
Internet Computer Consensus
Jan Camenisch

DFINITY Foundation

Zurich, Switzerland

jan.camenisch@dfinity.org

Manu Drijvers

DFINITY Foundation

Zurich, Switzerland

manu.drijvers@dfinity.org

Timo Hanke

DFINITY Foundation

Zurich, Switzerland

timo.hanke@dfinity.org

Yvonne-Anne Pignolet

DFINITY Foundation

Zurich, Switzerland

yvonneanne.pignolet@dfinity.org

Victor Shoup

DFINITY Foundation

Zurich, Switzerland

victor.shoup@dfinity.org

Dominic Williams

DFINITY Foundation

Zurich, Switzerland

dominic.williams@dfinity.org

ABSTRACT
We present the Internet Computer Consensus (ICC) family of pro-

tocols for atomic broadcast (a.k.a., consensus), which underpin

the Byzantine fault-tolerant replicated state machines of the In-

ternet Computer. The ICC protocols are leader-based protocols

that assume partial synchrony, and that are fully integrated with

a blockchain. The leader changes probabilistically in every round.

These protocols are simple and robust: in any round where the

leader is corrupt (which itself happens with probability less than

1/3) or the network is asynchronous, each ICC protocol will effec-

tively allow other parties to step in and propose blocks for that

round and to move the protocol forward to the next round. In case

there was no agreement on a single block in a round, a decision

for this round will be taken in a later round with synchronous

network behavior and an honest leader. The task of reliably dissem-

inating the blocks to all parties is an integral part the protocol. We

present three different protocols, along with various minor vari-

ations on each. The first of these protocols (ICC0) illustrates the

combination of the main building blocks in a simplified manner

for an easier presentation and analysis. Protocol ICC1 is designed

to be integrated with a peer-to-peer gossip sub-layer, which re-

duces the bottleneck created at the leader for disseminating large

blocks, a problem that all leader-based protocols must address. Our

Protocol ICC2 addresses the same problem by substituting a low-

communication reliable broadcast subprotocol (which may be of

independent interest) for the gossip sub-layer.

CCS CONCEPTS
• Theory of computation→ Computational complexity and
cryptography;Design and analysis of algorithms;Distributed
algorithms.

KEYWORDS
consensus, blockchain, internet computer, atomic broadcast

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODC ’22, July 25–29, 2022, Salerno, Italy
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9262-4/22/07. . . $15.00

https://doi.org/10.1145/3519270.3538430

ACM Reference Format:
Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Vic-

tor Shoup, and Dominic Williams. 2022. Internet Computer Consensus. In

Proceedings of the 2022 ACM Symposium on Principles of Distributed Comput-
ing (PODC ’22), July 25–29, 2022, Salerno, Italy. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3519270.3538430

1 INTRODUCTION
Byzantine fault tolerance (BFT) is the ability of a computing system

to endure arbitrary (i.e., Byzantine) failures of some of its compo-

nents while still functioning properly as a whole. One approach to

achieving BFT is via state machine replication [33]: the logic of the

system is replicated across a number of machines, each of which

maintains state, and updates its state is by executing a sequence

of commands. In order to ensure that the non-faulty machines end

up in the same state, they must each deterministically execute the

same sequence of commands. This is achieved by using a protocol

for atomic broadcast [9, 16, 33].
In an atomic broadcast protocol, we have 𝑛 parties, some of

which are honest (and follow the protocol), and some of which are

corrupt (and may behave arbitrarily). Roughly speaking, such an

atomic broadcast protocol allows the honest parties to schedule

a sequence of commands in a consistent way, so that each honest

party schedules the same commands in the same order.

Each party receives various commands as input — these inputs

are received incrementally over time, not all at once. It may be

required that a command satisfy some type of validity condition,

which can be verified locally by each party. These details are appli-

cation specific and will not be further discussed.

Each party outputs an ordered sequence of commands — these

outputs are generated incrementally, not all at once.

One key security property of any secure atomic broadcast pro-

tocol is safety, which means that each party outputs the same
sequence of commands. Note that at any given point in time, one

party may be further along in the protocol than another, so this

condition means that at any point in time, if one party has output

a sequence 𝑠 and another has output a sequence 𝑠 ′, then 𝑠 must be

a prefix of 𝑠 ′, or vice versa.
Another key property of any secure atomic broadcast protocol is

liveness. There are different notions of liveness one can consider. In
one notion, the requirement is that each honest party’s output queue

grows over time at a “reasonable rate” (relative to the speed of the

network). This notion of liveness is quite weak, in that it does not

rule out the possibility of some parties having their input commands

https://doi.org/10.1145/3519270.3538430
https://doi.org/10.1145/3519270.3538430

PODC ’22, July 25–29, 2022, Salerno, Italy Camenisch et al.

ignored indefinitely. In another, stronger notion of liveness, the

requirement is that if “sufficiently many” parties receive a particular

command as input at some point in time, then that command will

appear in the output queues of all honest parties “not too much

later”. Of course, even this definition is incomplete without precisely

defining “sufficiently many” and “not too much later”.

The Internet Computer Consensus (ICC) family of protocols. In
this paper, we present a family of atomic broadcast protocols which

correspond to the atomic broadcast protocol used in the Internet

Computer [18]. To a first approximation, the Internet Computer is

a dynamic collection of intercommunicating replicated state ma-

chines: commands for atomic broadcast on one replicated state

machine are either derived from messages received other replicated

state machines, or from external clients. We actually present three

specific protocols, ICC0, ICC1, and ICC2. Protocol ICC0 is a some-

what simplified version of the protocol actually used in the Internet

Computer, but is easier to present and to analyze, and it is the main

focus of most of this paper. Protocol ICC1 most closely models

the version of the protocol used in the Internet Computer, and is

only slightly more involved than ICC0. Protocol ICC2 goes a bit

beyond ICC1, and uses techniques that are not currently used in

the Internet Computer. We emphasize that the ICC protocols are

fully specified in the full version of this paper (they do not rely on

unspecified, non-standard components), simple (a fairly detailed

description easily fits on a single page), and robust (performance

degrades gracefully in the face of Byzantine attack).

In designing and analyzing any protocol for atomic broadcast,

certain assumptions about the nature and number of corrupt par-

ties and the reliability of the network are critical. We will assume

throughout this paper that at most 𝑡 < 𝑛/3 of the parties are cor-
rupt, and may behave arbitrarily and are completely coordinated

by an adversary. This includes, of course, parties that have sim-

ply “crashed”. We do, however, assume that the adversary chooses

which parties to corrupt statically, at the beginning of the execution
of the protocol in our analysis.

Regarding the network, there are a few different assumptions

that are typically made:

• At one extreme, one can assume that the network is syn-
chronous, i.e., all messages sent from an honest party to an

honest party arrive within a known time bound Δ
bnd

.

• At the other extreme, one can assume that the network is

asynchronous, i.e., messages can be arbitrarily delayed.

In between these two extremes, various partial synchrony assump-

tions can be made [20]. For our analysis here, the type of partial

synchrony assumption we shall need is that the network is syn-

chronous for relatively short intervals of time every now and then

(described in more detail later).

Regardless of whether we are assuming an asynchronous or

partially synchronous network, we will assume that every message

sent from one honest party to another will eventually be delivered.

Like a number of atomic broadcast protocols, each of the ICC

protocols is blockchain based. As the protocol progresses, a tree of

blocks is grown, starting from a special “genesis block” that is the

root of the tree. Each non-genesis block in the tree contains (among

other things) a payload, consisting of a sequence of commands, and

a hash of the block’s parent in the tree. The honest parties have a

consistent view of this tree: while each party may have a different,

partial view of this tree, all the parties have a view of the same
tree. In addition, as the protocol progresses, there is always a path

of committed blocks in this tree. Again, the honest parties have a

consistent view of this path: while each party may have a different,

partial view of this path, all the parties have a view of the same
path. The commands in the payloads of the blocks along this path

are the commands that are output by each party.

The protocol proceeds in rounds. In the 𝑘th round of the protocol,
one or more depth-𝑘 blocks are added to the tree. That is, the blocks

added in round 𝑘 are always at a distance of exactly 𝑘 from the

root. In each round, a random beacon is used to generate a random

permutation of the 𝑛 parties, so as to assign to each party a rank.
The party of lowest rank is the leader of that round.When the leader

is honest and the network is synchronous, the leader will propose a

block which will be added to the tree. If the leader is not honest or

the network is asynchronous, some other parties of higher rankmay

also propose blocks, and also have their blocks added to the tree.

