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Abstract

Synthesizing realistic videos of talking faces under cus-
tom lighting conditions and viewing angles benefits various
downstream applications like video conferencing. However,
most existing relighting methods are either time-consuming
or unable to adjust the viewpoints. In this paper, we present
the first real-time 3D-aware method for relighting in-the-
wild videos of talking faces based on Neural Radiance
Fields (NeRF). Given an input portrait video, our method
can synthesize talking faces under both novel views and
novel lighting conditions with a photo-realistic and disen-
tangled 3D representation. Specifically, we infer an albedo
tri-plane, as well as a shading tri-plane based on a de-
sired lighting condition for each video frame with fast dual-
encoders. We also leverage a temporal consistency network
to ensure smooth transitions and reduce flickering artifacts.
Our method runs at 32.98 fps on consumer-level hardware
and achieves state-of-the-art results in terms of reconstruc-
tion quality, lighting error, lighting instability, temporal
consistency and inference speed. We demonstrate the effec-
tiveness and interactivity of our method on various portrait
videos with diverse lighting and viewing conditions.

1. Introduction

Portrait videos are widely used in various scenarios, such as
video conferencing, video editing, entertainment, virtual re-
ality, etc. However, many portrait videos are captured under
unsatisfactory conditions, such as environments that are ei-
ther too dark or too bright, or with virtual backgrounds that
do not match the lighting of the foreground. These factors
degrade the visual quality and realism of videos and affect
the user experience.

Of particular significance is the context of augmented re-

*Corresponding author is Lin Gao

Albedo

Lighting Lighting

Figure 1. Given a portrait video shown in the leftmost column, our
method reconstructs a 3D relightable face for each video frame.
Users can then adjust their viewpoints and lighting conditions in-
teractively. The second column displays relighted video frames
with a head pose yaw of 0.3, while the third column presents faces
relighted under an alternative lighting condition with a frontal head
pose. The rightmost column provides the predicted albedo and ge-
ometry of the reconstructed face. Please see the supplementary
video for the full results.

ality (AR) and virtual reality (VR) applications, where users
often seek to create 3D faces that can be dynamically re-
lighted to fit the environment. This dynamic relighting ca-
pability becomes possible only when the underlying method
is inherently 3D-aware and operates in real time.

However, 3D-aware portrait video relighting is a chal-
lenging task, since it involves modeling the complex inter-
actions between the light, geometry, and appearance of hu-
man faces, as well as ensuring the temporal coherence and
naturalness of synthesized videos. It is even more challeng-



ing when real-time performance is required. Existing meth-
ods for face relighting suffer from some limitations that pre-
vent them from being widely adopted in practice. First,
most of them (e.g., [31, 50, 54]) can only relight the faces
from the input viewpoints, thus restricting the user’s free-
dom to change the camera angle or perspective. This also
limits the creative possibilities and applications for AR/VR
scenarios. Second, many methods (e.g., [19, 56]) are de-
signed for monocular image inputs and thus produce flick-
ering or unnatural results when directly applied to videos,
making them inferior for practical usage, where smooth and
realistic transitions are expected. Third, some methods are
time-consuming in terms of both training and inferring. For
example, ReliTalk [33] takes 3 days of training for a 2-
minute video clip. Once trained, it takes 0.2 seconds to re-
light a video frame. Although DPR [56] achieves real-time
performance, it suffers from low-quality results. It is still
challenging to balance quality and efficiency with existing
solutions.

In this paper, we present a novel real-time 3D-aware por-
trait video relighting method that jointly solves the above
problems by generating realistic and consistent relighting
results for faces from novel viewpoints in real-time, en-
abling users to create realistic and natural personas for
AR/VR applications, as shown in Figure 1. In summary,
our technical contributions are:

* We contribute to the ongoing field of 3D-aware portrait
video relighting by introducing a novel approach that
achieves real-time performance while producing realistic
and consistent results.

* We propose to use dual feed-forward encoders to capture
the albedo and shading information within a portrait. The
shading encoder is conditioned on the albedo encoder to
ensure spatial alignment of albedo and shading, resulting
in realistic reconstruction and accurate relighting.

* We use a novel temporal consistency network to address
temporal inconsistencies in video data, reducing flicker-
ing artifacts and ensuring seamless transitions between
frames.

2. Related Work

Our work closely relates to several topics, including 3D-
aware portrait generation, portrait relighting, and GAN
(Generative Adversarial Network) inversion.

2.1. 3D-aware Portrait Generation

3D-aware portrait generation is the task of generating re-
alistic and diverse images of human faces. Previous work
on this task relied on 3D face priors to model the geome-
try and appearance of faces, such as 3D morphable mod-
els [4, 25] or neural face models [14, 42]. However, these
methods require expensive 3D scanning or manual annota-
tion and often produce low-resolution or unnatural results.

