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Abstract—This paper introduces a one-stage deep uncalibrated photometric stereo (UPS) network, namely Fourier Uncalibrated
Photometric Stereo Network (FUPS-Net), for non-Lambertian objects under unknown light directions. It departs from traditional
two-stage methods that first explicitly learn lighting information and then estimate surface normals. Two-stage methods were deployed
because the interplay of lighting with shading cues presents challenges for directly estimating surface normals without explicit lighting
information. However, these two-stage networks are disjointed and separately trained so that the error in explicit light calibration will
propagate to the second stage and cannot be eliminated. In contrast, the proposed FUPS-Net utilizes an embedded Fourier transform
network to implicitly learn lighting features by decomposing inputs, rather than employing a disjointed light estimation network. Our
approach is motivated from observations in the Fourier domain of photometric stereo images: lighting information is mainly encoded in
amplitudes, while geometry information is mainly associated with phases. Leveraging this property, our method “decomposes”
geometry and lighting in the Fourier domain as guidance, via the proposed Fourier Embedding Extraction (FEE) block and Fourier
Embedding Aggregation (FEA) block, which generate lighting and geometry features for the FUPS-Net to implicitly resolve the
geometry-lighting ambiguity. Furthermore, we propose a Frequency-Spatial Weighted (FSW) block that assigns weights to combine
features extracted from the frequency domain and those from the spatial domain for enhancing surface reconstructions. FUPS-Net
overcomes the limitations of two-stage UPS methods, offering better training stability, a concise end-to-end structure, and avoiding
accumulated errors in disjointed networks. Experimental results on synthetic and real datasets demonstrate the superior performance
of our approach, and its simpler training setup, potentially paving the way for a new strategy in deep learning-based UPS methods.

Index Terms—3D reconstruction, photometric stereo, Fourier transform
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1 INTRODUCTION

PHOTOMETRIC stereo (PS) aims to recover the surface
normal of an object from diverse shading cues in multi-

ple images with different lighting conditions [1]. Compared
with geometric stereo methods, photometric stereo methods
can capture pixel-wise high-frequency details on textureless
surfaces. Therefore, PS plays a crucial role in recovering fine-
detailed surfaces, particularly in scientific and engineering
fields like cultural relics digitization [2], forensics [3], and
industrial detection [4].

Classic PS [1] assumes that only Lambertian (diffuse)
reflectance exists on the surface of the target object. How-
ever, real-world objects rarely exhibit pure Lambertian
reflectance, which impacts the linearly proportional rela-
tionship between images and surface normals. Previous
methods use complex reflectance modeling [5], [6], outlier
rejection [7], [8], or deep learning-based networks [9], [10]
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to handle the recovery of normals from non-Lambertian
surfaces. Mathematically, we express the non-Lambertian
property via the bidirectional reflectance distribution func-
tion (BRDF), depending on the material of the object. In this
case, the relationship between a measured pixel intensity o
and the corresponding surface point with normal n ∈ R3

being illuminated by lighting with direction l ∈ R3 and
intensity e ∈ R, observing from view direction v ∈ R3, i.e.,
the image formation model, can be expressed as

o = eρ(n,v, l)max(n⊤l, 0) + ϵ, (1)

where ρ stands for the BRDF and ϵ represents the global
illumination noise in images, such as cast shadows and
inter-reflections.

Calibrated photometric stereo (CPS) methods [12], [13]
rely on knowledge of the lighting direction (l) for each
image. However, calibrating the lighting directions involves
complex operations and relies on specialized instruments,
making it impractical for real-world applications. Con-
versely, uncalibrated photometric stereo (UPS) [14], [15]
can estimate surface normals without lighting informa-
tion, which however faces challenges in resolving the
geometry-lighting ambiguity, such as the Generalized Bas-
Relief (GBR) ambiguity [16]. Unfortunately, resolving the
geometry-lighting ambiguity usually requires the assump-
tion of a simplified Lambertian reflectance model [17], [18].
Although some methods [15], [19] can handle surfaces with
general BRDFs, they are restricted to a uniform distribution
of lighting directions.
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Fig. 1. Motivation: We observed that shape information and lighting information can be “decomposed” in the Fourier domain. Amplitude and phase
are generated by the Discrete Fourier Transform (DFT) and the compositional images are obtained by Inverse DFT (IDFT) [11]. (a) We swapped
the phase components of two photometric stereo images of different lighting directions of the same object “Buddha”. The compositional images
maintain similar illuminations as the original two. (b) We further swapped the phase components of two photometric stereo images with different
objects “Reading” and “Goblet”. The results produce two compositional images with exchanged objects.

Recently, deep learning-based UPS methods have
demonstrated impressive results in handling general re-
flectance surfaces without additional clues, owing to the
powerful capabilities of deep neural networks [20], [21],
[22]. UPS-FCN [20] is a representative method capable of
addressing the UPS problem without the explicit need to
learn lighting directions. However, the performance of UPS-
FCN falls short of expectations due to the complex coupling
among shading cues, encompassing unknown lighting di-
rections, surface normals, and reflectance properties, i.e., the
geometry-lighting ambiguity (GBR ambiguity [16]). There-
fore, almost all subsequent deep learning-based UPS meth-
ods [21], [22], [23], [24] adopt an explicit light estimation
strategy, which first estimates the lighting directions and
then maps the surface normals using both the estimated
lighting information and input images, namely two-stage
methods.

However, the two-stage network strategy brings some
other challenges. First, existing methods [21], [22], [24] con-
catenate the expanded lighting directions with the input im-
ages and use CNN-based encoders to approximately decou-
ple the features of surface normals. Although this approach
has achieved good results, the two-stage methods suffer
from training instability. These methods need to separately
train the light estimation network and normal estimation
network. In addition, as the two-stage light calibration
network and normal estimation network are disjointed, the
error in explicit light calibration will propagate to the sec-
ond stage and cannot be eliminated. Furthermore, current
deep UPS methods [21], [22], [23], [24] have to convert
the estimation of lighting direction from regression of an
exact vector to classification in a discretized space. This is
because classifying lighting directions into predefined bins
of angles is much easier than directly regressing the unit
vector itself. However, this conversion limits the learning of
accurate lighting directions. Therefore, these methods may
struggle to balance learning difficulty and accuracy, posing
challenges for effectively estimating surface normals.

To address the aforementioned challenges, we propose
a novel framework that utilizes a one-stage Fourier Embed-
ding network to handle UPS, namely FUPS-Net, eliminating
the need for explicit learning of lighting directions. Our
Fourier-based approach diverges significantly from existing

methods that process images in the spatial domain. Our
method is motivated by our observation of photometric
stereo images in the Fourier domain [11]. As shown in Fig. 1
(a), swapping the phases of two photometric stereo images
under different lighting directions yields two compositional
photometric stereo images with unchanged illuminated
lights. In contrast, as shown in Fig. 1 (b), swapping the
phase of photometric stereo images captured with different
objects results in the exchanged objects. These phenomena
suggest that, in photometric stereo images, lighting infor-
mation mainly resides in the amplitude, while geometry
information correlates with the phase (further discussion
is provided in Section 3.1). In other words, the geometry
and lighting can be represented by phase and amplitude
in the Fourier domain. Therefore, amplitude spectrum can
provide lighting features for the UPS network and implicitly
solve the GBR ambiguity [16]. The observations inspire the
main design of our framework, realized by the Fourier
Embedding Extraction (FEE) block (Section 4.1) and Fourier
Embedding Aggregation (FEA) block (Section 4.2), which
process the information of lighting and shape within a
Fourier-embedded one-stage network.