In any case, the logic of the protocol gives highest priority to the

leader’s proposed block. As a consequence, in contrast to protocols

which only switch leaders if they misbehave, no additional timeouts

and/or protocol logic is necessary to determine if a leader is honest.

This keeps the protocol easy to implement and analyse.

We show that:

• Each of the ICC protocols provides liveness under such a

partial synchrony assumption. Very roughly speaking, when-

ever the network remains synchronous for a short while,

whatever round the parties are in at that time, if the leader

is honest, only the leader’s block will be added to the tree of

blocks at that round, and all the nodes along the path from

the root to that block will be committed.

• Each of the ICC protocols provides safety, even in the asyn-

chronous setting.

In themost basic version of the ICC protocols, the communication-

delay bound Δ
bnd

in the partial synchrony assumption is an explicit

parameter in the protocol specification. As is the case with many

such protocols, the ICC protocols can be modified to adaptively

adjust to an unknown communication-delay bound. However, some

care must be taken in this, and we discuss this matter in some detail.

We also analyze the message complexity of each of the ICC pro-

tocols. Message complexity is defined to be the total number of

messages sent by all honest parties in any one round — so one party

broadcasting a message contributes a term of 𝑛 to the message

complexity. In the worst case, the message complexity is 𝑂 (𝑛3).
However, we show that in any round where the network is syn-

chronous, the expected message complexity is 𝑂 (𝑛2) — in fact, it

is 𝑂 (𝑛2) with overwhelming probability. The probability here is

taken with respect to the random beacon for that round.

The round complexity for the ICC protocols can be defined as

the number of rounds until a block is committed in the worst case.

For a static adversary, this complexity is𝑂 (1) for the ICC protocols

in expectation and 𝑂 (log𝑛) with high probability. If the adversary

is adaptive (not analysed formally in this paper) and hence can

corrupt nodes according to the random beacon used in a particular

round, the worst case message complexity per round stays the same,

but the round complexity increases to𝑂 (𝑛). Note that, regardless of

Internet Computer Consensus PODC ’22, July 25–29, 2022, Salerno, Italy

the amount of time passed until a block is committed, the recursive

nature of the ICC protocols ensures that eventually one block will

be committed for every round.

Of course, message and round complexity do not tell the whole

story of communication complexity: the sizes of the messages is

important, as is the communication pattern. In each of the protocols

ICC0 and ICC1, in any one round, each honest party broadcasts

𝑂 (𝑛) messages in the worst case, where each message is either

a signature, a signature share (for a threshold or multi-signature

scheme), or a block. Signatures and signature shares are typically

very small (a few dozen bytes) while blocks may be very large (a

block’s payload may typically be a fewmegabytes). If the network is

synchronous in that round, each honest party broadcasts𝑂 (1) such
messages (both small and large) with overwhelming probability.

Moreover, the total number of distinct blocks broadcast by all the

honest parties is typically𝑂 (1) — that is, the honest parties typically

all broadcast the same block (or one of a small handful of distinct

blocks). This property interacts well with the Internet Computer’s

implementation of these broadcasts, which is done using a peer-

to-peer gossip sub-layer [17]. As we will discuss, Protocol ICC1

is explicitly designed to coordinate well with this peer-to-peer

gossip sub-layer (even though the logic of the protocol can be easily

understood independent of this sub-layer).

Protocol ICC2 has verymuch the same structure as Protocol ICC1;

however, instead of relying on a peer-to-peer gossip sub-layer to

efficiently disseminate large blocks, it instead makes use of sub-

protocol based on erasure codes to do so. Assuming blocks have

size 𝑆 , and that 𝑆 = Ω(𝑛 log𝑛 𝜆), where signatures (and hashes)

have length 𝑂 (𝜆), the total number of bits transmitted by each

party in each round of ICC2 is𝑂 (𝑆) with overwhelming probability

(assuming the network is synchronous in that round).

We also analyze the reciprocal throughput and latency of the ICC

protocols. In a steady state of the system where the leader is honest

and the network delay is bounded by 𝛿 ≤ Δ
bnd

, Protocols ICC0

and ICC1 will finish a round once every 2𝛿 units of time. That is,

the reciprocal throughput is 2𝛿 . The latency for these protocols,

that is, the elapsed time from when a leader proposes a block and

when all parties commit to a block, is 3𝛿 . For Protocol ICC2, the

reciprocal throughput is 3𝛿 and the latency is 4𝛿 . The bound 𝛿 may

be much smaller than the network-delay bound Δ
bnd

on which the

partial synchrony assumption (used to ensure liveness) is based. In

particular, the ICC protocols enjoy the property known as optimistic
responsiveness [30], meaning that the protocol will run as fast as the
network will allow in those rounds where the leader is honest. For

an arbitrary round, where the leader is not honest or 𝛿 > Δ
bnd

, the

roundwill finish in time𝑂 (Δ
bnd
+𝛿) with overwhelming probability.

1.1 Related work
The atomic broadcast problem is a special case of what is known

as the consensus problem. Reaching consensus in face of arbitrary

failures was formulated as the Byzantine Generals Problem by [25].

The first solution in the synchronous communication model was

given by [31].

In the asynchronous communicationmodel, it was shown that no

deterministic protocol can solve the consensus problem. Despite this

negative result, the problem can be solved by probabilistic protocols.

The first such protocol was given by [4], who also showed that the

resilience bound 𝑡 < 𝑛/3 is optimal in the asynchronous setting.

More efficient protocols can be achieved using cryptography, as

was shown in [9, 10], with significant improvements more recently

in [2, 19, 23, 27]. For example, [2] reaches agreement in𝑂 (1) rounds
and exchanging 𝑂 (𝑛2) messages in expectation, even against an

adaptive adversary.

Despite the recent progress made in the asynchronous setting,

much more efficient consensus protocols are available in the par-

tially synchronous setting. The goal in this setting is to guarantee

safety without making any synchrony assumptions, and to rely

on periods of network synchrony only to guarantee liveness. The

first consensus protocol in the partially synchronous setting was

given by [20]. The first truly practical protocol in this setting is the

well-known PBFT protocol [13, 14], which is a protocol for atomic

broadcast and state machine replication.

PBFT proceeds in rounds. In each round, a designated leader

proposes a batch of commands by broadcasting the batch to all

parties. This is followed by two all-to-all communication steps to

actually commit to the batch. Under normal operation, the leader

will continue in its role for many rounds. However, if sufficiently

many parties determine that the protocol is not making timely

progress, they will trigger a view-change operation, which will

install a new leader, and clean up any mess left by the old leader.

Thus the round complexity of PBFT is 𝑂 (1).
Despite its profound impact on the field, there are several aspects

where PBFT leaves some room for improvement.

(1) The leader is responsible for disseminating the batch to all

parties. This creates two problems.

(a) First, if the batches are very large, the leader becomes the

bottleneck in terms of communication complexity.

(b) Second, a corrupt leader can fail to disseminate a batch

to all parties. In fact, a corrupt leader (together with the

help of other corrupt parties) can easily drive the proto-

col forward an arbitrary number of rounds, and leave a

subset of the honest parties lagging behind without any

of the batches corresponding to those rounds. The details

of how these lagging parties catch up are not described,

other than to say that such a party can obtain any missing

batch from another. While this is certainly true, a naive

implementation of this idea makes it easy for an attacker

to drive up the communication complexity even further,

by making many corrupt parties request missing batches

from many honest parties — so instead of just the leader

broadcasting the batches, one could end up in a setting

where 𝑂 (𝑛) honest parties are each transmitting a batch

to 𝑂 (𝑛) corrupt parties in every round.

(2) The all-to-all communication pattern in the last two steps

of each round can also result in high communication com-

plexity. However, this need not be the case if the batches

are very large relative to 𝑛 — in this case, the dissemina-

tion of the batches is still the dominant factor in terms of

communication complexity.

The communication complexity of a protocol is traditionally de-

fined as the total number of bits transmitted by all honest parties.

PODC ’22, July 25–29, 2022, Salerno, Italy Camenisch et al.

In a protocol such as PBFT, which is structured in rounds, this is

typically measured on a per-round basis.

A lot of work has gone into reducing the communication com-

plexity of PBFT by eliminating the all-to-all communication steps

[22, 32, 36]. However, [35] provides an empirical study suggesting

that this effort may be misplaced: in terms of improving through-

put and latency, it is not the communication complexity that is

important, but rather, the communication bottlenecks. That is, the
relevant measure is not the total number of bits transmitted by all

parties, but the maximum number of bits transmitted by any one
party. Such empirical findings are of course sensitive to the charac-

teristics of the network. In [35], the network was a global wide-area

network, which is the setting of most interest to us in this work.

