

RESEARCH FUTURES 2.0

A new look at the drivers and scenarios that will define the decade

Summary of key research results

Objective

Build on our original study examining the future of research

Back in 2018, with the help of Ipsos MORI, we set out to conduct a study to try to understand how the rapid and profound changes we were witnessing in science, technology and medicine were impacting the research landscape.

- Our goal was straightforward: To equip all of us in the industry with the knowledge we needed to navigate the opportunities and challenges that lay ahead. Drawing on a comprehensive literature review, interviews with 56 technology, research and publishing experts around the globe, and a survey of 2,055 researchers, we attempted to build a blueprint for the coming 10 years. In February 2019, we published the report based on that study - Research futures: Drivers and scenarios for the next decade.
- There were two pillars to this study:
- Pillar one: nineteen key drivers expected to shape developments in the decade ahead were identified during our discovery phase. We grouped these drivers into six themes and explored each of them in essay form.
- Pillar two: Three scenarios, developed through workshops with internal and external experts based on how the nineteen key drivers might influence research, each envisaging what the future might look like a decade later. We named these scenarios Brave open world, Tech titans and Eastern ascendance.

Fast forward to today

- Since early 2020, the pandemic has transformed every aspect of researchers' work. We felt the time was ripe to revisit our first report and consider how the themes and scenarios we identified were playing out, particularly in light of COVID-19.

Approach

- Overall: During 2020 and 2021 we conducted two separate researcher surveys asking questions on a broad range of topics, from collaboration to education and from open science to public engagement. We reviewed the world of research through the changes of the past two years. We also asked researchers to help us understand the impact of the pandemic on their work.
- Method: Survey was administered online and was available in English only. Survey took 20 minutes to complete (median average).
- Fieldwork: Two waves of fieldwork: August 2020 and August 2021.
- Audience: Researchers 2021 n=1,173 and 2020 n=1,066.
- Results: During fieldwork, we closely monitored respondents by country and adjusted the sample to ensure results were as representative of the research community as possible. Responses are from a multitude of disciplines and locations. Results have been weighted to be representative of the global researcher population by country (UNESCO/OECD data). Base sizes shown in this report are unweighted, unless otherwise stated. Percentages shown in this report may not add together accurately due to rounding.
- Statistical Error: Maximum error margin for 1,173 responses is ± 2.41 percent and for 1,066 response is ± 2.53 percent at 90 percent confidence levels. When comparing the main group and sub-groups we have used a Z-test of proportion to identify differences between the overall average and the sub-group (90 percent confidence levels).

Differences are indicated by a tick or a dot. A green $\sqrt{ }$ tick indicates the 2021 result is higher than the 2020 result while a red $\boldsymbol{\checkmark}$ tick indicates it is lower. Significant difference 2021 to 2020. A green • dot indicates the subgroup result is higher than the overall result while a red \bullet dot indicates it is lower.

Visualizing the future through scenarios

Brave open world

Globally, state and philanthropic organizations and funders align in their goals, approaches and principles, resulting in open science taking off, especially in Europe, aided by advances in artificial intelligence-enabled technologies.
Platforms are interoperable and content is easy to access.

Tech titans

Significant advances in artificial intelligence (AI) products drive innovation, enabling technology companies to support the research ecosystem and become knowledge creators and curators in a world where industry and philanthropic foundations are the key research funders.

Eastern ascendance

China's growing economic power and focus on research and development (R\&D)
influences the previously Western-
dominated research landscape, resulting in a fragmented world.

Six major themes shaped the scenarios in the original 2019 study and were examined in the follow-up studies.
$>$ Funding
> How researchers work
$>$ Technology
> Open science
> Research information system
$>$ Role of the academy

Anticipated long term impact of Covid-19 on research

Anticipated longer term impact of COVID-19 is more flexible working, greater crossdiscipline collaboration and extra focus on societal impact. However, researchers think there will be fewer students at university, less funding and fewer practical experiments/fieldwork.

Source: Do you think the longer term impact of COVID-19 will lead to... scale was '+' 'no change' '-', Net Impact shown in chart is \% positive score - \% negative score * Shorter time to publlication is positive and longer time to publication is negative

Funding

Proportion of funding from university/ research institution dipped in 2020. Contribution from self-funding declines.

...but over the next two to three years the funding from university/ research institution expected to drop but increase from Corporate.

Q:Apart from inflationary increases, do you think over the next two to three years your research funding from the following sources will ...