With the advancement of generative models [40], it is now
possible to learn a 3D representation of faces from a collec-
tion of 2D images without any explicit 3D supervision. In
particular, recent approaches combine neural radiance fields
(NeRF) [27] and generative models such as generative ad-
versarial networks (GANs) [17] and diffusion models [18]
to generate high-resolution and multi-view consistent face
images [1, 5, 10, 28-30, 37-39, 45, 49]. In this paper, we
adopt the tri-plane representation from EG3D [5] as our 3D
representation for portrait synthesis and relighting. This
choice is motivated by the insights presented in [20], which
shows that the tri-plane 3D representation facilitates the dis-
entanglement of albedo and shading. This disentanglement,
afforded by the tri-plane structure, enables a 3D-aware ap-
proach for relighting portraits in a photorealistic manner.

2.2. Portrait Relighting

Portrait relighting requires changing the illumination of a
portrait image or video while preserving the identity and
appearance of the subject. Previous works (e.g., [54]) used
One-Light-at-A-Time (OLAT) capturing systems to obtain
detailed portrait geometry and reflectance, which enabled
realistic relighting results. However, OLAT data is expen-
sive and difficult to acquire, thus limiting the applicability
of these methods. To overcome this limitation, some recent
works (e.g., [13, 32, 50, 57]) used synthetic data for training
and showed good generalization to real data.

Another line of research explored 3D-aware portrait
relighting, which leveraged the recent advances in un-
conditional 3D-aware portrait generation [5] by combin-
ing GANs [17] and NeRFs [27]. Concurrently, Jiang et
al. [20] and Ranjan et al. [35] modeled the lighting ef-
fects in generative models, either implicitly or explicitly,
and achieved impressive quality of image relighting. How-
ever, these methods are unsuitable for video relighting since
they require inverting each frame separately, which is time-
consuming and does not ensure temporal consistency, lead-
ing to flickering artifacts.

This paper proposes a novel method for real-time 3D-
aware video relighting, which builds on [20] and distills
its knowledge into a feedforward network with a temporal
enhancement module. Our method can produce realistic,
high-quality portrait relighting videos with various light-
ing effects and novel views. In contrast to our approach,
none of the existing portrait relighting techniques can han-
dle consistent and real-time novel view synthesis for a video
sequence.

2.3. GAN Inversion

GAN inversion aims to find a latent representation in a pre-
trained model’s latent space that can reconstruct a given im-
age with its generator. Existing GAN inversion methods
can be divided into optimization-based, learning-based, and
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Figure 2. The pipeline of our method. Given a portrait video shown on the left side, we embed each video frame into an albedo tri-plane
and a shading tri-plane using Dual-Encoders. For example, for frame Fj, we predict the albedo tri-plane 7. Next, we use the estimated
lighting condition L and the albedo tri-plane T to predict the shading tri-plane T that models the illumination effects on the face. Then
we feed T& and T along with the tri-planes predicted from previous n frames into two transformer models C'4 and Cs to enhance the
temporal consistency. The two transformers use cross-attention to cooperate for information sharing and alignment between the albedo and
shading branches. We add the predicted residual to T and T¢ as Tf;, Té for better temporal consistency. Finally, we use T}; and Tg to
condition the volumetric rendering process, producing depth, albedo, shading, color, and super-resolved images.

hybrid approaches.

Optimization-based methods minimize reconstruction
errors for high-quality results but are slow, as seen in [51]
and [47], since these methods require end-to-end optimiza-
tion across numerous video frames. Learning-based meth-
ods (e.g., [43]), using an encoder, are faster but at the cost
of lower-quality reconstruction quality. With recent trends
of predicting richer information from input images, Yuan
et al. [53], Bhattarai et al. [3], and Trevithick et al. [44]
propose to predict a tri-plane from input images, striking a
good balance between quality and efficiency. Hybrid meth-
ods (e.g., [2, 15, 36, 52]) combine optimization and learn-
ing, enhancing both quality and efficiency. Nevertheless,
their practical utility is hindered because they still require
minutes to hours to process a video clip, preventing real-
time applications.

Among these methods, only pure learning-based meth-
ods have the potential for real-time applications. Based on
the idea of LP3D [44], we propose a novel learning-based
method for video inversion, which predicts tri-plane repre-
sentations from input images instead of latent codes. Tri-
plane representations contain richer information than latent
codes and can better capture the geometry and appearance
variations of the input images. Unlike previous learning-
based methods, such as [3, 43, 44, 53], that are designed
for single-image inversion and thus neglect the temporal in-
formation in videos, we introduce a temporal consistency
network to enforce smooth transitions between consecutive
frames. Our method can achieve high-quality and consistent
video inversion in real time with relighting capabilities.

3. Methodology

In this section, we give the preliminaries of the pre-trained
generator in Sec. 3.1. Then, we describe how we achieve
real-time video inversion and enable lighting control by us-
ing two tri-planes in Sec. 3.2. Next, we introduce how to en-
hance temporal consistency for video inputs in Sec. 3.3. Fi-
nally, we introduce our training objectives in Sec. 3.4. The
overall pipeline is illustrated in Fig. 2.