As was reported in [35], it is the dissemination of large batches

that creates a communication bottleneck at the leader, and not the

all-to-all communication steps, which involve only smaller objects.

In fact, [35] argues that approaches such as those in [22, 32, 36]

only exacerbate the bottleneck at the leader.

There has also been recent work on replacing the view-change

subprotocol of PBFT with rapid leader rotation, for example Hot-

Stuff [36] and Tendermint [8]. Like PBFT, both of these protocols

are leader based; however, they do not rely on a view-change sub-

protocol, and in fact may change the leader every round. Unlike

PBFT, both of these protocols are blockchain based protocols (while

PBFT can be used in the context of blockchains, it need not be).

HotStuff eliminates the all-to-all communication steps of PBFT.

Also, HotStuff (actually, “chained” HotStuff, which is a pipelined

version of HotStuff) improves on the throughput of PBFT, reducing

the reciprocal throughput from 3𝛿 to 2𝛿 , where 𝛿 is the network

delay. Like PBFT, HotStuff is optimistically responsive (it runs as

fast as the network will allow when the leader is honest) and its

round complexity is 𝑂 (1) under a static adversary. Note, however,
that the latency (the elapsed time between when a leader proposes a

block and when it is committed) of HotStuff increases from 3𝛿 to 6𝛿 .

Hotstuff requires a linear number of messages when the network

is synchronous and the leader is honest. It features a worst case

message complexity of 𝑂 (𝑛2) when the network is synchronous.

In comparison, ICC’s worst case message complexity is 𝑂 (𝑛3) and
in synchronous rounds it is 𝑂 (𝑛2) with overwhelming probability.

When considering a weak adaptive adversary, which requires more

than one round to corrupt nodes, then the adversary cannot com-

promise the ICC leader of the next round fast enough. In contrast, if

Hotstuff uses a fixed leader rotation setup, it is susceptible to such

a weak adaptive adversary causing 𝑂 (𝑛) leader changes.
Like PBFT, HotStuff relies on the leader to disseminated blocks

(i.e., batches), and just as for PBFT, this can become a communica-

tion bottleneck, and there is no explicit mechanism to ensure blocks

are reliably disseminated when the leader is corrupt. In addition,

while HotStuff does not rely on a “view change” subprotocol, it still

relies on something called a “pacemaker” subprotocol. The task of

the pacemaker subprotocol is less onerous than that of the view-

change subprotocol. LibraBFT (a.k.a., DiemBFT) [26] implements

a pacemaker subprotocol, but that subprotocol re-introduces the

very all-to-all communication pattern that HotStuff intended to

eliminate. More recently, pacemaker protocols have been proposed

with better communication complexity [7, 28, 29]. Note that none

of these proposals deal with the reliable and efficient dissemination

of blocks or batches, only the synchronization of parties as they

move from one round to the next.

Tendermint can also achieve a worst case message complexity

of 𝑂 (𝑛2) when the network is synchronous. It relies on a peer-to-

peer gossip sub-layer for communication. One advantage of this

is that the reliable dissemination of blocks proposed by a leader is

built into the protocol, unlike protocols such as PBFT and HotStuff.

Moreover, a well-designed gossip sub-layer can significantly reduce

the communication bottleneck at the leader — of course, this may

come at the cost of increased reciprocal throughput and latency,

as dissemination of a message through a gossip sub-layer can take

several hops through the underlying physical network. One disad-

vantage of Tendermint is that unlike PBFT and HotStuff, it is not

optimistically responsive. This can be a problem, since to guarantee

liveness, one generally has to choose a network-delay upper bound

Δ
bnd

that may be significantly larger than the actual network delay

𝛿 , and in Tendermint, every round takes time 𝑂 (Δ
bnd
), even when

the leader is honest.

MirBFT [35] is an interesting variant of PBFT in which many

instances of PBFT are run concurrently. The motivation for this is

to alleviate the bottleneck observed at the leader in ordinary PBFT.

Since MirBFT relies on PBFT, it also uses the same view-change

subprotocol — however, as pointed out in [35], other protocols

besides PBFT could be used in their framework. Having many

parties propose batches simultaneously presents new challenges,

one of which is to prevent duplication of commands, which can

negate any improvements in throughput. A solution to this problem

is given in [35].

Algorand [21] is a system for proof-of-stake blockchain consen-

sus with a number of varied goals, but at its core is a protocol for

atomic broadcast. Like Tendermint, it is based on a gossip sub-layer

and dissemination of blocks is built into the protocol. Also like

Tendermint, it is not optimistically responsive. Unlike all of the

other protocols discussed here, it relies on a (very weak) synchrony

assumption to guarantee safety. Like the ICC protocols, Algorand

also uses something akin to a random beacon to rank parties, but

the basic logic of how these rankings are used is quite different.

We now highlight the main features of the ICC family of proto-

cols, and how they relate to some of the protocols discussed above.

• The ICC protocols are simple and entirely self contained.

• As just mentioned, the ICC protocols explicitly deal with the

block dissemination problem. Like Tendermint and Algorand,

Protocol ICC1 is designed to be integrated with a peer-to-

peer gossip sub-layer. As discussed above, such a gossip

sub-layer can reduce the communication bottleneck at the

leader. Instead of a gossip sub-layer, Protocol ICC2 relies on

a subprotocol for reliable broadcast that uses erasure codes

to reduce both the overall communication complexity and

the communication bottleneck at the leader. Such reliable

broadcast protocols were introduced in [11], and previously

used in the context of atomic broadcast in [27]. We propose

a new erasure-coded reliable broadcast subprotocol with

better latency than that in [11], and with stronger properties

that we exploit in its integration with Protocol ICC2.

• Like PBFT and HotStuff, and unlike Tendermint and Algo-

rand, all of the ICC protocols are optimistically responsive.

Internet Computer Consensus PODC ’22, July 25–29, 2022, Salerno, Italy

Protocols ICC0 and ICC1 attain a reciprocal throughput of

2𝛿 and a latency of 3𝛿 (when the leader is honest and the

network is synchronous). For Protocol ICC2, the numbers

increase to 3𝛿 and 4𝛿 , respectively.

• Like PBFT, but unlike HotStuff, the ICC protocols utilize an

all-to-all transmission of signatures and signature shares.

However, the ICC protocols are geared toward a setting

where the blocks are quite large, and so the contribution to

the communication complexity of the all-to-all transmissions

are typically not a bottleneck. Rather, the communication

bottleneck is the dissemination of the blocks themselves,

which Protocol ICC1 mitigates by using a gossip sub-layer,

while Protocol ICC2 mitigates by using an erasure-coded

reliable broadcast subprotocol.

• Unlike all of the protocols discussed above, for the ICC pro-

tocols, in every round, at least one block is added to a block-

tree, and one of these blocks will eventually become part of

the chain of committed blocks. This ensures that the overall

throughput remains fairly steady, even in periods of asyn-

chrony or in rounds where the leader is corrupt. That said,

in a round with a corrupt leader, the block proposed by the

leader may not be as useful as it would be if the leader were

honest; for example, at one extreme, a corrupt leader could

always propose an empty block. However, if a leader consis-

tently underperforms in this regard, the Internet Computer

provides mechanisms for reconfiguring the set of protocol

participants (which are not discussed here), by which such a

leader can be removed.

Robust consensus. We note that the simple design of the ICC

protocols also ensures that they degrade quite gracefully when

and if Byzantine failures actually do occur. As pointed out in [15],

much of the recent work on consensus has focused so much on

improving the performance in the “optimistic case” where there are

no failures, that the resulting protocols are dangerously fragile, and

may become practically unusable when failures do occur. For exam-

ple, [15] show that the throughput of existing implementations of

PBFT drops to zero under certain types of (quite simple) Byzantine

behavior. The paper [15] advocates for robust consensus, in which

peak performance under optimal conditions is partially sacrificed in

order to ensure reasonable performance when some parties actually

are corrupt (but still assuming the network is synchronous). The

ICC protocols are indeed robust in the sense of [15]: in any round

where the leader is corrupt (which itself happens with probability

less than 1/3), each ICC protocol will effectively allow other par-

ties to step in and propose blocks for that round and to move the

protocol forward to the next round in a timely fashion. The only

performance degradation in this case is that instead of finishing

the round in time 𝑂 (𝛿), where 𝛿 is the actual network delay, the

round will finish (with overwhelming probability) in time𝑂 (Δ
bnd
),

where Δ
bnd
≥ 𝛿 is the network-delay bound on which the partial

synchrony assumption (used to ensure liveness) is based. In case

there was no agreement on a single block in a round, a decision for

this round will be taken in a later round with synchronous network

behavior and an honest leader.