Furthermore, we found that the features from the Fourier
domain extract spatially global information because each
frequency component contains some information from the
whole spatial domain (further discussion is provided in
Section 3.2). Therefore, we propose a Frequency-Spatial
Weighted (FSW) block to extract global information in pho-
tometric stereo images (Section 4.3). This block is crucial
because long-range spatial context is essential for accurate
feature extraction, particularly for capturing shadows and
inter-reflections. The FSW block utilizes a Normalized High-
frequency (NHF) map to calculate weights for combining
the global Fourier frequency branch and the local spatial
branch. The NHF map effectively provides the fusion of
higher local spatial information and lower global Fourier
frequency information on flat regions of the object while
showing the opposite pattern in areas with cast shadows,
specular highlights, and complex structures.

In fact, our approach shares some similarities with recent
methods [25], [26] for the universal photometric stereo task,
both of which implicitly extract lighting information from
observations rather than learning specific lighting directions
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and intensities (e.g., environmental light, near-point light).
However, Universal PS methods [25], [26] are constrained
by minimal lighting variations due to the interacted lighting
extraction strategy. In contrast, our method leverages strong
prior knowledge from Fourier transform decomposition as
guidance, offering more robust implicit features.

Our method offers several advantages. Firstly, it avoids
the difficulty of explicitly learning exact lighting direc-
tions in previous UPS networks by implicitly decompos-
ing lighting and geometry information through the Fourier
transform. Secondly, we leverage the Fourier transform to
capture global information of the image with low compu-
tational cost. We conduct thorough ablation experiments
to demonstrate the effectiveness of the proposed blocks.
Furthermore, we demonstrate the performance of our FUPS-
Net in addressing the UPS problem across various bench-
mark datasets including DiLiGenT [27], DiLiGenT102 [28],
synthetic test data [29], and the real photoed Light Stage
Data Gallery dataset [30].

In summary, this paper focuses on establishing a data-
driven one-stage UPS network using the embedded Fourier
transform. Our contributions are outlined as follows:

• We first investigate the utilization of Fourier fre-
quency information in deep photometric stereo. This
approach is based on the observation that the light-
ing and geometry information of a photometric
stereo image can be represented by phase and am-
plitude in the Fourier domain.

• We introduce a one-stage Fourier-embedded UPS
network with FEE and FEA blocks. This network
implicitly learns lighting directions within a concise
end-to-end structure.

• We propose an FSW block to assign prior weights,
efficiently combining Fourier frequency features and
spatial features for improving surface normal recov-
ery.

• The proposed FUPS-Net offers a simpler one-stage
end-to-end training setup and faster running time,
while achieving superior results and avoiding the
accumulation of errors found in previous methods.

2 RELATED WORK

2.1 Calibrated Photometric Stereo (CPS)

Classic photometric stereo [1] assumes that only Lamber-
tian (diffuse) reflectance exists on the surface of the target
object, enabling shape recovery using the least squares
method. However, real-world objects seldom exhibit purely
Lambertian reflectance. Traditional photometric stereo algo-
rithms have addressed non-Lambertian photometric effects
through various approaches, including BRDF modeling [5],
[6], outlier region rejection [7], [8], and exemplar-based
techniques [31], [32]. Readers can refer to [27] for a com-
prehensive survey on these non-learning-based methods.

In recent years, deep learning-based methods have been
widely used in the context of photometric stereo [9], [10],
[20], [33], [34], [35], [36], [37]. DPSN [37] pioneered a fully
connected deep photometric stereo network for estimating
pixel-wise surface normals. However, it is limited to a fixed
number and sequential order of observations. To handle a

variable number of observations, some works have mapped
pixels into an observation map in a per-pixel manner [10],
[33], [38], while others have extracted global cues from
patches for estimation of normals in an all-pixel manner [9],
[20], [35]. Subsequent techniques [34], [36] have combined
both strategies to extract local and global features for more
effective estimation of normals. Recently, some works [39],
[40] have further applied the Transformer with the self-
attention mechanism [41] in the context of photometric
stereo, which aims to capture long-range context and facili-
tate the aggregation of features. For further details, surveys
by [42], [43] offer insights.

However, these approaches assume known lighting con-
ditions and cannot effectively handle uncalibrated photo-
metric stereo. Calibrating light sources can be a tedious pro-
cess, requiring professional devices and may be unavailable
in real-world applications. It would be more convenient for
the community if photometric stereo methods could operate
without the need for ground-truth lighting directions.

2.2 Uncalibrated Photometric Stereo (UPS)

UPS methods aim to automatically calibrate lighting condi-
tions, eliminating the need for explicit knowledge of light-
ing directions. However, solving UPS introduces geometry-
lighting ambiguity, such as GBR ambiguity [16], which is an
inherent inability due to the lack of light source directions.
To address this ambiguity, traditional methods have been
developed to provide additional knowledge, such as inter-
reflections [44], specular spikes [45], parametric specular
reflection [46], isotropic specular reflection [47], etc. How-
ever, these methods necessitate manual labeling of mirror-
like specularities for computation [45] or assume uniformly
distributed albedos [46]. These approaches either rely on un-
realistic assumptions or exhibit instability in their solutions,
leaving a gap in their applicability to real-world scenarios.

With the recent advancements in neural networks, deep
learning-based methods have achieved state-of-the-art per-
formance in addressing the UPS problem. These neural net-
work methods learn prior information for solving the GBR
ambiguity from a large amount of training data with ground
truth. UPS-FCN [20] first addresses the UPS problem with-
out the input of lighting directions. However, the perfor-
mance of UPS-FCN is limited because it cannot solve the
ambiguity without the learned lighting features. Later, Chen
et al. [21], [24] proposed two-stage networks, which first
estimate light conditions and then learn surface normals
with both lighting information and images, thereby solving
this ambiguity. Later advancements refined this pipeline by
employing a differentiable neural architecture search (NAS)
strategy to automatically discover the most efficient neural
architecture [22]. Additionally, uncalibrated neural inverse
rendering approaches were utilized to handle unknown
lighting conditions [23]. Li et al. [48] enabled the re-rendered
errors to be back-propagated to the light sources, refining
them jointly with the normals simultaneously.

However, previous learning-based UPS methods rely on
the explicit estimation of lighting directions to solve the GBR
ambiguity. While end-to-end multi-view uncalibrated meth-
ods [49] leverage information from multiple viewpoints to
achieve accurate 3D reconstruction, handling single-view
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uncalibrated photometric stereo (UPS) in a single-stage
framework remains an open challenge. As discussed in
Section 1, estimating lighting directions and using them as
input along with photometric stereo images may lead to
training instability and complicated training steps, as well
as the influence of discretized inaccurate lighting outputs.
In contrast, we propose a new framework that uses a one-
stage Fourier Embedding network to handle UPS, without
the need for explicitly learning of lighting directions. Our
method avoids the difficulty of explicitly learning exact
lighting directions in a two-stage network and physically
decomposes lighting and geometry information through the
Fourier transform, thereby alleviating the GBR ambiguity.