3.1. Preliminaries

Our work distills knowledge from a pre-trained 3D-aware
generator G trained based on the GAN framework [20], to
enable real-time synthesis and lighting control of multiview
consistent video frames. Given a latent code w in an albedo
latent space, an albedo tri-plane is first predicted through
a generator and then fed into a convolutional network [22]
to predict a shading tri-plane, which is additionally condi-
tioned on the second-order spherical harmonic (SH) coeffi-
cients L [34]. Both albedo tri-plane and shading tri-plane
are used to condition the neural rendering process given a
viewing angle. In this way, a realistic facial image I and its
corresponding albedo A can be generated, while allowing
the disentangled control of camera and lighting conditions.

3.2. Tri-plane Dual-encoders

We present dual-encoders (Figure 2) that can infer an albedo
tri-plane and a shading tri-plane from a single RGB im-
age. These two tri-planes are later rendered into a high-
resolution (512 x 512) RGB image I and an albedo im-
age A through a rendering process identical to [20]. Our



network extends the LP3D model [44], which encodes an
image into a tri-plane representation for neural rendering.
However, unlike LP3D, our network can produce two dis-
engangled tri-planes, allowing for dynamic adjustments of
lighting conditions from a single image. Our network con-
sists of two branches: one is Albedo Encoder E 4 for infer-
ring an albedo tri-plane that captures the shape and texture
of the scene, and another is Shading Encoder E's for infer-
ring a shading tri-plane that models the fine-grained illumi-
nation effects.

Albedo Encoder. Inspired by LP3D [44], we use an en-
coder based on Vision Transformer (ViT) [12] in the albedo
branch for albedo prediction. The input to our method is
a single RGB image F' with an overlaid coordinate map,
forming a 5-channel image. We used a DeepLabV3 [7] net-
work pretrained on ImageNet [8] to extract low-frequency
features from the input image, which capture global con-
text and semantic information. We then feed these fea-
tures into a ViT-based encoder [44] that further enhances
the global features by self-attention mechanisms to get fi-
nal low-frequency feature fj,,,. We also use a convolutional
neural network (CNN) [44] to extract high-frequency fea-
tures fhign from the input image F', which capture the fine
details and edges. We feed fy;gn into another ViT-based en-
coder [44], along with the low-frequency features fioy to
predict the final albedo tri-plane T .

Shading Encoder. To predict the shading tri-plane T's, we
use a CNN with additional StyleGAN [22] blocks, condi-
tioned on the albedo tri-plane T4 and the lighting condition
L. We represent the lighting condition L as second-order
SH coefficients mapped using an off-the-shelf mapping net-
work [20]. This design ensures that the shading tri-plane Ts
are spatially aligned with the albedo tri-plane T4 for realis-
tic reconstruction and relighting.

We employ a three-stage training strategy for our en-
coder. In the initial stage, we adhere to the procedure out-
lined in [44] to train the albedo encoder, focusing on re-
constructing the provided portrait without considering the
disentanglement between albedo and shading. In the sec-
ond stage, we independently train the albedo branch and
the shading branch. In the third stage, we integrate the two
branches and train them jointly. This strategic approach en-
hances convergence and performance compared to training
both branches simultaneously from the outset.

3.3. Temporal Consistency Network

We aim to invert a video sequence into a sequence of tri-
planes, which are low-dimensional representations of the
3D scene structure, texture, and illumination. However,
simply inverting each video frame independently leads to
temporal inconsistency and causes flickering artifacts in the
rendered images.

To address this problem, we propose a temporal consis-

tency network (Figure 2), which exploits the rich tempo-
ral information in the video sequence to enhance the tem-
poral consistency of the tri-plane features. The network is
composed of two transformers, denoted as C'4 and Clg, ac-
companied by an additional convolutional neural network
(CNN). Our design is inspired by [24], yet distinctively em-
ploys features at the tri-plane level. Both transformers take
in corresponding predicted tri-planes for n frames, and pre-
dict residual tri-planes for each frame ¢ to be added to the
original tri-planes as TZ,, Tg The residual tri-planes cap-
ture the temporal variations and dynamics of the subject and
help to eliminate the flickering effects. Moreover, this net-
work uses cross-attention between the albedo branch and
the shading branch, which allows them to interact with each
other for better temporal consistency.

We use synthetic data to train such a temporal consis-
tency network. Similar to training the tri-plane encoder, we
generate synthetic data with augmentation techniques tai-
lored for temporal consistency. This involves interpolating
between two randomly selected camera views to simulate
realistic video sequences. Additionally, random noise is
added to both tri-planes to emulate flickering effects. This
process for generating synthetic data provides us with a
ground truth for de-flickering, devoid of errors stemming
from inaccurate camera and lighting estimations. We empir-
ically find that such a temporal consistency network trained
on dynamic viewing angles and artificial noises make our
method robust towards more diverse temporal dynamics in
the real-world case, such as dynamic expressions.

