

Swish Merchant

Integration Guide

Version 2.2

2020-03-24

© Swish 2

Table of contents

1. Introduction .. 4
1.1 Terms and definitions .. 4
1.2 Document purpose .. 5
1.3 Swish overview ... 5
1.4 Security ... 5

2. Setup .. 6
2.1 Applying for Swish Commerce.. 6
2.2 Technical Integration ... 7

2.2.1 Technical Requirements .. 7
2.2.2 Integration procedure .. 7

2.3 Managing certificates .. 9
2.4 Revoking a certificate .. 9
2.5 Termination of Swish Commerce.. 9

3. Payments .. 10
3.1 Overview... 10
3.2 Payment Requests ... 10

3.2.1 Creating a Payment Request.. 10
3.2.2 M-Commerce Payment Requests .. 10
3.2.3 E-Commerce Payment Requests .. 12
3.2.4 Callback .. 13

3.3 Payment Refunds .. 14
3.3.1 Overview .. 14
3.3.2 Creating a Refund .. 14
3.3.3 Callback .. 16

3.4 Payouts ... 16
3.4.1 Overview .. 16
3.4.2 Creating a Payout ... 16

4. Swish app integration .. 18
4.1 Checking if the Swish app is installed ... 18

4.1.1 iOS (Swift) ... 18
4.1.2 Android (Java) .. 18

4.2 Switching to the Swish app .. 19
4.2.1 iOS (Swift) ... 20
4.2.2 Android (Java) ... 21
4.2.3 JavaScript ... 22

5. Swish API .. 23
5.1 Guidelines for using the Swish API ... 23

5.1.1 The consumer should be in control of payment requests ... 23
5.1.2 Use the callback when creating resources .. 23
5.1.3 Refund transactions – avoid large batches .. 23
5.1.4 Renewal of the client TLS Certificate ... 23
5.1.5 Displaying the Swish alias to consumers ... 23

5.2 Versions .. 24
5.3 Environments .. 24

5.3.1 Test Environment ... 24
5.3.2 Production Environment .. 24

© Swish 3

5.4 API Description .. 25
5.4.1 Create Payment Request ... 25
5.4.2 Retrieve Payment Request .. 27
5.4.3 Cancel payment request .. 27
5.4.4 Create Refund .. 29
5.4.5 Retrieve Refund ... 30
5.4.6 Create Payout... 31
5.4.7 Retrieve Payout .. 33

5.5 API Objects .. 35
5.5.1 Date format .. 35
5.5.2 Payment Request ... 35
5.5.3 Refund .. 36
5.5.4 Create Payout Request .. 38
5.5.5 Payout .. 38
5.5.6 Operation ... 40
5.5.7 Error ... 40

6. Support ... 41
6.1 Deployment support.. 41
6.2 Operational status information .. 41

© Swish 4

1. Introduction

1.1 Terms and definitions

Term Definition

Partner A partner is a company, working with technical integrations, app development,

platform development and/or payment services that may help and facilitate

merchant integration and operation for Swish.

Banks have agreements with the merchants who in turn may have an agreement

with a partner.

Merchant A merchant is a company, association or organization which receives payments via

Swish.

Merchants sign Swish agreements with their respective bank.

Merchant Swish

Simulator

The Merchant Swish Simulator is a test tool to test the Swish-API.

Consumer A consumer is a private Swish customer that can use the Swish app on a mobile

device.

CPOC Certificate Point of Contact – person assigned by the company to manage the

certificates

Swish Commerce

(Swish handel)

Swish Commerce gives the merchants the possibility to use Swish as a payment

method in m- and e-commerce. The service is aimed primarily for m- and e-

commerce stores, via apps and browsers.

Swish Commerce consist of two different payment solutions; Swish m-commerce

and Swish e-commerce, a security solution and a function for refunds. All of them

are reachable for the merchants through the Swish API.

The service can be offered by the banks under a different product name than Swish

Commerce.

Swish m-commerce Swish payments from a mobile device made either through an app or via a mobile

browser on the same mobile device.

Swish e-commerce Swish payments initiated by the consumer in a browser in equipment other than

the mobile device that hosts the Swish app.

Swish customer This is any customer to Swish, either a consumer (person) or a merchant.