University/research institution		Net	
	27\%	19\%	-8
Corporate/commercial/industrial	15\%	41\%	+26
Federal/Government	24\%	35\%	+11
Philanthropic/charities/NGOs	21\%	21\%	-
Self-funding	19\%	26\%	+7
Other	8\%	15\%	+7

Half believe there are more funding requirements compared to 2-3 years ago.

```
% agree % disagree
```


Reasons for AGREEING:

- Increasing demand/ competition for finite funds
- More detail evidence/ information required in submissions
- Applications more bureaucratic/ compliance necessities
"There is less money but the same number of research groups, so more constraints are established to ensure it is distributed to a maximum number of research groups." (Arts/ Humanities, Spain, aged 36-45)
"The bureaucratic burden of writing proposals and reports has increased." (Materials Science, USA, aged 36-45)

Reasons for DISAGREEING:

- Funding declining in particular field/ area of research
"Funding has shifted more towards the big labs doing SARS-CoV-2 research. It's harder to get funding for "other" work on infectious disease." (Biochemistry, Genetics, and Molecular Biology, USA, aged 46-55)
"My research field is rather new in our country and does not attract many organizations to fund it." (Medicine and Allied Health, Vietnam, aged 36-45)

Most common new funding requirements are increased number of publications and increased progress reporting.

Funding continues to be a major concern for the research community, with half (50%) stating there is insufficient funding available in their field.

Reasons for AGREEING:

- Field of research in-vogue/ of strong interest/ well funded/ a priority area
- Sources of funding broad/ abundant/ traditionally sufficient/ continuous
"My field of research is quite applicated, and I expect strong engagement of states and enterprises to boost the fundings." (Materials Science, France, aged 46-55)

Reasons for DISAGREEING:

- Limited/ reducing funding/ grants specific to field
- Increased competition for available funding
- Other fields take precedence/ prioritised
- Impact of/ funds diverted/ reallocated to COVID-19
"Fewer public agencies providing funding and more competition for the funds; requirements/research topics being funded very narrow." (Social Science, USA, aged 36-45) ELSEVIER

Materials Science research has seen the biggest growth in funding satisfaction in 2021, with 35% saying available funding is sufficient, almost three times the 12% who were satisfied with funding levels in 2020.

Legend		\checkmark Higher	Significant difference 2021
2021	Solid	colour	\checkmark Lower
to 2020			

How researchers work

Maintaining a good work-life balance has been difficult during the

 pandemic but more difficult for women and less difficult for those aged 56+.Ensuring I have a good work-life balance has been difficult during Covid - (\% agree)

Women are expecting to collaborate more than before the pandemic, are embracing technology faster than their male counterparts and are more likely to share their research with the wider public than men.

\% who have done outreach activities to share research findings with the wider public

Legend					
2021	Solid colour	+ Higher	Significant difference	\checkmark Higher	Significant difference 2021
2020	Light Grey	- Lower	between men and women	\checkmark Lower	to 2020

There has been a sizeable increase in collaboration on research project(s) since 2020.

$■$ Strongly agree \quad Agree

- Neither agree nor disagree

■ Disagree

- Strongly disagree

2021

Reasons for AGREEING:

- International collaboration easier/ increasingly prevalent
- Multi-disciplinary research/ expertise a necessity/ prerequisite
- Requited/valued by funders
- Digital/ online communications intensified
"I've always done a lot of interdisciplinary/global collaboration, but it now seems to be becoming a standard." Medicine/ Allied Health, USA, aged 36-45)

Reasons for DISAGREEING:

- COVID and loss of in-person contact • Lack of funding
- Always collaborated/ interdisciplinary . Conduct research alone
"Virtual meetings cannot replace in-person networking and collaboration." (Computer Sciences/ IT, Austria, aged 26-35)

```
\checkmark Higher Significant
\ Lower difference 2021
\checkmark ~ L o w e r ~ t o ~ 2 0 2 0 ~
```

Researchers in computer science have seen the biggest rise, with 76\% agreeing that there is more collaboration involved in their projects than previously, a substantial rise from the 41% who agreed in 2020.

There is more collaboration on my research project(s) than previously - (\% agree)

\(\left.$$
\begin{array}{|ccccc|}\hline \text { Legend } & & \checkmark \text { Higher } & \begin{array}{l}\text { Significant } \\
\text { difference 2021 }\end{array}
$$

2021 \& \begin{array}{l}Solid

colour

Light

Grey\end{array} \& \checkmark \& Lower \& to 2020\end{array}\right]\) Higher | Significant difference |
| :--- |
| 2020 |

A minority, just under a third believe the number of articles they will write in the next 12 months will be less than prior to the pandemic.