3.4. Training Objectives

We first train our tri-plane dual-encoders to converge, and
then train the temporal consistency network. Specifically,
the tri-plane dual-encoders are trained with loss defined as
follows:

Albedo Loss. This loss quantifies the dissimilarity be-
tween the predicted and ground-truth albedo images and tri-
planes. Specifically, the albedo loss is defined as:

Acalbedo = HA - AHI + HAT - Ar”l + £1pips<Aa A)

+ Elpips(ATa Ar) + )‘QHTQ - Tnga
where Liyips denotes a perceptual loss [55], A, A, and

ey

Tg are the rendered albedo images in the raw and super-
resolution domains, and the predicted albedo tri-plane, re-
spectively. A, A,, and T}, are the corresponding ground
truth. The parameter )\, decreases from 1 to 0.01 after the
initial 8 million iterations.

Shading Loss. This loss measures the disparity between
the predicted and ground-truth shading features. It is de-
fined as R R

Lipading = |15 = S[l1 + As[|Ts — Tsl1, 2
where S and T are the predicted shading maps and the
shading tri-plane, respectively, and S and Ts are the corre-



sponding ground truth. The parameter \; decreases from 1
to 0.01 after the initial 8 million iterations.

RGB Loss. This loss assesses the dissimilarity between
the predicted and ground-truth composed images in the raw,
super-resolution, and feature domains. In addition to a per-
ceptual loss [55], an identity loss [9] is employed to retain
the appearance and identity of facial images. The RGB loss

is defined as_ R R
Lugy = [[1 = Il + | = Lefly + Lapips(1, 1)

+ Elpips(L«,L«) + /\f||]f — If||1 + Lig(I, 1),
where 1 , fr, and I, ¢ are the predicted RGB images in the
raw, super-resolution, and feature domains, respectively,
and I, I, and Iy are the corresponding ground truth. The
parameter )\ ; decreases from 1 to O after the initial 8 million
iterations.

3)

Adversarial Loss. This loss enforces the indistinguisha-
bility of the predicted RGB images from the source RGB
images in both the raw and super-resolution domains. A
dual discriminator D from [20] is utilized to discriminate
between the predicted and real images. The adversarial loss

is defined as
‘Cadv = _(E[logD(I)] + E[logD(L)} (4)
+E[log(1 — D(I))] + E[log(1 — D(,))]).

Our final loss function for training the dual-encoders is

the weighted sum of the above losses:
L= /\albedoﬁalbedo + /\shadingﬁshading ( 5)
+ )\rgb['rgb + )\advﬁadw

where Ajibedos Ashading> Argb and A,qy are the weights for each
loss term. Initially, we set Agjpedo = Ashading = Argp = 1
and A4y = 0. After the first 16M iterations, we activate
the adversarial loss by setting A\,qy = 1 and keep the other
weights unchanged.

For training our temporal consistency network, besides
a reconstruction loss, we use an additional temporal loss
similar to [6, 24] to ensure consistency in both short-term
and long-term contexts. Specifically, this loss is defined as
follows:

Temporal Consistency Loss. Without losing generality,
we assume current frame index is ¢ for discussion. The
short-term temporal loss is computed by calculating the op-
tical flow f between consecutive input frames F; and F;;_1.
Subsequently, the previous outputs are warped to align with
the current frame. Formally, the short-term temporal loss is
defined as:
Eshort = M; Z
wef{l, i A A, S}
where ¢ I A" Al and S’ represent the currently pre-
dicted RGB image, raw RGB image, albedo image, raw
albedo image, and shading image, based on the summa-
tion of original tri-planes and predicted residual tri-planes,
respectively. Similarly, *=1 [i=1 Ai=1 Ai=1 and §~!
are the corresponding frames warped using fs from the

£lpips (wi - (’T]i_l)v (6)

previous time step. The mask M is defined as M! =
exp(||[I* — I"1||1), which mitigates errors introduced dur-
ing the warping process.

For the long-term temporal loss, the same procedure is
applied, but with the temporal index ¢ — 1 replaced by 1.
In other words, this process ensures temporal consistency
between the first frame and the current frame. Similarly,
the long-term temporal loss is defined as

Elong = MlZ Z ‘Clpips(wl - &1)7 (7)
we{l,i.,AA,,S}
where "1 Ii=1 Ai=1 Ai=! and Si~! are the corre-
sponding frames warped using f; from the first time step.
The mask M} is defined as M} = exp(||I* — I'||;).

Our final loss function for training the temporal consis-
tency network is .

L‘tempora] = )\shortﬂshort+)\long£10ng+)\lpips£lpips(Iza IZ)- (8)
where I' denotes the ground-truth image, Lipips promotes
the reconstruction and Aghort = 1, Aong = 1, Apips = 1.

4. Experiments

In this section, we show our experimental setup and discuss
the results of our experiments. The comparisons with alter-
native methods, and ablation study show the effectiveness of
our method and its superiority to the alternative approaches.

4.1. Implementation Details

Datasets. We evaluate our method on the portrait videos
from INSTA [58], which consist of 31,079 frames in total.
Following [48], we crop the images and videos to focus on
the faces. We estimate the camera pose for each frame using
the technique from [5]. We also extract the lighting condi-
tions with DPR [56].