3 MOTIVATIONS

In this section, we provide more details to supplement the
observation we highlighted in Section 1. Firstly, we briefly
introduce the operation of the Discrete Fourier transform
(DFT) [11], which represents an integral transform F that
converts a spatial domain image O with resolution H ×W
into the frequency domain O, as follows:

F(O(h,w)) = O(u, v)

= 1√
HW

∑H−1
h=0

∑W−1
w=0 O(h,w)e−j2π( h

H u+ w
W v) (2)

where h,w and u, v represent the coordinates in the spatial
domain and Fourier domain, respectively, and j is the
imaginary unit. In the Fourier domain, O(u, v) is complex,
containing real and imaginary components, as follows:

O(u, v) = R(O(u, v)) + jI(O(u, v)), (3)

where R(O(u, v)) and I(O(u, v)) represent the real and
imaginary parts, respectively. Usually, the Fourier transform
O(u, v) is represented by polar form, represented by the
amplitude component A(O(u, v)) and the phase component
P(O(u, v)), to provide an intuitive analysis, as follows:

A(O(u, v)) =
√
R2(O(u, v)) + I2(O(u, v)), (4)

P(O(u, v)) = arctan

[
I(O(u, v))

R(O(u, v))

]
. (5)

3.1 Lighting-geometry decomposition via DFT
Our main motivation arises from observing the relation-
ship between photometric stereo images and the composi-
tional images, which have their phase components swapped
through DFT (F ) and IDFT (F−1). As shown in Fig. 1,
when we swap the phases of two images with different
illumination, the resulting compositional images almost pre-
serve the original lighting cues, as Ola shares the same
lighting with F−1(A(Ola),P(Olb)). Furthermore, when we
swap the phase of the input images with different ob-
jects, the compositional images also interchange the objects
(geometry), as OBuddha shares the same geometry with
F−1(A(OGoblet),P(OBuddha)). Therefore, we conclude that
the lighting information and geometry information can be
decomposed by the amplitude and phase in the Fourier
domain, respectively, to a certain extent. In other words, we
can obtain the lighting information and geometry informa-
tion approximately from amplitude and phase in the Fourier
domain, respectively.

In fact, our inference on photometric stereo images aligns
with Fourier theory [50], [51], [52], [53], [54], [55], where
the amplitude component reflects style information (e.g.,
illumination characteristics), while the phase component
represents semantic information (e.g., the geometry itself).
For example, in the Low-light Enhancement (LLE) task, the
amplitude component is considered as the lightness of an
image, while noises are revealed in the phase component
[52], [54], [55]. Supported by this, DFT-based LLE methods
enlarge the magnitude of its amplitude component and
denoise the phase component via the neural networks, sep-
arately. Similarly, we follow the basic conclusion in previous
works and extend it into the UPS task, in which illumination
and geometry can be “decomposed” to a certain extent
in the Fourier domain. Therefore, the implicit features of
lighting can be extracted from the amplitude component,
which enables the realization of the one-stage network for
UPS via the Fourier transform.

3.2 Global information in DFT
Our second motivation stems from the definition of the
Fourier transform as illustrated in Eq. (2). It can be observed
that the Fourier transform F(O(h,w)) = O(u, v) describes
the image O in the frequency in terms of its amplitude
and phase at each of its constituent frequencies. Every
pixel in the spatial domain also contributes to a frequency
component in the Fourier domain. That is to say, each com-
ponent in the frequency domain contains some information
from the entire spatial domain [11], [52], [54]. In the UPS
task, O(u, v) contains global long-range spatial context cues
such as cast shadows and inter-reflections under specific
directions. These global cues are significant for UPS surface
normal estimation. First, global features (e.g., cast shadows)
provide additional information on lighting directions. Sec-
ond, the local shadows and specular highlights suffer from
unreliable shading cues because of the under/overexposed
values, which need the assistance of global information.
Therefore, we will leverage the global properties of Fourier
transform and combine them adaptively with local spatial
information to recover further details.

4 PROPOSED METHOD

Based on the analysis in Section 3, we propose a deep
Fourier Uncalibrated Photometric Stereo Network (FUPS-
Net) with a one-stage pipeline, as shown in Fig. 2, lever-
aging the decomposition ability of the Fourier transform in
photometric stereo images. In this section, we first introduce
the structure and then delve into the details of each module.

As shown in Fig. 2, we design a two-branch structure
consisting of the main branch and the auxiliary branch.
The swapped compositional images in Fig. 1 are noisy and
blurry, indicating that the decomposition in the Fourier
domain is imperfect. Therefore, we also extract features from
the spatial domain to assist in learning surface normals. The
success of two-branch networks in various vision tasks [57],
[58] is attributed to different focuses on its specific informa-
tion processing procedure at different branches. By utilizing
the distinct information from each branch in processing and
appropriately combining them later, comprehensive infor-
mation can be harnessed to significantly enhance surface
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Fig. 2. Overview of FUPS-Net for surface normal estimation. The main branch takes the original images as input, which comprises five Fourier
Embedding Extraction (FFE) blocks along with a Fourier Embedding Aggregation (FEA) block. Meanwhile, the auxiliary branch takes the normalized
images as input and passes them to encoders, then aggregated by a Multi-head Attention Pooling (MAP) module [56]. Then, a frequency-spatial
weighted (FSW) block is designed to adaptively combine the global Fourier frequency feature and local spatial feature, to further recover the details.

normal estimation performance. Furthermore, our FUPS-
Net is a multi-input-single-output (MISO) network, because
deep photometric stereo networks have to handle a variable
number of input images.

The main branch of FUPS-Net takes original photomet-
ric stereo images M1,M2, . . . ,MX as inputs, while the
auxiliary branch uses normalized images M ′

1,M
′
2, . . . ,M

′
X

as inputs to assist the learning process. Motivated by the
observation in Section 3, we propose the Fourier Embedding
Extraction (FEE) block and the Fourier Embedding Aggre-
gation (FEA) block for handling features in the Fourier
domain. We detail these two key components in Sections
4.1 and 4.2. Specifically, the main branch comprises FEE
blocks, which are organized in a residual manner [59], and
incorporates two downsampling operations using bilinear
interpolation. In addition, an FEA block is employed to
manage a variable number of extracted frequency and spa-
tial features. Subsequently, we propose using a frequency-
spatial weighted (FSW) block to adaptively combine the
global frequency feature and local spatial feature (see details
in Section 4.3). Last, a 24-layer DenseNet module with four
Dense blocks [60] is employed, followed by a Decoder
structure to regress the estimated surface normals [20].