Preliminary versions of the ICC protocols. Note that the protocols
presented here are very different from those discussed in either

[24] or [1]. In particular, unlike the protocols presented here, the

preliminary protocols in [1, 24] (1) only guaranteed safety in a

synchronous setting, (2) were not optimistically responsive, and (3)

had potentially unbounded communication complexity.

Roadmap. Section 2 defines the cryptographic primitives the

ICC protocols rely on. In Section 3, we describe the ICC0 in detail

and state its main properties formally. In Section 5 we present

performance numbers from the Internet Computer deployment. All

proofs and detailed descriptions and analysis of ICC1 and ICC2 are

deferred to the full version [12] due to space constraints.

2 CRYPTOGRAPHIC PRIMITIVES
2.1 Collision resistant hash function
Our protocols use a hash function 𝐻 that is assumed to be collision
resistant, meaning that it is infeasible to find two distinct inputs

that hash to the same value; i.e., it is infeasible to find inputs 𝑥, 𝑥 ′

with 𝑥 ≠ 𝑥 ′ but 𝐻 (𝑥) = 𝐻 (𝑥 ′).

2.2 Digital signatures
Our protocols use a digital signature scheme that is secure in the

standard sense that it is infeasible to create an existential forgery

in an adaptive chosen message attack.

2.3 Threshold signatures
A (𝑡, ℎ, 𝑛)-threshold signature scheme is a scheme in which 𝑛

parties are initialized with a public-key/secret-key pair, along with

the public keys for all 𝑛 parties, as well as a global public key.

• There is a signing algorithm that, given the secret key of a

party and a message𝑚, generates a signature share on𝑚.

• There is also a signature share verification algorithm
that, given the public key of a party, along with a message

𝑚 and a signature share ss, determines whether or not ss is
a valid signature share on𝑚 under the given public key.

It is required that correctly generated signature share are

always valid.

• There is a signature share combining algorithm that,

given valid signature shares from ℎ different parties on a

given message𝑚, combines these signature shares to form a

signature on𝑚.

• There is a signature verification algorithm that, given

the global verification key, along with a signature 𝜎 and a

message𝑚, determines if 𝜎 is a valid signature on𝑚.

It is required that if the combining algorithm combines valid

signature shares from ℎ distinct parties, then (with over-

whelming probability) the result is a valid signature on𝑚.

We say that such a scheme is secure if it is infeasible for an

efficient adversary to win the following game.

• The adversary begins by choosing a subset of 𝑡 “corrupt”

parties. Let us call the remaining 𝑛 − 𝑡 parties “honest”.
• The challenger then generates all of the key material, giving

the adversary all of the public keys, as well as the secret keys

for the corrupt parties.

• The adversary makes a series of signing queries. In each

such query, the adversary specifies a message and an honest

PODC ’22, July 25–29, 2022, Salerno, Italy Camenisch et al.

party. The challenger responds with a signature share for

that party on the specified message.

• At the end of the game, the adversary outputs a message𝑚

and a signature 𝜎 .

• We say that the adversary wins the game if 𝜎 is a valid sig-

nature on𝑚, but the adversary obtained signature shares on

𝑚 from fewer than ℎ − 𝑡 honest parties.
Such threshold signatures can be implemented in several ways. (i)

One way is simply to use an ordinary signature scheme to generate

individual signature shares, and the combination algorithm just

outputs a set of signature shares. (ii) A second way is to use multi-

signatures, such as BLS multi-signatures [5], in which a signature

share is an ordinary BLS signature [6], which can be combined

into a new BLS signature on an aggregate of the individual public

keys, together with a descriptor of the ℎ individual signatories. (iii)

A third approach is to use an ordinary signature scheme such as

BLS, but with the secret key shared (via Shamir secret sharing [34])

among the parties.

There are various trade-offs among these approaches: Unlike

(iii), approaches (i) and (ii) have the advantage of not requiring any

trusted setup or distributed key generation protocol. Unlike (iii),

signatures in approaches (i) and (ii) identify the signatories (which

can be either a “bug” or a “feature”). Signatures of type (iii) are

unique (if the signatures of the underlying non-threshold scheme

is unique, which is the case for BLS signatures). Signatures of type

(i) and (ii) are not unique. The signatures in (iii) are typically (e.g.,

for BLS) more compact than those in (i) or (ii). Finally, for ℎ > 𝑡 + 1,
the security of approach (iii) may depend on somewhat stronger

(though still reasonable) security assumptions.

For the security of our atomic broadcast protocols, we use both

approaches (ii) and (iii).

We use approach (ii) with ℎ = 𝑛 − 𝑡 for authorization purposes:

when a party wishes to authorize a given message, it broadcasts

a signature share on a message. Assuming the scheme is secure,

the existence of a valid signature on a message means that at least

𝑛 − 2𝑡 honest parties must have authorized the message.

We use approach (iii) to build a random beacon. For this, we
need unique signatures (which BLS provides). A random beacon is

a sequence of values 𝑅0, 𝑅1, 𝑅2 The value 𝑅0 is a fixed, initial

value, known to all parties. For 𝑘 = 1, 2, . . . , the value 𝑅𝑘 is the

threshold signature on 𝑅𝑘−1. When a party has 𝑅𝑘−1 and wishes to

generate 𝑅𝑘 , it broadcasts its signature share on the message 𝑅𝑘−1.
If 𝑡 + 1 honest parties in total do the same, they can each construct

the value 𝑅𝑘 . However, assuming the threshold signature scheme

is secure, unless at least one honest party contributes a signature

share, the value 𝑅𝑘 cannot be constructed, and in fact, a hash of

𝑅𝑘 will be indistinguishable from a random string (if we model the

hash function as a “random oracle” [3]).

3 PROTOCOL ICC0
In this section, we present our Protocol ICC0 for atomic broadcast

in detail.

3.1 Preliminaries
Interval notation. Throughout this paper, we use the notation

[𝑘] to denote the set {0, . . . , 𝑘 − 1}.

We have 𝑛 parties, 𝑃1, . . . , 𝑃𝑛 . It is assumed that there are at

most 𝑡 corrupt parties. We shall assume a static corruption model,

where an adversary decides at the outset of the protocol execution

which parties to corrupt. We shall generally assume Byzantine
failures, where a corrupt party may behave arbitrarily, and where

all the corrupt parties are coordinated by the adversary. However,

we shall sometimes consider weaker forms of corruption, such as

crash failures, in which corrupt parties are simply non-responsive.

We shall also have occasion to consider an intermediate form of

corruption called consistent failures, which is somewhat protocol

specific, but generally means that a corrupt party behaves in a way

that is not conspicuously incorrect (see full version [12]).

The only type of communication performed by our protocol is

broadcast, wherein a party sends the same message to all parties

(this will apply to both Protocols ICC0 and ICC1, but not ICC2).

This is not a secure broadcast: if the sender is corrupt, there are no

guarantees that the honest parties will receive the same message or

any message at all; if the sender is honest, then all honest parties

will eventually receive the message. We generally assume that the

scheduling of message delivery is determined by the adversary.

Each party has a poolwhich holds the set of all messages received

from all parties (including itself). As we describe our protocol, no

messages are ever deleted from a pool. While the protocol can

be optimized so that messages that are no longer relevant may

discarded, we do not discuss those details here. In addition, a prac-

tical implementation of a replicated state machine would typically

incorporate some kind of checkpointing and garbage collection

mechanism, similar to that in PBFT [13]. Again, we do not discuss

these details. Although the Internet Computer implementation uses

a “gossip network” to transmit messages among parties, we shall

not make any assumptions about the underlying network, except

those already mentioned above.

Each party will be initialized with some secret keys, as well as

with the public keys for itself and all other parties. For some crypto-

graphic primitives, the secret keys of the parties are correlated with

one another, and must either be set up by a trusted party or a secure

distributed key generation protocol. Some of these cryptographic

keys are for digital signatures, which are used to authenticate mes-

sages. No other message authentication mechanism is required.