Training Details. As to the tri-plane dual-encoders, we
first freeze the generator and train only our encoder. Af-
ter the first 16M iterations, we unfreeze the albedo de-
coder, shading decoder, and super-resolution module and
train them jointly with the dual-encoders. As to the tem-
poral consistency network, we sample camera poses from
normal and uniform distributions for each person. We use
two views for each person. For the first view, we sam-
ple the focal length, camera radius, principal point, cam-
era pitch, camera yaw, and camera roll from N(18.837,1),
N(2.7,0.1), N(256, 14), U(—26°,26°), U(—49°,49°), and
N(0,2°), respectively. For the second view, we sample
the camera pitch and camera yaw from U(—26°,26°) and
U(—36°,36°), respectively and fix the other parameters to
18.837 (focal length), 2.7 (camera radius), 256 (principal
point), and 0 (camera roll).

We train our network using the Adam [23] optimizer
with a learning rate of 0.0001, except for the Transformer
parameters, which have a learning rate of 0.00005. It takes
about 30 days to train our network on 8§ NVIDIA Tesla
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Figure 3. Comparison of video relighting quality on novel views. Our method produces more realistic and consistent results than the

baseline methods introduced in Sec. 4.2.
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Figure 4. Comparison of video relighting quality in the input
view. We compare our method with three methods: SMFR [19],
DPR [56], and ReliTalk [33]. We show the input video frames in
the first row and the relighted results under different lighting con-
ditions in the remaining rows. Our method produces more realistic
and consistent results than other methods, especially under chal-
lenging conditions like the side lighting.

V100 GPUs with batch size 32. More details can be found
in the supplementary material.

Inference Speed. We employ a single RTX 4090 GPU
during inference. The average inference time for each
frame is 30.32 milliseconds, resulting in an average of 32.98
frames per second (fps), excluding secondary tasks such as

image I/O and data transfer between the CPU and GPU.

4.2. Quantitative Evaluation

To evaluate the performance of our method, we compare it
with other methods capable of 3D-aware portrait relighting.
However, none existing techniques can achieve this goal in
a single step, so we have to combine different methods to
construct the baselines. Specifically, we use the follow-
ing methods. B-DPR uses PTI [36] to invert each frame
of an input video as a latent code of EG3D [5], allowing
for rendering novel views and relighting using DPR [56].
B-SMFR uses the same inversion and rendering method as
B-DPR, but uses SMFR [19] to relight the rendered frames
from novel views. B-E4E uses an off-the-shelf encoder
from a state-of-the-art NeRF-based face image relighting
method [20] to invert each frame of the input video and re-
light it from novel views, which achieves real-time perfor-
mance at the cost of quality. B-PTI uses the same encoder
as B-E4E, but we apply the PTI [36] to fine-tune a single
generator for each input video. This improves the recon-
struction quality but takes more training time than B-E4E.
We evaluate the performance of different methods regarding
reconstruction quality, novel view relighting quality, iden-
tity perseverance, and time cost.

Novel View Relighting Quality. To evaluate the relight-
ing quality under novel views, we relight first 500 frames
from each video from [58]. We render each video from
three novel views and pair them with five distinct lighting
conditions, resulting in a total of 75,000 frames for a com-
prehensive comparison. Following [20], we adopt an off-
the-shelf estimator [14] to calculate the lighting accuracy
and instability. We use MagFace [26], different from the
one we use in training, to measure identity preservation be-
tween different views. To assess temporal consistency, we
use an optical flow estimator [4 1] to calculate warping error
(WE). This involves warping the preceding frame to align
with the current frame and measuring MSE loss. We also
compute the LPIPS between adjacent frames for an addi-
tional evaluation of temporal consistency. We list the time
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Figure 5. Comparison of relighting quality on the input view. We compare our method with six methods: Lumos [50], TR [31], NVPR [54],
SIPR-W [46], DPR [56] and SMFR [19]. We show the input image in the first column, the sphere renderings from the environment map in
the second column, and the relighted results in the remaining columns. Our method produces more realistic and consistent results than the
other methods.

Lumos [50]

Table 1. Quantitative evaluation using lighting error (LE), lighting
instability (LI), Identity Perservance (ID), Warping Error (WE),
LPIPS between consecutive frames and avarage time cost (Time)
on the INSTA [58] video dataset. We highlight the best score in
boldface and underline the second best.

LE| LI} D} WE]  LPIPS| Time(s) |
B-DPR 0.9093 03041 05222 0.0029  0.1015 200
B-SMFR  1.0929 03352 04479  0.0022  0.0626 200
B-E4E 0.6384 01963 02892  0.0007  0.0306 02
B-PTI 0.8220 02630 04728  0.0049  0.1080 30
Ours 07710  0.2533  0.5396  0.0003  0.0159 0.03

each method takes to relight a face. Table | summarizes
the quantitative evaluation results using the lighting error,
lighting instability calculated based on the lighting transfer
task introduced in [20], identity preservation (ID), and pro-
cessing time (Time) on the INSTA [58] video dataset. Our
method outperforms the baselines, demonstrating the sec-
ond lowest lighting error and instability, the highest identity
preservation, the lowest warping error and LPIPS, and the
lowest time cost.