In the auxiliary branch, the normalization operation [9]
is initially applied to alleviate the influence of spatially-
varying BRDFs. This step is crucial as the CNN-based
framework operates on patch-level inputs and is trained
with a homogeneous BRDF. The encoder in the auxiliary
branch has the same structure as the counterpart in PS-
FCN [20]. However, the aggregation model, which merges
a flexible number of features into one, differs from previous
all-pixel-based photometric stereo networks [9], [20], [22],
[35]. We introduce the Multi-head Attention Pooling (MAP)
module [56], inspired by its applications in [25], [40]. This
module enables us to reduce the number of elements in the
set from an arbitrary dimension X to one by incorporating
a learnable query Q, as opposed to solely retaining the max-
imum value as in [20]. Therefore, the MAP [56] serves as a

global fusion method that considers all feature distributions
for surface normal estimation.

Note that the FEE blocks in the main branch, along with
the downsampling and 1 × 1 convolutional layer (Conv in
Fig. 2) to adjust the spatial and channel dimensions, are
concatenated with the features of the auxiliary branch at
different scales, as illustrated in Fig. 2. This design facilitates
the integration of global information in the spatial and
channel dimensions. On the one hand, the output of the
auxiliary branch maintains 1/4 of the original resolution,
while the concatenated features in the main features are 1/2
and 1/4 of the original resolution. Consequently, combining
the output of the auxiliary branch with different receptive
fields provides global information in the spatial domain.
On the other hand, the output of the auxiliary branch
aggregates features from all shading cues from different il-
lumination directions, while the features in the main branch
are extracted from a single photometric image. Therefore,
combining the output of the auxiliary branch with the
main branch features integrates information from both local
and global cues, thereby enriching the channel domain.
This approach enhances the network’s capability to capture
comprehensive information for surface normal estimation.

4.1 Fourier Embedding Extraction (FEE) Block
In Section 3, we found that geometry information and
lighting information can be partially decomposed through
the Fourier transform. Therefore, we propose using the
FEE block for simultaneous feature extraction on amplitude
and phase in the Fourier domain, inspired by the recent
success of deep Fourier networks [52], [53], [54], [55], along
with feature enhancement in spatial domain. As shown
in Fig. 3 (a), the input features are split into the Fourier
and spatial domains. Discrete Fourier Transform (DFT) is
utilized to transform the input to the frequency domain,
where the input is decomposed into its amplitude compo-
nent (A) and phase component (P). These components then
pass through two 3 × 3 convolutional layers with Leaky
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ReLU activation, before being recombined using Inverse
Discrete Fourier Transform (IDFT). In the spatial domain,
we enhance the features using an efficient Half Instance
Normalization (HIN) model [57], which is connected in
parallel with a 3 × 3 convolutional layer, operating in a
residual manner [59].

As discussed in Section 3, the processing of information
in the Fourier domain allows for the capturing of global
frequency representations, while convolutional layers pri-
marily extract local representations in the spatial domain.
Therefore, our FEE block utilizes an interactive method to
combine these two representations. Specifically, we interact
with the output features from the first Fourier domain
operator Ff1 and the first spatial domain operator Fs1 as
follows:

Ff2in = Ff1 +Ws(Fs1), (6)

Fs2in = Fs1 +Wf (Ff1), (7)

where Ws(·) and Wf (·) represent a 3 × 3 convolutional
layer, and Ff2in and Fs2in represents the interacted features
for the second Fourier domain operator and spatial domain
operator, respectively. The subsequent operations follow the
same formulation as the first ones. Finally, we concatenate
them followed by 1 × 1 convolutional layer to adjust the
channel dimensions. To further enhance feature representa-
tion, we employ skip connections (element-wise addition)
to combine the input feature with the output, creating a
residual structure [59].

4.2 Fourier Embedding Aggregation (FEA) Block

As previously mentioned, FUPS-Net is a MISO network be-
cause photometric stereo needs to handle a variable number
of input images. Managing this variability necessitates an
additional fusion model to consolidate variable amount fea-
tures into a representation with a fixed number of channels.
This requirement arises because CNN-based networks lack
intrinsic capabilities to manage variable number of inputs
during both training and testing phases [9]. To address
this limitation, we further propose the Fourier Embedding
Aggregation (FEA) block to output aggregated features with
a fixed number of channels for backpropagation.

As shown in Fig. 2 and Fig. 3 (b), each main branch
feature is concatenated with the global feature from the
auxiliary branch before processing. The aim of this design
is to enhance the fusion of global information across both
spatial and channel dimensions and to mitigate information
loss during aggregation operations. Each input is decom-
posed into Ai and Pi, i ∈ {1, 2, · · · , X}, suding DFT.
Subsequently, these components are subjected to two 3 ×
3 convolutional layers with Leaky ReLU activation (similar
to FEE block). MAP [56] is then adopted for A1 to AX , and
P1 to PX . Compared to the previous max pooling strategy
[20], it serves as a global fusion method that considers all
feature distributions. The aggregated amplitude and phase
features from MAP are further aggregated by using IDFT.
In the FEA block, we also incorporate information from
the spatial domain to complement the information in the
Fourier domain, which shares the same structure as that in
the FEE block and is also aggregated using MAP. Conse-
quently, we eventually obtain two aggregated features from

the FEA block: the spatial feature Fspatial and the frequency
feature FFourier.

4.3 Frequency-spatial Weighted (FSW) block
The FEA block outputs two aggregated features: one from
the spatial domain, denoted as Fspatial, and the other from
the Fourier domain, denoted as FFourier. As depicted in Eq.
(2), each single feature in the Fourier domain encompasses
information from the entire spatial domain. Consequently,
FFourier captures global information, including long-range
context cues such as shadows and inter-reflections. Given
that photometric stereo images may contain shadows and
inter-reflections that influence local shading cues, captur-
ing long-range context becomes crucial for accurate feature
extraction. To fully leverage both the global properties of
frequency information and the local features of spatial in-
formation, we introduce the Frequency-Spatial Weighted
(FSW) block. This block adaptively combines Fspatial and
FFourier to optimize feature integration.

In the FSW block, we first design a Normalized High-
frequency (NHF) operation to calculate the NHF map,
which serves as the weight to merge the global frequency
branch and the local spatial branch. Specifically, the NHF
map Ω is computed as follows:

M̂ ′
i = blur(M ′

i), (8)

Di = abs(M ′
i − M̂ ′

i), (9)

Ωi = M̂ ′
i ./Di, (10)

Ω = average(Ω1,Ω2, . . . ,ΩX), (11)

where M ′
i represents the ith normalized photometric stereo

image [9], blur(·) denotes Gaussian blur with an empirically
set kernel size of 9 × 9, abs(·) computes the absolute value,
(·)./(·) performs elementary division, and average(·) stands
for average pooling aggregation. Consequently, M̂ ′

i denotes
the image blurred via the Gaussian blur kernel, exhibiting
increased blur effect in high-frequency regions, such as
specular highlights, shadows, and crinkle structures. As a
result, the absolute difference Di in these regions has larger
values, while smaller values in its counterparts Ωi. Eqs. (8),
(9), and (10) constitute the NHF operation, as depicted by
the purple box in Fig. 4. To handle the flexible number
of input images and integrate all information, we further
utilize average pooling to aggregate an arbitrary number
of Ω1,Ω2, . . . ,ΩX into a single NHF map, denoted as Ω.
Lower values in Ω correspond to surface positions with
more long-range-related regions, requiring additional global
information for reference. Conversely, higher values in Ω
represent flat or clear shading cue regions with fewer global
effects. Therefore, we argue that regions characterized by
lower values in the NHF map tend to be processed within
the Fourier feature FFourier, while regions with higher val-
ues in the NHF map are inclined to be processed within the
local spatial feature Fspatial. This is further demonstrated in
the object “Reading” in Fig. 4, where the dark regions in Ω
represent the areas of cast shadow and specular highlight.