3.2 Components
Our protocol uses:

• a collision resistant hash function 𝐻 ;

• a signature scheme 𝑆
auth

, where each honest party has a

secret key, and is provisioned with the public keys of all

parties;

• an instance 𝑆notary of a (𝑡, 𝑛−𝑡, 𝑛)-threshold signature scheme,

where each honest party has a secret key, and is provisioned

with all of the public key material for the instance;

• an instance 𝑆
final

of a (𝑡, 𝑛−𝑡, 𝑛)-threshold signature scheme,

where each honest party has a secret key, and is provisioned

with all of the public key material for the instance;

• an instance 𝑆
beacon

of a (𝑡, 𝑡+1, 𝑛)-threshold signature scheme,

where each honest party has a secret key, and is provisioned

with all of the public key material for the instance; this is

Internet Computer Consensus PODC ’22, July 25–29, 2022, Salerno, Italy

used to implement a random beacon, as described in Sec-

tion 2; as such, the scheme is required to provide unique

signatures.

3.3 High level description of the protocol
The protocol proceeds in rounds. In each round, each party may

propose a block to be added to a block-tree. Here, a block-tree is a
directed rooted tree. Except for the root, each node in the tree is a

block 𝐵, which consists of

• a round number (which is also the depth of 𝐵 in the tree),

• the index of the party who proposed the block,

• the hash of the block’s parent in the block-tree (using the

collision resistant hash function 𝐻),

• the payload of the block.

The root itself is a special block, denoted root.
The details of the payload of a block are application dependent.

In the context of atomic broadcast, as described in Section 1, the

payload would naturally consist of one or more commands that

have been input to the party proposing the block. Moreover, in

constructing the payload for a proposed block, a party is always

extending a particular path in the block-tree, and can take into

account the payloads in the blocks already in that path (for example,

to avoid duplicating commands). This is an important feature for

state machine replication.

To propose a block, a party must sign the block with a digital

signature (using 𝑆
auth

). To add a proposed block to the block-tree,

the block must be notarized by a quorum of 𝑛 − 𝑡 parties, using
the threshold signature scheme 𝑆notary. Further, a notarized block

may be finalized by a quorum of 𝑛 − 𝑡 parties, using the threshold
signature scheme 𝑆

final
.

A random beacon is also used, implemented using the threshold

signature scheme 𝑆
beacon

, so that in each round, the next value of

the random beacon is revealed. The value of the random beacon in

a given round determines a permutation 𝜋 on the parties, which as-

signs a unique rank 0, . . . , 𝑛 − 1 to each party. Under cryptographic

assumptions, the permutation 𝜋 in each round is effectively a ran-

dom permutation, and independent of the permutations used in

previous rounds, and independent of the choice of corrupt parties

(this assumes an adversary that statically corrupts parties).

The party of rank 0 is the leader for that round.While the protocol

gives priority to a block proposed by the leader of the round, other

parties may propose blocks as well. In particular, if the leader is

corrupt or temporarily cut off from the network, blocks proposed

by other parties will be notarized and possibly finalized.

As we will see, under certain cryptographic assumptions, but

without any synchrony assumptions, it is guaranteed that in each

round 𝑘 ≥ 1:

P1: at least one notarized block of depth 𝑘 will be added to the

block-tree, and

P2: if a notarized block of depth 𝑘 is finalized, then there is no

other notarized block of depth 𝑘 .

Moreover, we have:

P3: if the network is synchronous over a short interval of time

beginning at the point in time where any honest party first

enters round 𝑘 , and the leader in round 𝑘 is honest, then the

block proposed by the leader in round 𝑘 will be finalized.

Property P1 ensures that the protocol does not deadlock, in that

the tree grows in every round.

Property P2 is used as follows. Suppose some party sees a final-

ized depth-𝑘 block 𝐵, and let 𝑝 the path in the block-tree from the

root to 𝐵. Suppose some party (either the same or a different one)

sees a finalized depth-𝑘 ′ block 𝐵′, where 𝑘 ′ ≥ 𝑘 , and let 𝑝 ′ the path
in the block-tree from the root to 𝐵′. Then Property P2 implies that

the path 𝑝 must be a prefix of path 𝑝 ′: if it were not, then there

would be two distinct notarized blocks at depth 𝑘 , contradicting

Property P2.

In the context of atomic broadcast, the above argument shows

that when a party sees a finalized block 𝐵, it may safely append to

its output queue the commands in the payloads of the blocks on

the path leading from the root to 𝐵, in that order.

Property P3 guarantees a strong notion of liveness under a par-

tial synchrony assumption. Indeed, if at least 𝑛 − 𝑡 parties have
received a command as input by round 𝑘 , then at least 𝑛 − 2𝑡 > 𝑛/3
honest parties will have received that command as input, and so

with probability > 1/3, the leader for round 𝑘 can ensure that this

command is in its proposed block, and if the synchrony assumption

holds for round 𝑘 , each honest party will output this command in

round 𝑘 (as soon as all relevant messages have been delivered).
1

Moreover, because of Property P1, even if the network remains

asynchronous for many rounds, as soon as it becomes synchronous

for even a short period of time, the commands from the payloads of

all of the rounds between synchronous intervals will be output by

all honest parties. Thus, even if the network is only intermittently

synchronous, the systemwill maintain a constant throughput. How-

ever, to the extent that the blocks in the rounds in-between are

proposed only by corrupt parties, the commands from these rounds

may not be of much use.

3.4 Blocks
We now give more details on blocks. There is a special round-0

block root.
For 𝑘 ≥ 1, a round-𝑘 block 𝐵 is a tuple of the form

(block, 𝑘, 𝛼, phash, payload). (1)

Here, 𝛼 represents the index of the party 𝑃𝛼 who proposed this

block, phash is an output of the hash function 𝐻 , and payload is

application-specific content.

We classify a block in an honest party 𝑄’s pool as authentic,
valid, notarized, or finalized (for 𝑄), depending on other data in 𝑄 ’s

pool. The special root is always present in 𝑄 ’s pool, and is always

considered authentic, valid, notarized, and finalized (for 𝑄).

Let 𝑘 ≥ 1 and let 𝐵 be a round-𝑘 block 𝐵 as in (1) in 𝑄 ’s pool.

• 𝐵 is called authentic (for 𝑄) if there is an authenticator for
𝐵 in 𝑄 ’s pool. An authenticator for 𝐵 is a tuple

(authenticator, 𝑘, 𝛼, 𝐻 (𝐵), 𝜎), where 𝜎 is a valid

𝑆
auth

-signature on (authenticator, 𝑘, 𝛼, 𝐻 (𝐵)) by party 𝑃𝛼 .

1
This presumes that there is no limit on the size of a payload. If there is a limit, but

honest parties give priority to older commands, a reasonably strong notion of liveness

will still be satisfied.

PODC ’22, July 25–29, 2022, Salerno, Italy Camenisch et al.

broadcast a share of the round-1 random beacon

For each round 𝑘 = 1, 2, 3 . . . :

wait for 𝑡 + 1 shares of the round-𝑘 random beacon

compute the round-𝑘 random beacon (which defines the permutation 𝜋 for round 𝑘)

broadcast a share of the random beacon for round 𝑘 + 1
let 𝑟me be the rank of 𝑃𝛼 according to the permutation 𝜋

N ← ∅ // the set of blocks for which notarization shares have been broadcast by 𝑃𝛼
D ← ∅ // the set of ranks disqualified by 𝑃𝛼

done← false
proposed ← false
𝑡0 ← clock()
repeat

wait for either:

(a) a notarized round-𝑘 block 𝐵, or a full set of notarization shares for some valid but non-notarized round-𝑘 block 𝐵:

// Finish the round
combine the notarization shares into a notarization for 𝐵, if necessary

broadcast the notarization for 𝐵

done← true
if N ⊆ {𝐵 } then broadcast a finalization share for 𝐵

(b) not proposed and clock() ≥ 𝑡0 + Δprop (𝑟me) :
// Propose a block
choose a notarized round-(𝑘 − 1) block 𝐵p

payload ← getPayload (𝐵p)
create a new round-𝑘 block 𝐵 = (block, 𝑘, 𝛼,𝐻 (𝐵p), payload)
broadcast 𝐵, 𝐵’s authenticator, and the notarization for 𝐵’s parent

proposed ← true
(c) a valid round-𝑘 block 𝐵 of rank 𝑟 such that 𝐵 ∉ N, 𝑟 ∉ D, clock() ≥ 𝑡0 + Δntry (𝑟) , and there is no valid round-𝑘 block

𝐵∗ of rank 𝑟 ∗ ∈ [𝑟] \ D:

// Echo block 𝐵
// and either broadcast a notarization share for it or disqualify its rank
if 𝑟 ≠ 𝑟me then

broadcast 𝐵, 𝐵’s authenticator, and the notarization for 𝐵’s parent

if some block in N has rank 𝑟

then D ← D ∪ {𝑟 }
else N ← N ∪ {𝐵 }, broadcast a notarization share for 𝐵

until done

Figure 1: ICC0: Tree Building Subprotocol for party 𝑃𝛼

• 𝐵 is called valid (for 𝑄) if it is authentic (for 𝑄), and if

phash = 𝐻 (𝐵p) for some round-(𝑘 − 1) block 𝐵p in 𝑄 ’s pool

that is notarized (for 𝑄). 𝐵p is called the parent of 𝐵 and

we say 𝐵 extends 𝐵p. Note that by the collision resistance

property of 𝐻 , we may assume that 𝐵’s parent is unique.