Reconstruction Quality. To assess the quality of recon-
struction, we use four quantitative metrics: LPIPS [55],
DISTS [11], Pose Error (Pose), and Identity Preservation
(ID). We obtained and used the same test data as LP3D [44].

Input View Relighting Quality. We compare our method
with four state-of-the-art portrait relighting methods: SIPR-
W [46], TR [31], NVPR [54], and Lumos [50]. We follow
the same protocol as Lumos to obtain the results for compar-
ison. As shown in Table 3, our method achieves the lowest
Fréchet Inception Distance, suggesting more realistic out-
comes, and the highest Identity Preservation. For a visual
comparison, please refer to Figure 4, where our approach
yields the most realistic and natural results.

For the video input, we evaluate the relighting accuracy
and instability while performing the video relighting on the

TR [31]

NVPR [54] SIPR-W [46] DPR [56] SMFR [19]

Table 2. Quantitative evaluation using LPIPS, DISTS, Pose Accu-
racy (Pose), and Identity Consistency (ID) on 500 FFHQ images.
TEvaluated only using the face region. *Evaluated only using the
foreground on 2562 images. We highlight the best score in bold-
face and underline the second best.

LPIPS| DISTS] Pose] ID}

HeadNeRFT 2502 2427 0644 2031
LP3D' 1240 0770 0490 5481
Ours' 1746 1134 0323 7109
ROME? 1158 11058 0637 3231
LP3D? 0468 .0407 0486 5410
Ours? 1053 0835 0327 7201
EG3D-PTI 3236 1277 0575 4650
LP3D 2692 0904 0485 5426
LP3D(LT) 2750 1021 0448 5404
NFL-PTI 2332 1627 0228 6825
Ours 2400 1282 0365 .7015

Table 3. Quantitative evaluation on the cropped test set of
FFHQ [21]. We highlight the best score in boldface and under-
line the second best.

SIPR-W NVPR TR Lumos SMFR Ours

FID| 87.39 65.23 55.30 55.18 51.16 45.08
IDT 0.6442 0.7242  0.6193  0.7374  0.6285  0.7711

input view. Following [20], we adopt an off-the-shelf es-
timator [14], which is different from the one [56] we use
during the inference time, to calculate the lighting accuracy
and the lighting instability. As shown in Table 4. Compared
to DPR, SMFR and ReliTalk, our method achieves the low-
est lighting instability and the second lowest lighting error.

4.3. Qualitative Evaluation

We conduct a qualitative evaluation on portrait videos from
[16] to demonstrate the effectiveness of our method.

Novel View Relighting Quality. Figure 3 shows our
method’s novel view synthesis capability under various
viewpoints and lighting conditions. Among the five meth-



Table 4. Quantitative evaluation using the lighting error, lighting
instability, and average time cost (Time) on the INSTA [58] video
dataset. We highlight the best score in boldface and underline the
second best.

Lighting Error/  Lighting Instability  Time ()|
DPR [56] 0.7600 0.2997 0.04
SMEFR [19] 1.1381 0.2895 0.06
ReliTalk [33] 1.2012 0.4060 0.20
Ours 0.7816 0.2841 0.03

Table 5. Ablation study on temporal consistency network. We
removed the temporal consistency network and calculate Light-
ing Error (LE), Lighting Instability (LI), Warping Error (WE) and
LPIPS between consecutive frames. We highlight the best score in
boldface.

LE| LI} WE]  LPIPS|
wioTCN 07707 02526  0.0006  0.0304
Ours 07710 02533  0.0003  0.0159

ods, our method preserves the lighting conditions of the ref-
erence images the most faithfully.

Input View Relighting Quality. Figure 4 presents the
video relighting results in the input view by our method
in comparison with three existing methods. Our approach
demonstrates superior accuracy in reproducing lighting ef-
fects, especially compared to existing non-3D-aware meth-
ods. This is particularly evident under challenging lighting
conditions, such as side lighting, where our method outper-
forms others in maintaining image quality.

4.4. Ablation Study

We perform an ablation study to evaluate the necessity of
each key component in our method.

Temporal Consistency Network. We remove the tempo-
ral consistency network and then compute lighting error and
lighting instability based on the lighting transfer task intro-
duced in [20]. We also evaluate the temporal consistency
based on the warp loss and LPIPS loss between consecu-
tive frames, which serve as a reliable approximation of hu-
man perception regarding temporal consistency, capturing
nuances like flickering effects. As shown in Table 5, the
absence of the temporal consistency network results in an
increase in warping error and LPIPS, signaling a decline in
temporal consistency.

Tri-plane Dual-Encoders Design. We remove the dual-
encoders (DE) and use an existing latent code encoder from
[20] instead. While this alternative design does achieve
real-time 3D-aware relighting, it comes at the cost of a sub-
stantial reduction in reconstruction quality, as visually de-
picted in Figure 6.

