name and the pub-
lished year. To ensure fairness in the evaluation, we also
employ † to denote the networks trained by CyclePS [21],
which are rendered using Disney’s principled BSDF data
set [29]. Theoretically, Disney’s principled BSDFs contain an
extensive range of reflectance properties by integrating var-
ious BRDFs controlled by 11 parameters. Consequently, the
reflectance distributions of CyclePS more closely resemble
those encountered in real-world scenarios compared to the
Blobby and Sculpture data set [22], which are rendered us-
ing the MERL BRDF data set [28]. Furthermore, some recent
models discarded the first 20 images of “Bear” in testing (i.e.,
tested with the remaining 76 images) because the first 20 im-
ages are photometrically inconsistent in the belly region [21].
For these methods, we tabulate both the results of “Bear”
input with 76 images and 96 images, denoted as “Bear-76”

and “Bear”, respectively. For a fair comparison, the average
MAE of these ten objects uses the result of Bear rather
than Bear-76, except for IS22 [33] and LL22a [77], which
only report the Bear-76 results. Additionally, SPS-Net [72]
discards the results of Bear; therefore, we can only calculate
the average MAE via the remaining nine objects. Since only
parallel white lights were used in the DiLiGenT benchmark
[6], we can only evaluate the methods for calibrated and un-
calibrated photometric stereos, ignoring methods for near-
field light, general light, and color light.

Furthermore, in Figs. 10 and 11, we visualize the repre-
sentative deep learning-based calibrated photometric stereo
methods. The visual comparisons are based on the objects
“Reading” and “Harvest’ in the DiLiGenT benchmark data
set [6]. For more visualization comparisons please refer to
https://github.com/Kelvin-Ju/Survey-DLCPS

In Figs. 10 and 11, we evaluate the visualized recon-
structed normal maps and error maps of 12 deep learning-

https://github.com/Kelvin-Ju/Survey-DLCPS
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TABLE 4
Performance on the DiLiGenT benchmark [6] with 10 images, measured in terms of MAE in degrees. The compared methods are ranked by the

average MAE of ten objects.
Method Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Avg.
IA14 [9] 12.94 16.40 20.63 15.53 18.08 18.73 32.50 6.28 14.31 24.99 19.04

Baseline [1] 5.09 11.59 16.25 9.66 27.90 19.97 33.41 11.32 18.03 19.86 17.31
ST14 [11] 5.24 9.39 15.79 9.34 26.08 19.71 30.85 9.76 15.57 20.08 16.18
IW12 [13] 3.33 7.62 13.36 8.13 25.01 18.01 29.37 8.73 14.60 16.63 14.48

CNN-PS† [21] 9.11 14.08 14.58 11.71 14.04 15.48 19.56 13.23 14.65 16.99 14.34
IRPS [30] 2.12 6.92 11.41 6.58 8.87 14.99 26.55 7.14 9.61 13.70 10.79

PS-FCN [22] 4.02 7.18 9.79 8.80 10.51 11.58 18.70 10.14 9.85 15.03 10.51
SPLINE-Net† [36] 4.96 5.99 10.07 7.52 8.80 10.43 19.05 8.77 11.79 16.13 10.35

PS-FCN (Norm.) [44] 4.38 5.92 8.98 6.30 14.66 10.96 18.04 7.05 11.91 13.23 10.14
LMPS [37] 3.97 8.73 11.36 6.69 10.19 10.46 17.33 7.30 9.74 14.37 10.02

DR-PSN [78] 3.83 7.52 9.55 7.92 9.83 10.38 17.12 9.36 9.16 14.75 9.94
CHR-PSN [48] 3.91 7.84 9.59 8.10 8.54 10.36 17.21 9.65 9.61 14.35 9.92

MT-PS-CNN [68] 4.20 8.59 8.25 7.30 10.84 10.44 16.97 8.78 9.85 13.17 9.84
JJ21 [71] 3.86 7.49 9.69 7.82 8.55 10.31 16.94 9.28 9.54 14.30 9.78
IS22 [33] 4.30 5.40 8.70 6.20 11.60 10.70 20.60 7.00 8.00 13.20 9.60