Also note that there may be an application-specific property

that must be satisfied in order to consider 𝐵 to be valid.

• 𝐵 is called notarized (for 𝑄) if it is valid and there is a

notarization for 𝐵 in 𝑄’s pool. A notarization for 𝐵 is a

tuple (notarization, 𝑘, 𝛼, 𝐻 (𝐵), 𝜎), where 𝜎 is a valid 𝑆notary-

signature on (notarization, 𝑘, 𝛼, 𝐻 (𝐵)). Anotarization share
for 𝐵 is a tuple (notarization-share, 𝑘, 𝛼, 𝐻 (𝐵), ns, 𝛽), where
ns is a valid 𝑆notary-signature share on (notarization, 𝑘, 𝛼, 𝐻 (𝐵))
by party 𝑃𝛽 .

• 𝐵 is called finalized (for 𝑄) if it is valid (for 𝑄) and there

is a finalization for 𝐵 in 𝑄’s pool. A finalization for 𝐵 is

a tuple (finalization, 𝑘, 𝛼, 𝐻 (𝐵), 𝜎), where 𝜎 is a valid 𝑆
final

-

signature on (finalization, 𝑘, 𝛼, 𝐻 (𝐵)). A finalization share
for 𝐵 is a tuple (finalization-share, 𝑘, 𝛼, 𝐻 (𝐵), fs, 𝛽), where

fs is a valid 𝑆
final

-signature share on (finalization, 𝑘, 𝛼, 𝐻 (𝐵))
by party 𝑃𝛽 .

In what follows, root serves as its own authenticator, notariza-

tion, and finalization.

Notice that if a party has a valid round-𝑘 block 𝐵 in its pool, then

there are also blocks root = 𝐵0, 𝐵1, . . . , 𝐵𝑘 = 𝐵 in its pool that form

a blockchain, meaning that 𝐵𝑖 is 𝐵𝑖+1’s parent, for 𝑖 = 0, . . . , 𝑘 −
1, along with authenticators for 𝐵1, . . . , 𝐵𝑘 and notarizations for

𝐵1, . . . , 𝐵𝑘−1.

3.5 Protocol details
The protocol consists of two subprotocols that run concurrently:

the Tree Building Subprotocol and the Finalization Subprotocol.
The Tree Building Subprotocol for party 𝑃𝛼 is shown in Figure 1.

The Tree Building Subprotocol makes use of two delay functions:

• Δprop : [𝑛] → R≥0 is used to delay proposing a block, based
on the rank of the proposer. It should be a non-decreasing

function.

Internet Computer Consensus PODC ’22, July 25–29, 2022, Salerno, Italy

𝑘max ← 0 // max round finalized by 𝑃𝛼
repeat

wait for:

(i) a finalized round-𝑘 block 𝐵 with 𝑘 > 𝑘max, or

(ii) a complete set of finalization shares for some valid but non-finalized round-𝑘 block 𝐵 with 𝑘 > 𝑘max:

// Commit to the last 𝑘 − 𝑘max blocks in the chain ending at 𝐵
combine the finalization shares into a finalization for 𝐵, if necessary

broadcast the finalization for 𝐵

output the payloads of the last 𝑘 − 𝑘max blocks in the chain ending at 𝐵

𝑘max ← 𝑘

forever

Figure 2: Finalization Subprotocol for party 𝑃𝛼

• Δntry : [𝑛] → R≥0 is used to delay generating a notarization
share on a block, based on the rank of the proposer. It should

be a non-decreasing function.

Our presentation and analysis of our protocol will be in terms of

these general delay functions. Looking ahead, for liveness, the only

requirement is that 2𝛿 + Δprop (0) ≤ Δntry (1), where 𝛿 is a bound

on the network delay during that round. However, to better control

the communication complexity of the protocol, a recommended

implementation of these functions is as follows:

Δprop (𝑟) B 2Δ
bnd

𝑟 ;

Δntry (𝑟) B 2Δ
bnd

𝑟 + 𝜖. (2)

The above liveness requirement will be satisfied for those rounds

where the network delay is bounded by 𝛿 ≤ Δ
bnd

. The parameter 𝜖

is a “governor” — it can be set to zero, but setting it to a non-zero

value will keep the protocol from running “too fast”.

We remind the reader that the only type of communication

performed by our protocol is broadcast, wherein a party sends the

samemessage to all parties. Moreover, this broadcast is not assumed

to be secure: a party receiving a message from a corrupt party

cannot be sure that other parties will receive the same message.

In this protocol description, a party waits for its pool to contain

messages satisfying certain conditions. As already discussed, this

pool holds the set of all messages received from any party (including

messages broadcast by itself), and no messages are ever deleted

from a pool (although a properly optimized version of the protocol

would do so).

In each round of the Tree Building Subprotocol, as a preliminary

step, party 𝑃𝛼 will begin by waiting for 𝑡 + 1 shares of the threshold
signature used to compute the random beacon for that round. After

that, it will compute the random beacon for round 𝑘 , and immedi-

ately broadcast its share of the random beacon for round 𝑘 + 1. This
is a bit of “pipelining” logic used to minimize the latency — as a

result of this, the adversary may already know the random beacon

for round 𝑘 + 1 well before any honest party has finished round 𝑘 ,

but this is not an issue (at least, assuming static corruptions).

As already discussed, the random beacon for round 𝑘 deter-

mines a permutation 𝜋 of the parties, which assigns a unique rank
0, . . . , 𝑛 − 1 to each party. The party of rank 0 is called the leader
for round 𝑘 . For a round-𝑘 block 𝐵, we define rank𝜋 (𝐵) to be the

rank of party who proposed 𝐵.

Now round 𝑘 begins in earnest. For this round, party 𝑃𝛼 will

maintain a set N of blocks for which it has already broadcast no-

tarization shares, and a set D of disqualified ranks. If a rank is

disqualified, it means that the party of that rank has been caught

proposing two different blocks for this round.

The round will end for party 𝑃𝛼 as soon as it finds either a

notarized round-𝑘 block𝐵 in its pool, or a full set of𝑛−𝑡 notarization
shares for some valid but non-notarized round-𝑘 block 𝐵 in its pool.

In the latter case, party 𝑃𝛼 will combine the notarization shares

into a notarization on 𝐵, and in either case, it will broadcast the

notarization on 𝐵. In addition, if party 𝑃𝛼 has not itself broadcast

a notarization share on any block besides 𝐵, it will broadcast a

finalization share on 𝐵.

Party 𝑃𝛼 will propose its own block when Δprop (𝑟me) time units

have elapsed since the beginning of the round (more precisely, since

the time at which it executes the step 𝑡0 ← clock() in Figure 1).

This delay is not essential for safety or liveness, but is intended

to prevent all honest parties from flooding the network with their

own proposals. In particular, when the leader is honest, the delay

functions are chosen appropriately, and the network is synchronous,

no party other than the leader will broadcast its own block. In

proposing its own block, 𝑃𝛼 must first choose a notarized round-

(𝑘 − 1) block in 𝐵p in its pool to extend. There will always be such

a block, since the previous round ends only when there is such

a block (or 𝑘 = 1 and 𝐵p = root). There may be more than one

such notarized block, in which case it does not matter which one is

chosen. Next, 𝑃𝛼 must compute a payload. In Figure 1, this is done

by calling the function getPayload (𝐵p), the details of which are

application dependent, but note that it may depend on 𝐵p and the

entire chain of blocks ending at 𝐵p (for example, to avoid duplicate

commands). Finally, having constructed a block 𝐵 to propose, party

𝑃𝛼 broadcasts 𝐵, 𝐵’s authenticator, and the notarization for 𝐵’s

parent 𝐵p.