■ Strongly agree \quad Agree \quad Neither agree nor disagree \quad Disagree \quad Strongly disagree
Over the next 12 months I expect the amount of research papers I write to be 2021 less than prior to the pandemic

Reasons for AGREEING:

- Pandemic restricted/ halted/ suspended research projects
- Experimental work reduced as a result of the pandemic
- Funding declined

Reasons for DISAGREEING:

- Remote/ online working enabled more time for producing papers
- Restrictions easing will allow more in-person research to be conducted
- Pandemic had limited impact on research output/ producing papers
"During pandemic, work has gone on, with almost no delay"
(Materials Science, France, aged 56-65)

More researchers are considering relocating - just over a third. Better facilities, funding, salary and work-life balance are key drivers.
"I would consider moving to another country to
further my career in research (in the next 2 years)"

Legend		\checkmark Higher	$\begin{array}{l}\text { Significant } \\ \text { difference 2021 }\end{array}$			
2021	$\begin{array}{l}\text { Solid } \\ \text { colour }\end{array}$	\checkmark Lower	to 2020	$\}$	co Higher	Significant difference between 2021 sub- group and overall
:---	:---					
2020	Shaded colour					
- Lower						

What are the main reasons you would consider relocating to another country?

Researchers' willingness to relocate to US, Canada and UK increases since 2020 - China as a destination remains low.

Which countries would you consider moving to:

Legend		\checkmark Higher	Significant
2021	Solid	\checkmark Lower	$\text { to } 2020$
	colour	- Higher	Significant difference
2020	$\begin{aligned} & \text { Light } \\ & \text { Grey } \end{aligned}$	- Lower	between 2021 subgroup and overall

Technology

Although just over half of researchers do not use AI in their research, those who could be considered heavier users of Al represent around one in six researchers, an increased proportion since 2020.

To what extent do you use Artificial Intelligence (AI) in your research? Please indicate your response on a five-point scale where 5 is extensively and 1 is not at all.

Among those who use AI, to analyse research results (e.g. modelling) was the most cited reason for using AI.

How do you use Artificial Intelligence (AI) in your research?

Use of Al in research increases most amongst Chemists and Material Scientists. Life scientists are significantly less enthusiastic than overall.

Q. To what extent do you use Artificial Intelligence (AI) in your research? Please indicate your response on a five-point scale where 5 is extensively and 1 is not at all. \% shows sum of those rating a 4 or a 5

Legend		\checkmark Higher	Significant difference 2021		
2021	Solid	\checkmark Lower	to 2020		
2020	colour	Light	\bullet Higher		Significant difference
:---					
Grey	$\quad \bullet$ Lower	between 2021 sub-			
:---					
group and overall					

Using Al to analyse results is most common. Medicine more likely to use Al to generate hypotheses than other disciplines.

Although researchers question Al as a substitute for human understanding in peer review, more are willing to read articles reliant on Al for peer review than in 2020.

Reasons for AGREEING:

- Reduces subjectivity/ biases - more objectivity
- Reviews not always currently of an acceptable standard
"Artificial intelligence (AI) is fairer than human peer review, human peer review is not a good thing because reviews are biased by the subjective view of the reviewers, reviewers are not balanced in comparison to AI." (Psychology, Germany, aged 36-45)

Reasons for DISAGREEING:

- Human insight/ intellect/ understanding/ analysis superior
- Limited trust, AI currently incapable of quality peer review
"Peer review is very complex, and requires deep knowledge and critical thinking to assess the value and innovation of a given research work, and to identify possible confounding factors or biases. It is already very complicated for humans, and is far beyond the capabilities of (current) Al systems" (Computer Sciences / IT, France, aged 36-45)

Those aged 55 and under are the most willing to read AI-reviewed articles, ${ }^{29}$ while those aged 56 and over have increased their willingness compared to a year ago.

I would be willing to read articles in a journal that relies on artificial intelligence (Al) instead of human peer review? - (\% agree). Note in 2020 it was not \% agree BUT \% likely)

Open Science

Just over half (52\%) state that they are sharing more research data now than 2-3 years ago.