PSMF-PSN [69] 3.88 5.91 8.49 6.75 11.47 9.77 16.36 8.29 11.71 12.52 9.51
GPS-Net [38] 4.33 6.34 8.87 6.81 9.34 10.79 16.92 7.50 8.38 15.00 9.43
SPS-Net [38] 4.60 - 8.00 6.90 8.30 9.00 16.70 8.90 9.00 13.60 9.40
MF-PSN [52] 2.97 4.89 7.43 5.55 8.41 9.87 12.92 7.21 9.16 12.92 8.48
PX-Net† [39] 2.50 4.90 9.40 6.30 7.20 9.70 16.10 7.00 7.70 13.10 8.37

WJ20 [31] 2.30 5.18 7.05 5.62 7.53 8.80 15.26 7.08 8.19 10.88 7.79
PS-Transformer† [56] 3.27 4.88 8.65 5.34 6.54 9.28 14.41 6.06 6.97 11.24 7.66

based calibrated photometric stereo approaches according
to our taxonomy, and the traditional least square method
[1]. The baseline [1], assuming Lambertian reflectance, ex-
hibits severe errors on specular highlights. In contrast, deep
learning-based methods significantly improve results in
highlight regions, demonstrating the fitting ability of deep
neural networks to approximate non-Lambertian surface
reflectances. As the first deep network, DPSN [20] exhibits
inferior results in regions with cast shadows, such as the
back of the “Reading” and the pocket of the “Harvest”. This
limitation arises because DPSN predicts a normal vector
solely based on the reflectance observations of a single pixel,
neglecting information embedded in the neighborhood of a
surface point. Similar issues are observed in some methods
that do not consider neighboring regions [31], [37]. PX-Net
[39] incorporates global information into observation maps,
leading to more accurate reconstruction results in shadow
and highlight regions. However, the visualized normal map
from [39] exhibits sparse noises, potentially attributed to
suboptimal camera noise and self-reflection settings in the
generation of global effects. On the other hand, early all-
pixel methods encounter errors in regions with spatially
varying reflectance [22], [47], [52], [78], such as the edge
of the hat and hair. This occurs because the convolutional
network processes input images in a patch-wise manner,
where steep color changes impact the entire patch, such as
the hat of the “Reading” and the cloth of the “Harvest”.
This problem is eventually addressed by the normalization
operation in PS-FCN (Norm.) [44] and the double-gate
normalization in NormAttention-PSN [45], which can better
handle color-changed surfaces.

Furthermore, as displayed in Tables 3 and 4, the re-
sults based on deep learning-based photometric methods
generally achieve better performance, as compared with
non-learning methods, especially in objects with complex

structure and strong non-Lambertian reflectance (“Har-
vest”, “Reading”). This illustrates the capability and gen-
eralization of deep learning techniques. However, it can
be seen that most deep learning models achieve ordinary
performance on very simple objects with almost diffuse
reflectance, such as “Ball”. We believe that this may re-
sult from overfitting in “complex” network structures and
“difficult” BRDF training data sets [28], [29] that pay more
attention to non-Lambertian materials [36].

8 FUTURE TRENDS

In this section, we point out some promising trends for
future development, based on the discussion in the above
sections. First, we focus on the problem of calibrated pho-
tometric stereo. Then, we raise the perspective of the entire
photometric stereo community.

As discussed in Section 3, we compare the unique char-
acteristics of per-pixel and all-pixel methods. These methods
can be further explored and better combined. For per-pixel
methods, we believe that some further developments can
be found in observation maps [21], e.g., how to optimize
unstructured light vectors via a graph-based network [97]
in the “observation map”, how to embed the information
from adjacent surface points in a per-pixel manner. For all-
pixel methods, we believe that the fusion of inter-images
(inter-patches) still needs to be improved. Existing methods
applied max-pooling [22], [45], [52] or manifold learning [50]
to aggregate a flexible number of input images. However,
these methods are underutilized for fusing features or suffer
from cumbersome training pipelines. Therefore, a better
fusion strategy should be proposed, which can leverage the
self-attention mechanism [27] to learn the weights of input
features. Of course, a more far-sighted research direction
is how to efficiently combine per-pixel and all-pixel meth-
ods, which has been initially discussed in recent combined
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Attention-PSN        MF-PSN              GPS-Net                DR-PSN                    IRPS                   WZ20     NormAttention-PSN                                              

Object/ GT   Least square              DPSN                CNN-PS                 PX-Net                PS-FCN         PS-FCN(Norm.)     

90

45

0

19.80                     15.51                     12.12                     10.26                     13.33                     10.92 

12.90                     12.20                     13.58                     12.74                     11.03                10.05               9.93        

Fig. 10. Quantitative results for the object “Reading”, tested with 96 input images. The first row represents the estimated normal maps, while the
second row shows the corresponding error maps, with values indicating MAE in degrees.