Finally, party 𝑃𝛼 will echo a valid round-𝑘 block 𝐵 of rank 𝑟 in

its pool provided (i) it has not already broadcast a notarization share

for 𝐵, (ii) it has not disqualified the rank 𝑟 , (iii) at least Δntry (𝑡) time

units have passed since the beginning of the round, and (iv) there

is no “better” block in it pool. Here, a “better” block would be a

valid round-𝑘 block whose rank is less than 𝑟 but has not yet been

disqualified. If these condition holds, party 𝑃𝛼 does the following:

• it “echoes” the block 𝐵, meaning that it broadcasts 𝐵, 𝐵’s

authenticator, and the notarization for 𝐵’s parent;

PODC ’22, July 25–29, 2022, Salerno, Italy Camenisch et al.

• in addition, it broadcasts a notarization share for 𝐵, unless

it has already broadcast a notarization share for a different

block of the same rank 𝑟 , in which case it disqualifies the

rank 𝑟 .

Note that 𝑃𝛼 will echo 𝐵 even if it has already broadcast a nota-

rization share of another block of the same rank. This is to ensure

that all other honest parties get a chance to also disqualify rank 𝑟 .

However, note that 𝑃𝛼 will echo at most 2 blocks of any given rank.

The Finalization Subprotocol for party 𝑃𝛼 is shown in Figure 2.

Party 𝑃𝛼 tracks the last round 𝑘max for which it has seen a finalized

block. Whenever it sees either (i) a finalized round-𝑘 block 𝐵 in

its pool, or (ii) a full set of 𝑛 − 𝑡 finalization shares for some valid

but non-finalized round-𝑘 block 𝐵 in its pool, where 𝑘 > 𝑘max, it

proceeds as follows. In case (ii), it combines the finalization shares

into a finalization on 𝐵, and in either case (i) or (ii), it will broadcast

the finalization on 𝐵. In addition, it will output the payloads of the

last 𝑘 − 𝑘max blocks in the blockchain ending at 𝐵, in order.

Our formal executionmodel is that when a “wait for” statement is

executed, execution will pause (if necessary) until a message arrives

or a timing condition occurs that makes one of the conditions in

the “wait for” be satisfied. When that happens, the corresponding

clause is executed (if there are several conditions that are satisfied,

one is chosen arbitrarily). We will assume that the pool for that

party is not modified while this clause is executing.

4 PROPERTIES OF PROTOCOL ICC0
We now state the main properties of Protocol ICC0, corresponding

to Properties P1, P2, and P3 discussed in Section 3.3. The following

lemma corresponds to Property P1.

Lemma (Deadlock freeness). Assume at most 𝑡 < 𝑛/3 corrupt
parties, secure signatures, and collision resistance. In each round, if
all messages up to that round broadcast by honest parties have been
delivered to all honest parties, and all notarization and proposal delay
times have elapsed, then all honest parties will have finished the round
with a notarized block.

The following lemma corresponds to Property P2.

Lemma (Safety). Assume at most 𝑡 < 𝑛/3 corrupt parties, secure
signatures, and collision resistance. At each round, if some block is
finalized, then no other block at that round can be notarized.

The following lemma corresponds to Property P3. For this, we

formally state our partial synchrony assumption:

Definition. Suppose that at time 𝑇 , all honest parties have been
initiated. We say the communication network is 𝛿-synchronous at
time 𝑇 if all messages that have been sent by honest parties by time
𝑇 arrive at their destinations before time 𝑇 + 𝛿 .

Lemma (Liveness assuming partial synchrony). Assume that:
(i) there are at most 𝑡 < 𝑛/3 corrupt parties, signatures are secure,

and hash functions are collision resistant;
(ii) 𝑘 > 1, the first honest party 𝑃 to enter round 𝑘 does so at time

𝑇 , and all honest parties have been initiated at time 𝑇 ;
(iii) the leader 𝑄 of round 𝑘 is honest;
(iv) the communication network is 𝛿-synchronous at times 𝑇 and

𝑇 + 𝛿 + Δprop (0);

(v) 2𝛿 + Δprop (0) ≤ Δntry (1).
Then when all round-𝑘 messages from honest parties have been de-
livered to all honest parties, each honest party will have 𝑄 ’s round-𝑘
proposed block in its pool as a finalized block.

Note that the condition (v) of this lemma will be satisfied by the

delay functions defined in (2) when 𝛿 ≤ Δ
bnd

.

These lemmas are proved in the full version of this paper [12]. In

addition, the full version contains an analysis of the expected mes-

sage complexity, latency, and various other performance metrics.

Furthermore, we also present and analyse Protocols ICC1 and ICC2

in detail in that version.

5 PERFORMANCE MEASUREMENTS
The Internet Computer currently consists of 518 nodes running in

33 independent data centers worldwide.
2
It is partitioned into 35

shards (called subnets), each of them running its own instance of

consensus with 13 to 40 nodes of which at most three are located

in the same data center. The code is open source.
3

We measured all outgoing traffic per node over a 5min window

for three scenarios with a small and a large subnet, see Table 1 . The

observed ping RTT between nodes in different data centers varies

between 6ms and 110ms with a packet loss probability below 0.001.

In the first scenario, no payload from users is included in the

blocks, i.e., they only contain management information. The current

parametrization leads to 1.1 blocks per second on small subnets

and about 0.4 blocks per second on large subnets. Note that the

traffic includes more than only the messages for consensus, e.g.,

messages exchanged with the clients, the periodic cryptographic

key resharing scheme, logs, metrics etc.

In the second scenario, the subnets are each exposed to 100 state

changing requests per second, each of them carrying 1KB of user

payload. Higher user throughput is possible, these numbers have

simply been picked to illustrate the overhead introduced by the

protocol.

In the third scenario, one third of the nodes refuses to participate

in the protocol leading to a lower average number of blocks finalized

per second and a decrease of the traffic sent per node.

without load with load with load and
node failures

13 node subnet 1.09 blocks/s

1.64 Mb/s

1.10 blocks/s

4.72 Mb/s

0.45 blocks/s

4.39 Mb/s

40 node subnet 0.41 blocks/s

4.63 Mb/s

0.41 blocks/s

7.32 Mb/s

0.16 blocks/s

5.06 Mb/s

Table 1: Average block rate and sent traffic.

REFERENCES
[1] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, and Ling Ren. 2018. Dfinity

Consensus, Explored. Cryptology ePrint Archive, Report 2018/1153. https:

//eprint.iacr.org/2018/1153.

[2] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically

optimal validated asynchronous byzantine agreement. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing. 337–346.

[3] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Para-

digm for Designing Efficient Protocols. In CCS ’93, Proceedings of the 1st ACM Con-
ference on Computer and Communications Security, Fairfax, Virginia, USA, Novem-
ber 3-5, 1993, Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,

and Victoria Ashby (Eds.). ACM, 62–73. https://doi.org/10.1145/168588.168596

2
https://dashboard.internetcomputer.org/

3
https://github.com/dfinity/ic

https://eprint.iacr.org/2018/1153
https://eprint.iacr.org/2018/1153
https://doi.org/10.1145/168588.168596
https://dashboard.internetcomputer.org/

Internet Computer Consensus PODC ’22, July 25–29, 2022, Salerno, Italy

[4] Michael Ben-Or. 1983. Another Advantage of Free Choice: Completely Asyn-

chronous Agreement Protocols (Extended Abstract). In Proceedings of the Second
Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
Montreal, Quebec, Canada, August 17-19, 1983, Robert L. Probert, Nancy A. Lynch,

and Nicola Santoro (Eds.). ACM, 27–30. https://doi.org/10.1145/800221.806707

[5] Dan Boneh, Manu Drijvers, and Gregory Neven. 2018. Compact Multi-signatures

for Smaller Blockchains. In Advances in Cryptology - ASIACRYPT 2018 - 24th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II (Lecture
Notes in Computer Science, Vol. 11273), Thomas Peyrin and Steven D. Galbraith

(Eds.). Springer, 435–464. https://doi.org/10.1007/978-3-030-03329-3_15

[6] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the

Weil Pairing. In Advances in Cryptology - ASIACRYPT 2001, 7th International
Conference on the Theory and Application of Cryptology and Information Security,
Gold Coast, Australia, December 9-13, 2001, Proceedings (Lecture Notes in Computer
Science, Vol. 2248), Colin Boyd (Ed.). Springer, 514–532. https://doi.org/10.1007/3-

540-45682-1_30

[7] Manuel Bravo, Gregory Chockler, and Alexey Gotsman. 2020. Making Byzantine

Consensus Live (Extended Version). arXiv:2008.04167, http://arxiv.org/abs/2008.

04167.

[8] Ethan Buchman, Jae Kwon, and Zarko Milosevic. 2018. The latest gossip on BFT

consensus. arXiv:1807.04938, http://arxiv.org/abs/1807.04938.