Payee This is the Swish customer that receives the payment

Payer This is the Swish customer that makes the payment

Alias A unique identifier for a Swish customer. For a consumer it is the mobile number

and for a merchant it is the Swish number.

Payment request A payment request is a transaction sent from a merchant to the Swish system to

initiate an e-commerce or m-commerce payment.

Payee Payment

Reference

A payee payment reference is the merchant’s own identifier of the

transaction/order to be paid. It is sent to the Swish system as a parameter to the

payment request and is later returned in confirmation messages.

Refund A refund is a transaction sent from the merchant to the Swish system to return the

whole amount or part of a payment. The reference to the original payment must be

provided.

© Swish 5

1.2 Document purpose

The integration guide is for anyone who wishes to understand and implement Swish Commerce in their

services and systems. The integration guide explains how to connect to the Swish Commerce API and includes

information about the payment and refund options related to the Swish Commerce service. More information

about the service can be found at https://developer.getswish.se/merchants/.

1.3 Swish overview

By enrolling to the Swish Commerce service at the merchant’s bank and getting access to the Swish API,

merchants can handle payments in e-commerce and m-commerce scenarios in a way which is very convenient

and familiar to millions of Swedish consumers. The service builds on the ease-of-use of the person-to-person

payment service. When enrolled to the service the merchant can receive payments from all private persons

using Swish.

It is also possible for merchants to make refunds in real time using the Swish API. Some banks will also provide

the possibility to initiate refunds from the bank’s digital channels.

In brief, a payment involves the following steps:

• The merchant creates a payment request using the Swish API that the consumer views and accepts in
the Swish app.

• The consumer and the merchant receive payment confirmations immediately when the amount has
been transferred from the consumer’s to the merchant’s account. For security reasons the payment
request is only valid during a limited period time for the consumer in the Swish app.

When enrolling to the service, the merchant obtains a Swish alias to one of the merchant’s bank accounts. The

merchant will also authorize Certificate Point of Contact persons during enrollment. These persons will use the

Swish Certificate Management System to manage digital certificates, which is one component of securing the

access to the API.

When a payment is made using Swish, the business transaction is between the merchant and the consumer.

This transaction implies that the consumer makes an advance payment for purchased goods or services.

1.4 Security

In order to protect the Swish API and to ensure the identity of the parties, the security solution encrypts the

traffic and authenticates the identities of the merchant and Swish server.

The security solution is implemented as PKI based TLS client/server certificates, where the certificates are

issued upon order by the merchant or someone appointed by the merchant. A certificate is valid for 2 years.

A merchant appoints up to 5 persons via their bank, who will be able to log on via BankID/BxID on card or

Mobile BankID to the Swish Certificate Management system connected to the security solution. An appointed

person can administer their certificates using the system. It includes the possibility to order new certificates

and to view, download or revoke current certificates.

After the enrolment process the corporate customer needs to login to the Swish Certificate System to create

two different client certificates. One of these certificates is to be installed on their software system and should

be used as client certificate to secure the communication between the customer’s software system and Swish

(here after referred to as TLS-certificate). The other one will be used for signing purposes described further

down in this document (here after referred to as signing-certificate).

https://developer.getswish.se/merchants/

© Swish 6

2. Setup

2.1 Applying for Swish Commerce

This user story provides a high-level description of how a merchant applies for the Swish Commerce service.

1. The merchant contacts a bank connected to Swish in order to sign an agreement for the service.

2. The merchant confirms the business terms and signs the agreement with the bank.

a. The bank obtains and registers the necessary merchant information, including info about the

appointed recipients of the API certificate - CPOC (Certificate Point Of Contact). The following

personal information is mandatory about the CPOC: Social Security Number, Name, Company

Registration Number. Some banks might also require additional information such as e-mail

and phone number.

b. A Swish number is created for the agreement.

c. The bank sends an enrollment request to Swish security solution.

3. The security solution receives and registers info about the CPOC connected to the Swish number. The

CPOC’s are granted access to the certificate management system in the Swish security solution.

4. The merchant is now ready for Swish API access.

5. The merchant or the partner needs to generate a CSR-file (Certificate Signing Request). This is

normally done by the CPOC.

6. The CPOC logs in to the certificate management system using Mobile BankID, BankID on card or BxID

and creates the certificate.

