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Summary of content

Scaled self-supervised learning: We describe our Ursa project where we scaled our SSL model

from 500M to 2B parameters and trained with over 1 million hours of audio from approximately

50 languages.

ASR performance gains: We demonstrate an overall 22% improvement in accuracy compared to

our previous model through scaling SSL on English, and gains on a wide variety of lower resource

languages.

Increased diversity: We achieve industry-leading performance across a range of diverse voices.

Improved sample efficiency: We also show that our scaled SSL model can outperform a smaller

SSL model with 300x less labelled data.

Introduction

We first train a self-supervised learning (SSL) model. This uses an efficient transformer variant that

learns rich acoustic representations of speech from unlabeled data.

We then use paired audio-transcript data in a second stage to train an acoustic model that learns to

map self-supervised representations to phoneme probabilities.

The predicted phonemes are then mapped into a transcript by using a language model to identify the

most likely sequence of words.
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Figure 1. Architecture of standard ASR contrasted with SSL based ASR

Scaled self-supervised learning

We found that the scaling behaviour of acoustic SSL models is similar to that of large language models.

Therefore we scaled our model both in terms of size and training data.

Model size: We scaled our SSL model to 2 billion parameters.

Training data: When model size is increased, the capacity of the model to learn from increased

training data is also increased. Therefore we also scaled our SSL training data to over 1 million

hours spanning around 50 languages.

We evaluated our system across a range of publicly available testsets by calculating word error rate

(WER).We compare to our previous model which used less powerful SSL.We also compare toWhisper

[7] which is a publicly available model which does not use SSL.

Ursa Baseline Whisper

Weighted average 11.96 15.36 15.95

Table 1. Averaged results on a wide range of publicly available testsets. Ursa is our scaled SSL model, baseline is our

previous best SSL model, Whisper is a non-SSL model.

Sample efficiency

SSLmodels produce rich representations of audiowhich enable easier learning of themapping between

speech and text. The more powerful SSL models learn stronger representations which should lead

to better ASR performance and increased sample efficiency. Greater sample efficiency means less

required labeled ASR training data, and also quicker training times.

We tested sample efficiency on English by comparing 2 sizes of SSL model and training on increasingly

limited labeled data.
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Figure 2. Results from 2 SSL models with different parameter sizes, trained on differing amounts of labeled data.

Progress saturates quickly above 10,000 hours with our more powerful SSL model.

For the low-resource regime, performance is still very strong.

Scaling SSL leads to greater sample efficiency and generally better performance.

Diversity

By scaling to 2 billion parameters, our models are now capable of learning richer acoustic features from

unlabeled multi-lingual data, allowing us to understand a larger spectrum of voice cohorts.

Speech-to-text systems have been shown to exhibit systematic inaccuracies or biases towards groups

of speakers with varying age, gender, and other demographic factors [8, 4, 6]. Artificial intelligence

bias in speech-to-text not only affects the reliability of speech technologies in real-world applications

but it can perpetuate discrimination at a large scale.

We evaluated our model using WER on different English accents using the Common Voice dataset [1]

and on different demographics using the CORAAL [3] and Casual Conversations [5] datasets.

Figure 3. WER of different commercial ASR systems for different English accents based on the Common Voice dataset

Figure 4. WER of different commercial ASR systems on combined CORAAL and Casual Conversations datasets broken

down by gender and age

Language coverage

Scaling traditional ASR models relies on increasing the amount of labeled training data. This is not

possible for many of the world’s languages. However, SSL relies on unlabeled data which is more

readily available. We show that we are able to achieve excellent results on a range of languages

spanning 1000s to 10s of hours of labeled training data. This is more evidence of the power of scaled

SSL.

We evaluated performance on the FLEURS dataset [2] across 41 languages, and again compared to

our previous best model and Whisper.
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Figure 5. Results on FLEURS testset averaged across 41 languages, and individual language results on Arabic, French,

Hindi, Croatian and Hungarian. Ursa is our scaled SSL model, baseline is our previous best SSL model, Whisper is a

non-SSL model.
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