
Charging cycles for running Canister
smart contracts on the Internet Computer
Alexandra & Dimitris

Background

A B
Request

Response

Ingress

computation

Cycles
balance

● Cycles act as the computational resource to execute actions on the Internet Computer

● ICP can be converted into Cycles (or get some from the Cycles faucet)

● 1T Cycles = 1 SDR

https://upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Emblem-person-blue.svg/1000px-Emblem-person-blue.svg.png

Agenda

● Goals of charging cycles

● Design principles

● How charging works for various actions

● Special topics

○ “Freezing” canisters

○ Deep dive on message execution

Goals of charging cycles

● Canisters pay for the resources used

● Certain DDoS attacks become harder

Design principles

● “Reverse gas” model

○ End user pays (e.g. Ethereum) vs canister (smart contract) pays on the IC

● Two parts in cost function:

○ Fixed cost for basic operation

○ Variable based on “strain” put on the system

● Reserve upfront and refund excess

Disclaimer: In the following we’ll explain the current state of affairs wrt charging cycles. Things will

likely change as the IC evolves, including both what actions are being charged for and their price.

Ingress messages

● Paying for an ingress covers the expense of doing consensus on the message.

● The receiving canister always pays for the ingress message.

● The induction cost of an ingress into the input queue of a canister consists of:

○ Fixed fee for receiving the ingress

○ Variable fee proportional to bytes transmitter

○ user-controlled payload(method name, payload, nonce)

Ingress messages

● A canister can filter and reject ingress messages through the canister_inspect_message method.

● Offers protection against malicious users.

Canister has
enough cycles?

No Yes
Reject
ingress

Canister exports
canister_inspect_message?

Accept
ingress

Yes

Allow ingress? No

Yes

No

Executing a message

● Fixed cost + cost proportional to Wasm instructions executed

A

Cycle balance

Executing a message

● Reserve max execution cost before execution start

A

Cycle balance

Reservation

Executing a message

● Refund any excess once execution completes

A

Cycle balance

Reservation

Refund

Inter-canister calls

● Transmission cost of both request and response paid by caller

○ Fixed cost -> metadata of message

○ Proportional to bytes transmitted -> user controlled payload (method name + payload)

● Execution cost paid by executing canister

○ Caller pays for handling response

○ Callee pays for handling request

Caller

Callee

Cycle balance

Inter-canister calls

● Caller has produced a request for Callee.

● Caller’s balance is updated:

● Request transmission cost is deducted

● Max response transmission cost is reserved

● Max response execution cost is reserved

Request

Cycle balance

Response transmission reservation

Response execution reservation

Caller

Callee

Inter-canister calls

● Callee has processed Caller’s request and has produced a response

● Response execution cost is deducted from Callee’s balance

Response

Cycle balance

Response transmission reservation

Response execution reservation

Caller

Callee

Inter-canister calls

● Caller has processed Callee’s response

● Response excess transmission cost is refunded

● Response excess execution cost is refunded

Cycle balance

Response transmission refund

Response execution refund

Caller

Callee

Management messages

● If caller is an end user -> target (i.e. “managed”) canister pays

● If caller is a canister -> caller pays transmission cost

● Target canister pays for local execution

○ install_code

● Special case: create_canister

○ Can only be called by canisters

○ Incurs an additional flat cycles cost

Resource allocation

● Compute allocation / scheduling priority - how often a canister is scheduled for
execution

● Optional memory allocation setting
● Passive charges paid over time
● Canisters pay for these allocation even when they are idle

Memory
allocation
specified?

 Best effort:
○ Wasm heap
○ Stable memory
○ Global variables
○ Wasm code

No Yes

Guarantee:
Charge
based on the
allocated
memory

“Freezing” canisters

● Freezing time setting.

● Preserves the canister’s code and state.

● Gives someone a chance to top-up the canister’s balance before it is uninstalled.

● The freezing threshold guarantees that the canister can pay for the resources during the

allocated time.

○ cycles reserved for storage costs

○ cycles reserved for compute allocation

“Freezing” canisters

● Induction of ingress messages may not be possible.
freezing threshold + induction cost > canister’s balance

Ingress cost

Freezing threshold

 Ingress

CanisterOutOfCycles

https://upload.wikimedia.org/wikipedia/commons/thumb/d/d8/Emblem-person-blue.svg/1000px-Emblem-person-blue.svg.png

“Freezing” canisters

● A frozen canister cannot perform calls.

 freezing threshold + message cost > canister’s balance

Cycle balance

Message cost

Freezing threshold

“Freezing” canisters

● A frozen canister will reject requests.

freezing threshold + execution cost > canister’s balance

 A B Reject

Request

Cycle balance

Transmission reservation

Response execution reservation

Execution cost

Threshold freezing

“Freezing” canisters

● A frozen canister can still process responses.
● Refunds can unfreeze a canister.

 A B

Response

Refund

Freezing threshold

“Freezing” canisters

 A

Refund

Frozen balance

Unfrozen balance

 C

Response

● A frozen canister can still process responses.
● Refunds can unfreeze a canister.

Deep dive in message execution

● Counting the number of instruction executed
○ Operations with fixed amount of

instructions
○ Operations with variable amount of

instructions

● Extra overhead involved when copying data from
one location to another.

Fixed amount
of instructions

Variable amount
of instruction

Lifecycle of a canister’s Cycles balance

 Round 1 2 3 4 5 6 7 8 9 10

3 messages received

and executed in round

4

2 requests sent in

round 6

2 responses

processed in 9

Q & A

Cost of running a dapp on the IC

● Current costs in https://sdk.dfinity.org/docs/developers-guide/computation-and-storage-costs.html

● Total cost heavily depends on the workload/storage requirements

● Working example:

○ 1000 ingress messages/sec, average size 100 bytes, average instructions consumption 100M

■ Ingress cost: 1000 * (ingress_message_reception_fee + 100 * ingress_byte_reception_fee) = 1.4B cycles/s

■ Execution cost: 1000 * (update_message_execution_fee + 10M * ten_update_instructions_execution_fee) =
40B cycles/s

○ 10 xnet messages/sec, average size 200 bytes

■ 10 * (xnet_call_fee + 200 * xnet_byte_transmission_fee) = 4.6M cycles/s

○ 2GB of storage

■ 2 * gib_storage_per_second_fee = 254K cycles/s

https://sdk.dfinity.org/docs/developers-guide/computation-and-storage-costs.html