[9] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure

and Efficient Asynchronous Broadcast Protocols. In Advances in Cryptology -
CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings (Lecture Notes in Computer Science,
Vol. 2139), Joe Kilian (Ed.). Springer, 524–541. https://doi.org/10.1007/3-540-

44647-8_31

[10] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random Oracles in

Constantinople: Practical Asynchronous Byzantine Agreement Using Cryptogra-

phy. J. Cryptol. 18, 3 (2005), 219–246. https://doi.org/10.1007/s00145-005-0318-0

[11] Christian Cachin and Stefano Tessaro. 2005. Asynchronous Verifiable Information

Dispersal. In Distributed Computing, 19th International Conference, DISC 2005,
Cracow, Poland, September 26-29, 2005, Proceedings (Lecture Notes in Computer
Science, Vol. 3724), Pierre Fraigniaud (Ed.). Springer, 503–504. https://doi.org/10.

1007/11561927_42

[12] Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Victor

Shoup, and Dominic Williams. 2021. Internet Computer Consensus. Cryptology

ePrint Archive, Report 2021/632. https://ia.cr/2021/632.

[13] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance.

In Proceedings of the Third USENIX Symposium on Operating Systems Design
and Implementation (OSDI), New Orleans, Louisiana, USA, February 22-25, 1999,
Margo I. Seltzer and Paul J. Leach (Eds.). USENIX Association, 173–186. https:

//dl.acm.org/citation.cfm?id=296824

[14] Miguel Castro and Barbara Liskov. 2002. Practical byzantine fault tolerance

and proactive recovery. ACM Trans. Comput. Syst. 20, 4 (2002), 398–461. https:

//doi.org/10.1145/571637.571640

[15] Allen Clement, Edmund L. Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco

Marchetti. 2009. Making Byzantine Fault Tolerant Systems Tolerate Byzan-

tine Faults. In Proceedings of the 6th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2009, April 22-24, 2009, Boston, MA,
USA, Jennifer Rexford and Emin Gün Sirer (Eds.). USENIX Association, 153–

168. http://www.usenix.org/events/nsdi09/tech/full_papers/clement/clement.pdf

http://www.usenix.org/events/nsdi09/tech/full_papers/clement/clement.pdf.

[16] Xavier Défago, André Schiper, and Péter Urbán. 2004. Total order broadcast and

multicast algorithms: Taxonomy and survey. ACM Computing Surveys (CSUR)
36, 4 (2004), 372–421.

[17] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson, Scott

Shenker, Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry. 1987.

Epidemic Algorithms for Replicated Database Maintenance. In Proceedings of the
Sixth Annual ACM Symposium on Principles of Distributed Computing, Vancouver,
British Columbia, Canada, August 10-12, 1987, Fred B. Schneider (Ed.). ACM, 1–12.

https://doi.org/10.1145/41840.41841

[18] DFINITY. 2020. A Technical Overview of the Internet Computer. https://medium.

com/dfinity/a-technical-overview-of-the-internet-computer-f57c62abc20f.

[19] Sisi Duan, Michael K. Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT

Made Practical. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018,
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.).

ACM, 2028–2041. https://doi.org/10.1145/3243734.3243812

[20] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. 1988. Consensus

in the presence of partial synchrony. J. ACM 35, 2 (1988), 288–323. https:

//doi.org/10.1145/42282.42283

[21] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. Cryptology

ePrint Archive, Report 2017/454. https://eprint.iacr.org/2017/454.

[22] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,

Michael K. Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.

SBFT: A Scalable and Decentralized Trust Infrastructure. In 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2019, Portland,
OR, USA, June 24-27, 2019. IEEE, 568–580. https://doi.org/10.1109/DSN.2019.00063

[23] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020.

Dumbo: Faster Asynchronous BFT Protocols. In CCS ’20: 2020 ACM SIGSAC Con-
ference on Computer and Communications Security, Virtual Event, USA, November
9-13, 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.).

ACM, 803–818. https://doi.org/10.1145/3372297.3417262

[24] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. DFINITY

Technology Overview Series, Consensus System. arXiv:1805.04548, http:

//arxiv.org/abs/1805.04548.

[25] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. 1982. The Byzantine

Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (1982), 382–401. https:

//doi.org/10.1145/357172.357176

[26] LibraBFT Team. 2020. State Machine Replication in the Libra Blockchain.

https://diem-developers-components.netlify.app/papers/diem-consensus-state-

machine-replication-in-the-diem-blockchain/2020-05-26.pdf.

[27] AndrewMiller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. TheHoney

Badger of BFT Protocols. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28, 2016,
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,

and Shai Halevi (Eds.). ACM, 31–42. https://doi.org/10.1145/2976749.2978399

[28] Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. 2019.

Gogsworth: Byzantine View Synchronization. arXiv:1909.05204, http://arxiv.

org/abs/1909.05204.

[29] Oded Naor and Idit Keidar. 2020. Expected Linear Round Synchronization: The

Missing Link for Linear Byzantine SMR. arXiv:2002.07539, http://arxiv.org/abs/

2002.07539.

[30] Rafael Pass and Elaine Shi. 2018. Thunderella: Blockchains with Optimistic In-

stant Confirmation. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II (Lecture Notes
in Computer Science, Vol. 10821), Jesper Buus Nielsen and Vincent Rijmen (Eds.).

Springer, 3–33. https://doi.org/10.1007/978-3-319-78375-8_1

[31] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. 1980. Reaching

Agreement in the Presence of Faults. J. ACM 27, 2 (1980), 228–234. https:

//doi.org/10.1145/322186.322188

[32] HariGovind V. Ramasamy and Christian Cachin. 2005. Parsimonious Asynchro-

nous Byzantine-Fault-Tolerant Atomic Broadcast. In Principles of Distributed
Systems, 9th International Conference, OPODIS 2005, Pisa, Italy, December 12-
14, 2005, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 3974),
James H. Anderson, Giuseppe Prencipe, and Roger Wattenhofer (Eds.). Springer,

88–102. https://doi.org/10.1007/11795490_9

[33] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using the State

Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (1990), 299–319. https:

//doi.org/10.1145/98163.98167

[34] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979), 612–613.

https://doi.org/10.1145/359168.359176

[35] Chrysoula Stathakopoulou, Tudor David, and Marko Vukolic. 2019. Mir-BFT:

High-Throughput BFT for Blockchains. arXiv:1906.05552, http://arxiv.org/abs/

1906.05552.

[36] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2018. HotStuff: BFT Consensus in the Lens of Blockchain. arXiv:1803.05069,

http://arxiv.org/abs/1803.05069.

https://doi.org/10.1145/800221.806707
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45682-1_30
http://arxiv.org/abs/2008.04167
http://arxiv.org/abs/2008.04167
http://arxiv.org/abs/1807.04938
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.1007/s00145-005-0318-0
https://doi.org/10.1007/11561927_42
https://doi.org/10.1007/11561927_42
https://ia.cr/2021/632
https://dl.acm.org/citation.cfm?id=296824
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
http://www.usenix.org/events/nsdi09/tech/full_papers/clement/clement.pdf
http://www.usenix.org/events/nsdi09/tech/full_papers/clement/clement.pdf
https://doi.org/10.1145/41840.41841
https://medium.com/dfinity/a-technical-overview-of-the-internet-computer-f57c62abc20f
https://medium.com/dfinity/a-technical-overview-of-the-internet-computer-f57c62abc20f
https://doi.org/10.1145/3243734.3243812
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
https://eprint.iacr.org/2017/454
https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1145/3372297.3417262
http://arxiv.org/abs/1805.04548
http://arxiv.org/abs/1805.04548
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://diem-developers-components.netlify.app/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2020-05-26.pdf
https://doi.org/10.1145/2976749.2978399
http://arxiv.org/abs/1909.05204
http://arxiv.org/abs/1909.05204
http://arxiv.org/abs/2002.07539
http://arxiv.org/abs/2002.07539
https://doi.org/10.1007/978-3-319-78375-8_1
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
https://doi.org/10.1007/11795490_9
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/359168.359176
http://arxiv.org/abs/1906.05552
http://arxiv.org/abs/1906.05552
http://arxiv.org/abs/1803.05069

	Abstract
	1 Introduction
	1.1 Related work

	2 Cryptographic primitives
	2.1 Collision resistant hash function
	2.2 Digital signatures
	2.3 Threshold signatures

	3 Protocol ICC0
	3.1 Preliminaries
	3.2 Components
	3.3 High level description of the protocol
	3.4 Blocks
	3.5 Protocol details

	4 Properties of Protocol ICC0
	5 Performance Measurements
	References