Object/ GT        Least square              DPSN                CNN-PS                 PX-Net                PS-FCN         PS-FCN(Norm.)     

90

45

0

30.62                     16.86                     14.08                     13.10                     15.85                12.39 

15.44                     13.38                      15.14                    14.08                      13.10               13.34                      12.28        

Attention-PSN        MF-PSN              GPS-Net                DR-PSN                    IRPS                   WZ20 NormAttention-PSN                                              

Fig. 11. Quantitative results for the object “Harvest”, tested with 96 input images. The first row represents the estimated normal maps, while the
second row shows the corresponding error maps, with values indicating MAE in degrees.

works [40], [68], and can be further explored by mutually
combining with more physical cues. Furthermore, we argue
that deep learning photometric stereo models can be further
improved by excavating prior knowledge [31], [71] and
supervisions [63], [67].

In fact, many deep learning-based photometric stereo
methods discussed above are calibrated photometric stereo
algorithms, which assume stringent requirements, such as
accurate directions of incident illuminations, directional
illuminations, and standard darkrooms, etc. In practical
applications, many assumptions are not satisfied. When
reviewing the realistic environment, we naturally expect a
general or universal model that can handle un-calibrated
light [59], [61], the colored light [67], [98], the near-field light
[99], [100], the general light [101], and even a perspective

projection camera simultaneously. Recently, an inspiring
work UniPS [73] first dropped the physical lighting models
and extracted a generic lighting representation in image
interaction. This enables UniPS to accommodate various
lighting scenarios, including parallel lighting, spatially vary-
ing lighting, near-field lighting, and outdoor wild lighting.
Additionally, Ikehata introduced SDM-UniPS [74], designed
for high-resolution input images and considering non-local
interactions among surface points. SDM-UniPS [74] achieves
scalable, detailed, and mask-free photometric stereo recon-
struction under a universal light environment. However,
these methods may face limitations when handling pho-
tometric stereo images with minor variations in lighting.
This limitation arises from their reliance on the interaction
mechanism for learning global lighting context rather than
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extracting features from each individual input. In this direc-
tion, we believe that more work can explore more effective
extraction ways of universal lighting.

Furthermore, recent advancements in neural rendering
technologies, i.e., Neural Radiance Fields (NeRF) [102], have
demonstrated great potential in photometric stereo when
integrated with multi-view reconstruction. Some methods
combined NeRF and multi-view photometric stereo [103],
[104], which first estimate per-view surface normal maps
and then blend them with a multi-view neural radiance
field representation to reconstruct the object’s surface ge-
ometry. Multi-view photometric stereo methods can offer a
comprehensive 3D shape perception, while almost all single-
view photometric stereo methods fail to recover the invisible
parts (S3-NeRF [66] can learn a neural scene representation
to recover the invisible 3D parts via the single-view pho-
tometric stereo images). Notably, these NeRF-based multi-
view photometric stereo techniques can avoid noticeable
accumulated errors compared to traditional multi-view pho-
tometric stereo methods, which typically involve multiple
disjoint and complex stages. However, existing NeRF-based
photometric stereo methods still have limitations and could
be explored as future trends. Firstly, NeRF-based photo-
metric stereo methods impose a substantial computational
burden and require lengthy retraining for new objects.
Secondly, these methods take multi-view multi-light pho-
tometric stereo images as input, which involves fixing the
camera at each viewpoint while varying the light directions.
We argue that more works can explore the neural rendering
techniques based on multi-view single-light, i.e., light can be
associated with the moving camera, potentially enhancing
usability in real-world applications.

9 CONCLUSION

In this paper, we conducted a systematic review of deep
learning-based photometric stereo methods. According to
our taxonomy focusing on calibrated deep learning-based
photometric stereo methods, we have summarized and dis-
cussed the strengths and weaknesses of these models by
categorizing them by input processing, supervision, and
network architecture. We also introduced the used training
data sets and test benchmarks in the field of photometric
stereo. Then, more than thirty calibrated and uncalibrated
deep learning models for photometric stereo were evaluated
on the widely used benchmark. Compared with traditional
non-learning methods, deep learning-based photometric
stereo models are superior in estimating surface normals.
Finally, we pointed out the future trends in the field of
photometric stereo. We hope that this survey will help
researchers orient themselves to develop in this growing
field, as well as highlight opportunities for future research.
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