Consequently, as illustrated in Fig. 4, we propose to
integrate the global Fourier feature and the local spatial
feature based on the NHF map Ω (normalized to [0, 1]) and
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its counterpart 1−Ω. Before integration, the features Fspatial

and FFourier undergo two 3 × 3 convolutional layers with
Leaky ReLU activation, and the maps Ω and 1 − Ω are
down-sampled to match the size of the features Fspatial and
FFourier. The integration can be expressed as follows:

Fint = Ω⊙ Fspatial + (1−Ω)⊙ Ffourier, (12)

where Fint is the output feature. Finally, as shown in Fig. 2,
we employ a 24-layer dense connected module comprising
four Dense blocks [60], followed by a decoder to regress the
estimated surface normals with an L2-normalization layer
[9].

4.4 Learning procedures
During training, we optimize the proposed FUPS-Net by
minimizing the following loss function L, as follows:

L = ∥1− Ñ ⊙N∥1+0.1×∥VGG(Ñ)−VGG(N)∥2, (13)

where N represents the ground truth and Ñ stands for
the estimated surface normals. The first term denotes the
commonly used cosine similarity loss, with the symbol ⊙
representing the dot product operation. If the estimated sur-
face normals Ñ exhibit a similar orientation to the ground-
truth N , Ñ ⊙ N will approach 1, causing the first term
to tend towards 0. In the second term, we incorporate a
perceptual loss to enhance high-frequency details [61], with
the weight factor empirically set to 0.1. The perceptual loss
is computed using the pre-trained VGG-19 network, which
is supervised at four scales.

FUPS-Net is implemented using PyTorch. We employ
the Adam optimizer with default settings (β1 = 0.9 and

β2 = 0.999) on an RTX 4090 GPU with 24GB memory. The
initial learning rate is set to 0.002 and halved every 5 epochs.
We train FUPS-Net using a batch size of 32 for 40 epochs.
During training, we utilize 32 input images, each sized at 64
× 64. It takes approximately 20 hours to train our FUPS-Net
and 9 seconds to test one object in the DiLiGenT dataset [27],
with 96 input images. Note that the number of input images
and their size can be flexibly adjusted during testing. Our
network is trained on publicly available synthetic Blobby
and Sculpture shape datasets [62], utilizing rendered photo-
metric stereo images provided by [9]. The dataset consists
of 85,212 samples, with each sample comprising 64 images
captured from various lighting directions sampled from the
upper hemisphere. Among these images, 99%, or a total of
84,362 samples, are utilized for training FUPS-Net, while
the remaining 852 samples are employed for validation
purposes.

5 EXPERIMENTAL RESULTS

To verify the quantitative accuracy of the estimated surface
normals, we use the mean angular error (MAE) in degrees,
calculated as follows:

MAE =
1

U

U∑
p

cos−1 (ñp · np) , (14)

where U is the total number of pixels in the surface area,
and ñp and np are the surface-normal vector at pixel p of
the ground-truth Ñ and the estimated surface normals N ,
respectively.

5.1 Ablation Studies
We conduct ablation studies to analyze the effectiveness
of the main components of our design. Table 1 presents
the quantitative comparison of the ablated models on the
validation set. We report the average MAE across 852 sam-
ples, each with 64 input images. Our complete model is
denoted as #0. First, we ablate the FEE block, including
removing the Fourier domain representation (#1), removing
the spatial domain representation (#2), and utilizing the
Fourier and spatial domain representations once without
interactive combination (#3). We then evaluate the FEA
block by removing the Fourier domain representation(#4),
removing the spatial domain representation (#5), excluding
the concatenation of the global feature from the auxiliary
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TABLE 1
Quantitative comparison of ablation studies on our FUPS-Net, in terms
of average MAE in degrees, on the validation set, where FD stands for
Fourier domain, SD for Spatial domain, AB for Auxiliary branch, AP for
Average pooling, MP for Max pooling, A for Amplitude component, and

P for Phase component.

# FEE block FEA Block FSW Block MAE (◦) ↓FD SD FD SD AB AP MP
0 ✓ ✓ ✓ ✓ ✓ ✓ 5.36
1 ✓ ✓ ✓ ✓ ✓ 5.87
2 ✓ ✓ ✓ ✓ ✓ 5.52
3 1 × 1 × ✓ ✓ ✓ ✓ 5.59
4 ✓ ✓ ✓ ✓ ✓ 6.81
5 ✓ ✓ ✓ ✓ ✓ 5.74
6 ✓ ✓ ✓ ✓ ✓ 5.77
7 ✓ ✓ ✓ ✓ 6.89
8 ✓ ✓ ✓ ✓ 5.95
9 ✓ ✓ ✓ ✓ ✓ ✓ 5.50

10 ✓ ✓ ✓ ✓ ✓ 5.73
11 A ✓ A ✓ ✓ 6.39
12 P ✓ P ✓ ✓ 7.15
13 A A 47.73
14 P P 15.41
15 ✓ ✓ 7.64

branch (#6), removing the Fourier domain representation
without concatenating the global feature (#7), and removing
the spatial domain representation without concatenating the
global feature (#8). Furthermore, we test the FSW block
using max pooling aggregation (#9) and without the FSW
block (#10). In addition, we experiment with features in the
Fourier domain based on the single amplitude component
(#11, #13) and phase component (#12, #14), with or without
the spatial domain features. Finally, we measure the perfor-
mance when all modules related to the Fourier domain and
auxiliary branch are discarded (#15). We also visualize some
key ablation experiments on the object Buddha from the
DiLiGenT benchmark dataset [27], with all 96 input images,
as shown in Fig. 5.

As shown in Table 1, we can see that all the key designs
contribute to the optimal performance achieved by the full
model. Overall, the absence of the Fourier domain (#1 and
#4) results in a drop in MAE (0.51◦ and 1.45◦), highlighting
the crucial role of decomposing amplitude and phase in the
Fourier domain to enhance surface normal estimation when
dealing with unknown lighting directions. Compared with
#1, the aggregation of Fourier domain features (#4) is much
more significant for the performance of UPS. Furthermore,
the results of #2 and #5 demonstrate that the spatial domain
also contributes to boosting the accuracy of surface normal
estimation, showing the complementary information it con-
tains. In fact, without the Fourier domain in both the FEE
and FEA blocks (#15), our method regresses to an original
one-stage UPS network similar to UPS-FCN [20], which
exhibits unsatisfactory performance. This demonstrates that
Fourier decomposition can implicitly extract lighting infor-
mation and geometry information from the amplitude and
phase spectra, respectively. Consequently, the GBR ambigu-
ity can be resolved in a one-stage network without explicit
input for lighting directions.