5. Conclusion, Limitations and Future Work

Conclusion. We introduced a real-time 3D-aware method
for portrait video relighting and novel view synthesis. Our
method can recover coherent and consistent geometry and

Condition 2
Figure 6. Albation study comparing our model with and with-
out the tri-plane encoders. The model without tri-plane encoders
replaces our tri-plane encoders with an existing latent space en-
coder. This replacement results in images that bear much less re-
semblance to the input person, indicating a lower level of identity
preservation.

Input Reconstruction Condition 1

relight the video under novel lighting conditions for a given
facial video. Our method combines the benefits of a re-
lightable generative model, i.e., disentanglement and con-
trollability, to capture the intrinsic geometry and appearance
of the face in a video and generate realistic and consistent
videos under novel lighting conditions. We evaluated our
method on portrait videos and showed its superiority over
existing methods in terms of lighting accuracy and lighting
stability. Our work opens up new possibilities for 3D-aware
portrait video relighting and synthesis.

Limitations. One of the limitations of our method is that
it fails to model glares on the eyeglasses, as shown in the
rightmost column of Figure 4. Future enhancements could
benefit from incorporating advanced reflection and refrac-
tion modeling techniques. Furthermore, our method does
not separate the motion information from the identity in-
formation, thus limiting its ability to perform video-driven
animation. This challenge might be addressed through the
integration of the latest advancements in talking head gen-
eration techniques.

Future Work. We are interested in extending our method
to handle more complex scenes, such as multiple faces, oc-
clusions, and full-body relighting. We also intend to explore
more applications of our method, such as face editing and
animation.
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A. Additional Results
A.1. Additional Qualitative Results

Figure B provides additional qualitative results generated
by our relighting technique from portrait videos. We en-
courage readers to refer to the supplementary video for a
more comprehensive visualization of our method.

A.2. Additional Comparisons

4

ID=0.4736

‘ Input Light DPR Ours
Figure A. Additional qualitative comparison between DPR and
ours. Our method consistently delivers portraits with more faithful
adherence to desired lighting conditions and enhanced realism.

We conduct a quantitative evaluation for both DPR [13]
and our method. It should be noted that DPR demonstrates
a considerably lower Fréchet Inception Distance (FID) and
a higher Identity Perseverance (ID). Specifically, the FID is
14.98 for DPR and 45.08 for our method, whereas the ID
is 0.8531 for DPR and 0.7711 for our method. However,
these metrics alone do not unequivocally indicate that DPR
generates more realistic results, as evidenced in Figure A.
The observed differences in FID and ID metrics can be at-
tributed to DPR’s underlying approach, which operates on
the LAB color format. Specifically, DPR selectively modi-
fies only the L channel while keeping the A and B channels
unchanged. This strategy results in pixel-wise aligned out-

*Corresponding author is Lin Gao

puts that closely match the original input. This pixel-wise
alignment may contribute to the lower FID and higher ID.
However, this approach may lead to a loss of color diversity
and realism. Additionally, fine-grained details, particularly
color-dependent features, may be inadequately captured, as
it neglects changes in the A and B channels.

B. Implementation Details

Shading Encoder. The shading encoder appends three
layers of Convolutional Neural Network (CNN) with
LeakyReLU activation on top of two StyleGAN2 blocks,
enabling the synthesis of shading tri-planes directly condi-
tioned on both an albedo tri-plane and a specified lighting
condition.

Temporal Consistency Network. The proposed Tempo-
ral Consistency Network leverages a combination of self-
attention within a branch and cross-attention across two
branches to enhance temporal consistency in processing
tri-plane sequences. The network is specifically designed
to operate on n pairs of albedo tri-planes and shading
tri-planes, where we empirically set n to be 5 for opti-
mal performance. The architecture of the Temporal Con-
sistency Network comprises four 8-headed transformers
with 4 layers, with each transformer block having a hid-
den size of 512. To introduce non-linearities and en-
hance the expressive power of the network, additional CNN
blocks with ReLU activation are placed before and after the
transformer-based processing. These CNN blocks employ
a kernel size of 1 x 1.

Superresolution Module. We augment the superresolu-
tion module [1] by incorporating an extra convolutional
neural network (CNN) conditioned on a predicted albedo
tri-plane. In contrast to approaches such as [9], we refrain
from fine-tuning the backbone model. This strategic choice
not only saves time but also mitigates the risk of potential
model degradation during the fine-tuning process.

Data Preprocessing. For calculating camera pose, we
employ the method proposed by Deng et al. [2]. We imple-
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Figure B. Additional qualitative results obtained by applying our relighting technique to an input video through a lighting transfer task. The
reference image is displayed in the leftmost column, serving as a visual anchor, while the subsequent columns exhibit the corresponding

frames under distinct lighting conditions.

ment an exponential smoothing technique on the detected
five facial landmarks to mitigate errors introduced during
the keypoint detection process. This smoothing is applied
before image cropping and camera pose calculation.

Data Augmentation. In training the tri-plane dual-
encoders, we employ camera augmentation techniques sim-
ilar to those outlined in [9]. To train the temporal consis-
tency network, we randomly select two camera poses and

perform interpolation between them to simulate consecutive
frames.