I am sharing more research data now than 2-3 years ago	2021	52%	12%	40%	32%

Reasons for AGREEING:

- Increased means/ practices/databases/technology outlets for sharing data/ open science/ source
- More productive/ data to share
- Sharing now a necessity/ even more encouraged/ a requirement
"Increased awareness of necessity and possibilities for sharing research data due to development of data repositories." (Physics, Germany, aged 56-65)

Reasons for DISAGREEING:

- Approach to/ level of sharing of research data unchanged
- Conducting less research currently
"I share the same amount of research data as before. There is no change I have seen" (Materials Science, India, aged 56-65)
"I have always shared all my research data" (Computer Sciences / IT, Germany, aged 56-65)
54% of respondents said they planned to publish open access in 2020, which is 5 percentage points higher than in 2019. (Note: 2021 dala not collected for this question).

Research information system

Use of seminars/webinars increased most during the pandemic, followed by use of research articles outside field of research.

Since the start of the Covid-19 pandemic, has your use of the following increased, stayed the same or decreased...

The value of pre-prints increases significantly in the last year - over two-thirds consider pre-prints a valued source of communication.

2021
■Strongly agree \quad Agree \quad Neither agree nor disagree \quad Disagree \quad Strongly disagree

Pre-prints are a valued source of communication in research	\checkmark	67%	17%	50%	21%

Reasons for AGREEING:

- Valuable to see prior publication/ earlier accessibility/ sharing of research
- More timely, up-to-date communication of the information
- Easier to access/ feely accessible
"I want to be able to read good research results quickly and not after one or two years, which is sometimes the time it takes to be published." (Astronomy, France, aged 56-65)

Reasons for DISAGREEING:

- Lacks peer review/ revision/ validation
- Limited value in getting access earlier/ before formal/ full publication
"I strongly believe in peer review. Most preprints do not successfully pass through the preprint stage without revision. These revisions can be important to the interpretation of the results" (Medicine and Allied Health, USA, aged 46-55)

```
\checkmark ~ H i g h e r ~ S i g n i f i c a n t
\checkmark Lower difference 2021
\checkmark Lower to 2020
```

Diversity - ethnicity and race: East and Central Asia as well as Western Europe were the top two selected origins of ethnicity. Just under half (46\%) identified as White and just over one third (36\%) as Asian or Pacific Islander.

Which of the following best describes your Ethnic Origin(s)?:

How do you identify yourself in terms of Race:

[^0]Academy

Nearly half (46\%) are of the view that the shift of teaching to online negatively impacts teachers against under a third (29\%) who see the shift to teaching online as a positive for teachers.

The shift of teaching		\% agree						\% disagree
to online positively impacts teachers	2021	29%	6\%	24\%	25\%	29\%	17\%	6%

Reasons for AGREEING:

- Reduces travel, convenience, saves time, improved personal life
- Facilitates flexibility/ ease of individual/ one-to-one contact
- Enables a wider reach/ teach independent of geography
- Improved/ new digital resources
"Online work is a great value to reconcile personal life, to optimize time." (Biochemistry, Spain, aged 46-55)

Reasons for DISAGREEING:

- Remote/ indirect interaction less valuable/ not as effective/ not as involving/ engaging/ not a substitute for direct contact
- Shift to online teaching/ courses involved substantial preparation/ workloads/ overheads for teachers
- Lab use/ field activities of paramount importance
"Students are disengaged online... teaching becomes less rewarding for both students and teachers" (Physics, Australia, aged 36-45)

Just over half believe the shift of teaching to online negatively impacts students against just over a fifth (21\%) who see the shift as a positive.

$■$ Strongly agree \quad Agree \quad Neither agree nor disagree \quad Disagree \quad Strongly disagree

Reasons for AGREEING:

- Convenience, flexibility, reduces travel time
- Improved work/life balance/ family life
- Access to greater/ better materials online
- More opportunity for individual consultation
"Online teaching gives students the flexibility of engagement hours and also put multiple sources of information at their disposal.... content delivery more engaging for the students." (Environmental, India, aged 36-45)

Reasons for DISAGREEING:

- Less effective, disengaged/distraction (impersonal, disconnected)
- Less interaction, interpersonal communication, informal discussion
- Practical, hands-on, field, lab work not feasible
"Online-only education cannot provide a similar level of student engagement, community building and interpersonal communication--all . critical for successful learning outcomes" (Biochemistry, USA, aged 56-65)

Research Futures 2.0 will be released on April 20 ${ }^{\text {th }}$

https://www.elsevier.com/connect/re search-futures-2022

Previous report:

bit.ly/research-futures

[^0]: Base: All researchers ($\mathrm{n}=1,173$)