Specifically, in the FEE block, we further test the re-

Object / GT          #0                   #1                  #4                 #10                 #15         

90

45

0
Buddha            7.31                7.66               9.43                7.96              13.60               

Fig. 5. Visualization of the key ablation studies based on the object
Buddha of the DiLiGenT benchmark [27]. The contrast of the images
has been adjusted to improve visualization.

sults with only one Fourier domain and spatial domain
processing (#3), which means the interactive combinations
(Eqs. (6) and (7)) are discarded. The increased error (MAE)
observed in this setup illustrates that the combined global
frequency representation and local spatial representation
also contribute significantly to feature extraction.

Furthermore, in the FEA block, we evaluate the effect
of the aggregated global feature from the auxiliary branch.
The global feature serves two purposes: (1) it offers global
shading cues from all input illumination directions, and (2)
it provides normalized shading cues unaffected by spatially-
varying BRDFs. #6 illustrates how the concatenation of the
global feature benefits the reconstruction results. #7 and
#8 further show the effect of the global feature for spa-
tial domain and Fourier domain aggregations, respectively.
Compared with #4 and #5, we can see that the global
feature is more effective with Fourier domain aggregation,
as evidenced by the larger degradation between #5 and
#8 (0.21◦) than between #4 and #7 (0.08◦). These results
indicate that the global feature fused in the auxiliary branch
is also a spatial feature that shares similar effects with the
spatial domain aggregation in the FEA block. Ablations #4
- #8 reflect that learning the Fourier domain feature plays
an important role in the decomposition of unknown illumi-
nations and surface geometry, rather than relying solely on
spatial features as previously used.

In addition, ablations with #9 and #10 test the effect
of the FSW block. In #9, the performance of FUPS-Net
decreases with the use of max pooling operation to fuse
Ω1,Ω2, . . . ,Ωn in Eq. (11). This might be explained by
the fact that shadows and inter-reflections exhibit imbal-
anced distributions in features from different illuminations,
and max pooling disregards these imbalances. This occurs
because max pooling only retains the maximum value at
the same position while average pooling records the global
representation to some extent. In #10, we cancel both aver-
age pooling and max pooling, resulting in the aggregated
Fspatial and FFourier being simply concatenated without
the FSW block. It can be observed that our FUPS-Net per-
formed better when utilizing the FSW block to adaptively
combine the global Fourier domain infomration and local
spatial information. It is interesting to note that for complex
objects with more cast shadows and inter-reflections, such as
the Buddha in Fig. 5, discarding the FSW block may lead to
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a larger decrease in performance. For example, #1 performs
worse than #10 in the validation set, but it is opposite for
the object Buddha with a very complex structure. It further
suggests that the FSW block can facilitate the fusion of long-
range global context and local information.

Finally, experiments #11 - #14 illustrate the effect of a
single component in the Fourier domain. Specifically, #11
represents the ablation discarding the phase component,
with the extracted features from the spatial domain, and #12
does the same for the amplitude component. Experiments
#13 and #14 further test the corresponding ablations with-
out fusing the spatial domain features. We processed each
component individually in the Fourier domain and trans-
formed the one component feature to the spatial domain
representation via IDFT [53]. Note that the FSW block is not
utilized because incomplete Fourier domain features make
the frequency-spatial fusion meaningless. It is evident that
only the amplitude feature involved (#11) achieves better
performance compared to the phase component (#12) when
spatial domain features are fused. This suggests that the
amplitude component contains implicit lighting informa-
tion, which guides the resolution of GBR ambiguity in the
spatial features. However, discarding all spatial features will
cause significant degradation in performance if only a single
Fourier component is maintained. In fact, discarding the
phase component alone (#13) can even lead to the non-
convergence of our method. These results highlight that
the single amplitude component lacks crucial geometry
information, and fails to constrain the learning of surface
normals without the phase component or spatial features
combined.

5.2 Evaluation on Benchmark Datasets

We first evaluate our FUPS-Net and compare it with previ-
ous calibrated and uncalibrated methods on the widely used
photometric stereo dataset, namely the DiLiGenT bench-
mark [27]. DiLiGenT contains 10 objects and each object
has 96 images captured under different lighting conditions.
The quantitative results for surface normal estimation are
tabulated in Table 2. Additionally, Fig. 6 provides visual
representations of the reconstruction results and error map
comparisons for the Reading and Harvest objects.

As shown in Table 2, our FUPS-Net achieves the best
results on the UPS task and outperforms most CPS methods,
concurrent with the SCPS-NIR method [48], in terms of
the average MAE of the ten objects in DiLiGenT. It can be
seen that our FUPS-Net can achieve the best or sub-optimal
results on all objects in the DiLiGenT dataset. FUPS-Net
performs well on most objects with complex structures and
strong non-Lambertian surface reflectances, such as Bud-
dha, Cow, Harvest, and Reading. However, it is noteworthy
that for very simple structured objects such as Ball and Bear,
SCPS-NIR [48] demonstrates more reasonable results. This
could be attributed to two reasons: (1) these objects are easy
to acquire supervision by neural inverse rendering with
jointly optimized object shape and lighting information,
and (2) the simple structures may lead to inefficient feature
extraction from the decomposed amplitude and phase com-
ponents in the Fourier domain. Note that the first 20 images
are photometrically inconsistent in the belly region of the

object Bear [10]. When discarding the first 20 images, the
results of our FUPS-Net achieves 5.08◦ on Bear and 7.03◦ on
average MAE. As shown in Fig. 6, the proposed FUPS-Net
outperforms previous methods in the regions with specular
inter-reflections (cloth of the object Reading), cast shadows
(pocket of the object Harvest), and crinkle surfaces (cloth of
the object Harvest), further demonstrating the effectiveness
of the introduced Fourier domain decomposition and FSW
block.

On the other hand, it is worth emphasizing that the
proposed FUPS-Net is the first one-stage end-to-end UPS
network with reasonable surface-normal estimation perfor-
mance. Compared with the previous two-stage methods
that take the first-stage estimated lighting directions and
intensities as the input of the second-stage surface normal
network, our approach eliminates the need for multi-stage
training and avoids the influence of inaccurately classi-
fied lighting directions. For instance, the two-stage method
SDPS-Net [21] almost costs double the training time to train
LCNet and NENet separately, compared to our one-stage
FUPS-Net. Furthermore, the two-stage methods introduce
instability in surface learning through the conversion of
lighting direction estimation from continuous regression to
discrete classification, while our implicit one-stage network
avoids error accumulation in the previous two-stage UPS
network. Compared with neural inverse rendering methods,
the computational cost of FUPS-Net scales almost linearly
with the number of input images, similar to CPS networks.
For instance, our FUPS-Net only takes no more than 10
seconds to test one object in the DiLiGenT dataset [27],
while it costs approximately 15 minutes for the concurrent
SOTA method SCPS-NIR [48], and 50 minutes for the two-
stage neural inverse rendering method SK21 [23]. This char-
acteristic makes FUPS-Net significantly more efficient than
the neural inverse rendering-based methods and two-stage
methods in terms of computational resources.