Training. In the initial training stage, we adopt settings
from [9], exclusively activating the albedo branch. This
means that the model learns the intertwined representation
within the albedo tri-planes. In the subsequent stage, we
follow a fine-tuning approach inspired by [4]. Here, we
activate the shading branch to distill shading information
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Figure C. Our method is able to lift in-the-wild live stream to
relightable 3D faces. Captured portrait at each frame is recon-
structed, and rendered under a novel view and with a custom light-
ing condition for demonstration.

from the entangled albedo tri-planes. This refinement en-
sures that the albedo tri-planes exclusively contain albedo
information while the shading tri-plane encoder acquires
valuable insights into shading decomposition. To train the
albedo encoder, we freeze the shading tri-plane and replace
the predicted shading tri-planes with the corresponding
ground truth. After 32K training iterations, we freeze the
albedo tri-plane encoder, substituting the predicted albedo
with ground truth to exclusively train the shading encoder
for an additional 32K iterations. In the final stage, we
jointly train the albedo and shading tri-planes for 1.5M it-
erations. Furthermore, we unfreeze the albedo and shading
decoders, along with the super-resolution module, with the
intention of improving image quality in the overall system.
After the model converges, we freeze the dual-encoder and
train the temporal consistency network for 32K iterations.
This multi-stage training process allows for a nuanced and
comprehensive refinement of the model’s capabilities.
Inference. We leverage the benefits of mixed precision
and torch.compile across all network components during
inference, excluding the patch embedding layer of the Vi-
sion Transformer (ViT), tri-plane decoders, and volume
rendering. We sample 96 depth points per ray following
EG3D [1]. Our model exhibits efficient resource utilization,
consuming less than 4GB of GPU memory.

C. Evaluation Details
C.1. Baselines

For all the baselines, we use official codes and pre-trained
checkpoints.

To construct our baselines using PTI [8], we modify the
official code release (https://github.com/danielroich/PTI) to
suit EG3D. We optimize one generator for each video clip,
which involves iterating over the latent code in YW+ space
of each frame for 500 iterations, followed by fine-tuning
the generator for a duration equivalent to 10 times the
number of frames. For PTI on NeRFFaceLighting, we

use the official code release and a pre-trained encoder
model  (https://github.com/IGLICT/NeRFFaceLighting),
which initiates the optimization process using the output
latent code in W space from the pre-trained encoder as
a starting point. The latent code is optimized for 500
iterations, and the generator is fine-tuned for another 500
iterations. Furthermore, the spherical harmonic coefficients
are optimized for an additional 100 iterations.

For DPR [13], we use the official code release and a pre-
trained model (https://github.com/zhhoper/DPR).

For SMFR [3], we use the official code release and a pre-
trained model (https://github.com/andrewhoul/Shadow-
Mask-Face-Relighting).

For ReliTalk [7], we use the official code release
(https://github.com/arthur-qiu/ReliTalk) to preprocess the
dataset and subsequently conduct training. To ensure con-
sistency, we tailor the training epochs according to the video
length, aligning them with the example provided by the au-
thor, i.e., more epochs for shorter videos. This meticulous
adjustment results in an identical number of training itera-
tions.

For comparison with SIPR-W [10], TR [6], NVPR [12],
and Lumos [11], we apply our method to the input pro-
vided by the authors of Lumos and then compare our output
images with those respectively provided by the authors of
SIPR-W, TR, NVPR, and Lumos. The comparison is also
demonstrated in the accompanying video for clear evalu-
ation. We observe a misalignment in the provided envi-
ronment maps due to different coordinate conventions. To
address this, we rotate environment maps by 90 degrees
(counter-clockwise when viewed from the positive Z-axis)
for alignment. However, a slight misalignment persists, as
our coordinate system is constructed on the front of the hu-
man face, whereas others use a world coordinate system. To
rectify this, we further adjust the environment map by con-
sidering the yaw angle of the human face, ensuring correct
lighting direction alignment. Additionally, we re-normalize
the extracted spherical harmonic (SH) coefficients to main-
tain consistency across comparisons. To ensure alignment,
we recrop their outputs and utilize the background masking
technique from [5] on our results.

D. Discussion

Ethical Considerations. While our method provides in-
novative capabilities in manipulating the viewpoint and
lighting conditions of a portrait video clip, it is essential
to acknowledge the potential for misuse. To counteract this,
using advanced image analysis tools, like fake image detec-
tors and image watermarking, can help detect and prevent
deceptive practices.



E. Application

Live-stream Video Relighting System As shown in Fig-
ure C, we introduce a real-time system to lift live-stream
video into relightable 3D faces. Users are allowed to freely
adjust the camera parameters and lighting conditions. A
live demonstration is recorded and shown in the accompa-
nying video. We run our system on two NVIDIA GeForce
RTX 3090 GPUs, and achieve 20 fps for rendering one view
due to the preprocessing and transmission overhead. This
performance ensures that users can seamlessly and interac-
tively relight and render their faces under novel views.
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