Generally, the universal photometric stereo environment
can also be seen as a kind of UPS task, which is not limited
to the assumption of any specific lighting conditions, e.g.,
directional lighting. We also compare our method to the two
recent Universal photometric stereo methods UniPS [25] and
SDM-UniPS [26]. The compared results are summarized in
Table 3. Although our method achieves sub-optimal results
on the average MAE of ten objects from the DiLiGenT
dataset [27], performing slightly worse than SDM-UniPS, it
demonstrates clear advantages in terms of model complex-
ity and computational efficiency. Specifically, SDM-UniPS
employs a network with 125.73 million parameters and
requires 72 hours of training on an A100 GPU, while FUPS-
Net uses a much lighter network with only 11.39 million
parameters and completes training in just 20 hours on an
RTX 4090 GPU. Furthermore, FUPS-Net is trained using a
dataset with 1.38 billion total pixels, which is considerably
smaller than the 9.15 billion pixels used by SDM-UniPS.
Notably, SDM-UniPS cannot run tests on the DiLiGenT
dataset using all 96 input images on an RTX 4090 GPU with
24GB memory, whereas FUPS-Net can be executed on less
restrictive hardware. These results highlight that FUPS-Net
offers significant benefits in terms of efficiency and resource
requirements, making it more practical for scenarios with
limited computational resources, while maintaining com-
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TABLE 2
Performance of different methods on the DiLiGenT benchmark [27] with 96 images, in terms of MAE in degrees. UPS-1s stands for the one-stage

methods without explicitly learning lighting information, and UPS-exp stands for the previous methods (either two-stage or neural inverse
rendering) that need to explicitly learn the lighting directions. For the UPS task, we use bold font and underline to highlight the best and

second-best results, respectively.

Method Task Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Avg. ↓
IRPS [63] CPS 1.47 5.79 10.36 5.44 6.32 11.47 22.59 6.09 7.76 11.03 8.83
PS-FCN [20] CPS 2.82 7.55 7.91 6.16 7.33 8.60 15.85 7.13 7.25 13.33 8.39
GPS-Net [36] CPS 2.92 5.07 7.77 5.42 6.14 9.00 15.14 6.04 7.01 13.58 7.81
CNN-PS [10] CPS 2.12 8.30 8.07 4.38 7.92 7.42 14.08 5.37 6.38 12.12 7.62
PS-FCNNorm. [9] CPS 2.67 7.72 7.53 4.76 6.72 7.84 12.39 6.17 7.15 10.92 7.39
NormAttention-PSN [35] CPS 2.93 5.48 7.12 4.65 5.99 7.49 12.28 5.96 6.42 9.93 6.83
LL22 [64] CPS 2.43 3.64 8.04 4.86 4.72 6.68 14.90 5.99 4.97 8.75 6.50
PX-Net [65] CPS 2.03 4.13 7.61 4.39 4.69 6.90 13.10 5.08 5.10 10.26 6.33
UPS-FCN [20] UPS-1s 6.62 11.23 15.87 14.68 11.91 20.72 27.79 13.98 14.19 23.26 16.02
DeepPS2 [66] (input = 2) UPS-exp 6.28 9.67 14.51 9.87 11.08 14.22 26.06 10.73 12.09 19.94 13.44
KS21 [23] UPS-exp 3.78 5.96 13.14 7.91 10.85 11.94 25.49 8.75 10.17 18.22 11.62
SDPS-Net [21] UPS-exp 2.77 6.89 8.97 8.06 8.48 11.91 17.43 8.14 7.50 14.90 9.51
SK22 [22] UPS-exp 3.46 5.48 10.00 8.94 6.04 9.78 17.97 7.76 7.10 15.02 9.15
UPS-GCNet [24] UPS-exp 2.50 5.60 8.60 7.80 8.48 9.60 16.20 7.20 7.10 14.90 8.70
LERPS [67] UPS-exp 2.41 6.93 8.84 7.43 6.36 8.78 11.57 8.32 7.01 11.51 7.92
SCPS-NIR [48] UPS-exp 1.24 3.82 9.28 4.72 5.53 7.12 14.96 6.73 6.50 10.54 7.05
FUPS-Net (Ours) UPS-1s 2.30 5.27 7.31 4.71 5.74 7.54 13.75 6.03 6.58 11.29 7.05

When discarding the first 20 images of the object Bear, our FUPS-Net achieves 5.08◦ on Bear and 7.03◦ on average MAE.
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Reading                    11.42                      10.54 15.02                         14.90                         14.90                    19.94                       23.26

Harvest                    13.91                        14.96 17.97                        17.43                     16.20                    25.06                       27.79

Object / GT                  Ours                SCPR-NIR                    SK22                    SDPS-Net              UPS-GCNet DeepPS2               UPS-FCN

Fig. 6. Quantitative results on the DiLiGenT dataset [27] with 96 input images. In each sample, the first row displays the estimated normal maps,
while the second row depicts the error maps obtained from various methods. The values indicate the MAE in degrees. The contrast of the images
has been adjusted to improve visualization.

TABLE 3
Comparisons with two universal photometric stereo methods, on the

DiLiGenT benchmark [27] with average MAE in degrees, training
dataset (number of total pixels), network parameters, and running time.

Method Avg. MAE Dataset Parameters Time
UniPS [25] 14.70 2.65B 69.40M 48h (RTX 8000)
SDM-UniPS [26] 5.80 9.15B 125.73M 72h (A100)
FUPS-Net (Ours) 7.05 1.38B 11.39M 20h (RTX 4090)

petitive performance.
To conduct a comprehensive analysis of the general-

ization capability of our FUPS-Net across various objects
and materials, we further use the challenging DiLiGenT102

dataset [28]. DiLiGenT102 contains 100 objects of 10 shapes
multiplied by 10 materials and each object has 100 images
under different conditions. These datasets pose significant

challenges due to their inclusion of strongly non-Lambertian
surface materials and complex structures. The results, as
obtained from the online evaluation website, are presented
in Fig. 7. We further present the visualized results of all ten
shapes based on the worst-performing material ACRYLIC in
Fig. 8. Since ground truth surface normals are not provided,
we utilize the method proposed by [68] to integrate the
estimated surface normals into the 3D reconstruction to
intuitively illustrate the performances. For more results,
please refer to https://github.com/Kelvin-Ju/FUPS-Net.

As shown in Fig. 7, we can see that FUPS-Net obvi-
ously outperforms the similar one-stage UPS-FCN [20] and
achieves comparable accuracy to calibrated PS-FCNNorm. [9]
on most samples. Fig. 8 further illustrates the improvement
of the existing one-stage UPS method. The previous one-
stage UPS-FCN [20] fails to adequately reconstruct the shape

https://github.com/Kelvin-Ju/FUPS-Net
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PS-FCNNorm. (Avg. = 16.21°)     GPS-Net (Avg. = 19.98°)    UPS-FCN (Avg. = 31.43°)   SDPS-Net (Avg. = 21.86°)       Ours (Avg. = 17.10°) 

CPS UPS

Fig. 7. The shape-material error matrix used to compare our FUPS-Net with recent calibrated and uncalibrated methods. The number in each
element of the matrix represents the MAE in degrees according to the shape and material index.
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Fig. 8. Visualization results of our FUPS-Net and UPS-FCN [20] of all ten shapes in the DiLiGenT102 dataset [28] based on the worst-performing
material ACRYLIC. The 3D reconstruction (3D recons.) results of estimated surface normal maps (Est. normal) are illustrated using [68].

of the objects, whereas our method successfully estimates
detailed surface structures and provides reasonable 3D re-
construction results. These demonstrate that the implicitly
extracted features by Fourier decomposition in our method
can effectively address the geometry-lighting ambiguity,
known as the GBR ambiguity [16] in photometric stereo
under uncalibrated lighting directions.

5.3 Evaluation on Other Datasets

In this section, we first evaluate our method using the
synthetic object Armadillo from the Stanford 3D dataset
[29]. The Armadillo shape exhibits intricate surface struc-
tures and is rendered using MERL BRDFs [69] with 100
different materials, similar to the materials in our training
dataset. Each material is illuminated by 100 random lighting
directions from the upper hemisphere. Fig. 9 displays the
MAE of predicted normal maps for the Armadillo object
across the 100 materials, sorted by their MAE values.

As shown in Fig. 9, the proposed FUPS-Net demon-
strates promising results across 100 different materials,
achieving an average MAE of 9.12◦. It is evident that
our method robustly handles most surface materials, with

only three materials exhibiting errors exceeding 12 degrees,
which have significantly strong non-Lambertian properties
(such as example J). To further analyze the reason for
this, we visualize the Fourier transforms of these samples,
denoted as A (pure-rubber), B (yellow-phenolic), E (gold-
paint), I (nickel), and J (chrome), in Fig. 10.

As shown in Fig. 10, the amplitude component of materi-
als showcases different representations due to the coupling
of lighting information with materials. Non-Lambertian ma-
terials (I and J) exhibit obvious specular highlights, while
Lambertian-related materials (A and B) present continu-
ous shading cues. For these five examples with the same
surface normal (3D structure), we can see the amplitude
components are changed, while the phase components show
almost the same. This observation aligns with the findings
in Fig. 1, indicating that lighting and geometry information
are decomposed into the amplitude and phase in the Fourier
domain to some extent, respectively. Moreover, materials
I and J display sparse and global noise across the entire
spectrum, while materials A and B exhibit clearer and more
concentrated features in their amplitude spectra. It may
suggest that an amplitude feature with sparse and globally
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Fig. 9. MAE of the predicted surface normals of our FUPS-Net for the Armadillo object across 100 materials in the MERL BRDF dataset [69]. Some
input examples are shown at the top.
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Fig. 10. Visualization of five material examples corresponding to Fig. 9.
Materials A, B, and E exhibit good reconstruction results, while I and J
report relatively poorer performance. We employ DFT to generate their
amplitude and phase components, respectively.

distributed noise could present challenges in extracting im-
plicit lighting information and cause worse performance on
surface-normal estimation.

We further evaluate our method using the more intricate
Light Stage Data Gallery dataset [70], which incorporates
general non-Lambertian materials, complex structures, and
lower-quality images. As ground truth data is unavailable
for this dataset, we present qualitative results for the objects
Knee, Helmet, and Plant using our FUPS-Net in Fig. 11.
These results encompass surface normals and 3D recon-
struction results obtained via [68], utilizing 32 randomly
selected input images from a pool of 253 images.

As shown in Fig. 11, our FUPS-Net achieves detailed
surface reconstruction on these objects, such as the screw of
the object Helmet. We also note that the number of input im-
ages for each object in the Light Stage Data Gallery dataset
[70] is much less compared to the above benchmark datasets
[27], [28], demonstrating the robustness of our method when
dealing with sparse input images. However, the distortion
observed in the 3D reconstruction of object Knee in Fig.
11 can be attributed to the unique challenges posed by
the object itself. The object Knee exhibits significant self-
occlusions and non-Lambertian surface properties, which
make accurate reconstruction inherently difficult. Further-
more, the noticeably distorted region, the head of Knee,
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Fig. 11. Evaluation on the Light Stage Data Gallery, with only 32 input
images. The estimated surface normals are shown qualitatively. The 3D
reconstruction results of our estimated surface normal maps are also
illustrated using [68]. The contrast of the images is adjusted for easier
visualization.

is located far from the object’s center, effectively placing
it closer to the light source relative to the object’s central
regions. This relative proximity amplifies the influence of
near-field lighting effects, making it more susceptible to
issues commonly associated with close-range photometric
stereo problems, such as non-uniform light distribution and
perspective distortions.

6 CONCLUSION

In this paper, we propose a Fourier transform-based
one-stage uncalibrated photometric stereo (UPS) method,
namely FUPS-Net. Our approach is motivated by the ob-
servation that the lighting and geometry information can
be “decomposed” in the Fourier domain to some extent.
Leveraging this insight, FUPS-Net incorporates the pro-
posed Fourier Embedding Extraction (FEE) and Fourier
Embedding Aggregation (FEA) blocks to extract the de-
composed geometry and lighting information, implicitly
addressing the GBR ambiguity. Furthermore, we propose
the Frequency-Spatial Weighted (FSW) block to enhance the
fusion of frequency and local spatial information, employ-
ing an adaptively weighted function. FUPS-Net overcomes



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

the limitations of previous two-stage UPS methods, offering
end-to-end training setups, avoiding discrete classification
errors in estimating explicit lighting directions, and prevent-
ing the propagation of accumulated errors in disjointed light
calibration networks and normal estimation networks. Abla-
tion studies highlight the effectiveness of the proposed FEE,
FEA, and FSW blocks. Experimental results on extensive
datasets demonstrate the superior performance of FUPS-
Net. We significantly improve the accuracy of the one-stage
UPS and our method reaches the current best performance
of the explicit lighting UPS pipelines.

Limitations and future work: Currently, FUPS-Net nor-
malizes the intensity of photometric stereo images during
training, i.e., intensity calibration is not considered. While
prioritizing efficiency, this design may face challenges in
reconstructing objects with extreme geometric configura-
tions or lighting conditions deviating significantly from
directional lighting. Future work will focus on adapting
FUPS-Net to better handle near-point light effects while
maintaining its lightweight structure. Additionally, we aim
to address its limitations in global context and scale-related
distortions by integrating complementary techniques, such
as multi-view reconstruction or scene-level priors, to im-
prove performance in complex environments. These efforts
will enhance the network’s adaptability to varying lighting
conditions and extend its applicability to large-scale scenes,
further broadening its practical value.

ACKNOWLEDGMENT

The work was supported in part by the Ministry of Edu-
cation Singapore Tier 1 grant No. RG98/24, the National
Natural Science Foundation of China (62136001, 62088102).
This work is partially done in NTU-ROSE Lab.

REFERENCES

[1] R. J Woodham, “Photometric method for determining surface
orientation from multiple images,” Optical Engineering, vol. 19,
no. 1, pp. 139–144, 1980.

[2] Zhenglong Zhou, Zhe Wu, and Ping Tan, “Multi-view photometric
stereo with spatially varying isotropic materials,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2013, pp. 1482–1489.
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