7. The CPOC installs the certificate in the merchant’s server and connects it to Swish API.

Figure 1: The Swish Commerce application procedure steps 1-3

© Swish 7

8. The merchant verifies the connection.

2.2 Technical Integration

2.2.1 Technical Requirements

The Swish server requires TLS 1.1 or higher.

The merchant must be able to receive the callback HTTPS POST request from the Swish server over TLS. The

callback endpoint has to use HTTPS on port 443 and it is highly recommended to use IP filtering as well. For the

callback, Swish will be acting as client and the merchant server is acting as server. Swish will validate the

merchant callback server TLS certificate against a list of commonly recognized CAs.

For now, the Swish API does not support Server Name Indication (SNI) for the callback functionality.

2.2.2 Integration procedure

In order to integrate a merchant commerce solution with the Swish Commerce API, the merchant needs to get

a client TLS certificate from Swish Certificate Management and install it on their server. The certificate will be

used for client authentication of TLS communication with the Swish API. The following steps needs to be

performed:

1. Generate a pair of 4096 bits RSA keys on your server and create a certificate request (CSR) in a
PKCS#10 format.

This step depends on the type of web server solution that is used and differs between different types

of servers. The keys are usually generated to a so-called keystore (e.g. Java keystore, Microsoft

Windows keystore) or file (e.g. openSSL on Apache/Tomcat). For details please consult your web

solution documentation or your supplier.

Note: The following examples are to be considered regarding secure handling of cryptographic keys

and certificates. The Customer’s keys should be installed by the Customer in secure cryptographic

units or should be protected in a similar manner. The keys should only be installed on units necessary

for production and back-up purposes. The keys should be deleted at all instances when no longer

operational. The keys should at all times be stored with strong encryption and protected

Figure 2: The swish Commerce application procedure steps 4-8

© Swish 8

using passwords or more secure procedures, e.g. smart-cards. Passwords used to protect the keys

should be handled two jointly and are to be stored in a secure manner so they cannot be lost or

subjected to unauthorized access.

It is highly important to protect the private key from unauthorized access. It is recommended to

protect the keys with a password if your server provides this option. Care should be taken to protect

the passwords as well.

There are no requirements on the content of the CSR (names or other parameters), except for the

keys that need to be 4096-bit RSA.

It is possible to install the same certificate on several servers (depending on technical server setup, but

no license limitations), or to issue one key pair and certificate per server.

2. Log in to Swish Certificate Management at https://comcert.getswish.net by using Mobile BankID,
BankID on card or BxID. Only the person(s) registered by the bank for a specific merchant will be able
to perform this step.

3. Provide the organizational number of the merchant and the Swish number for which a certificate is to
be generated.

4. Select the "New certificate" tab and paste the content of the generated CSR into the text field. Choose
whether the certificate should be in PKCS#7 or PEM format. Consult your documentation regarding
which format suits your solution.

5. A new certificate is generated and provided on the screen. Copy the text string and save it to a file.
The response (PKCS#7 or PEM) will contain your client certificate and all CA certificates up to the Swish
root.

6. Import the generated certificate and all CA certificates to your server. For details on how to perform
this step consult your web solution documentation or your supplier.

7. The Swish server is set up with a TLS server certificate, which needs to be verified when initiating TLS

from your web server to Swish. Choose to trust DigiCert Global Root CA which can be downloaded

here https://www.digicert.com/digicert-root-certificates.htm . For details on how to perform this step

consult your web solution documentation or your supplier.

After performing these steps, you should be able to set up TLS with the Swish API.

Note: It is necessary provide the generated certificate together with all CA certificates up to the Swish Root CA

in order to correctly set up a TLS session with the Swish API.

Note: No error messages will be returned before a TLS session is successfully established with the Swish API.

This means that if the wrong certificate has been used, if the validity time of the certificate has expired, or if

the certificate has been revoked, no indication of this is given.

Note: It is recommended to require verification of the Swish API TLS certificate and not to ignore this

verification, in case your server allows you to disable server certificate verification.

https://www.digicert.com/digicert-root-certificates.htm

© Swish 9

2.3 Managing certificates

Log in to Swish Certificate Management at https://comcert.getswish.net by using Mobile BankID, BankID on

card or BxID. Only the person(s) registered by the bank for a specific merchant will be able to perform this step.

Provide the organizational number of the merchant and the Swish number for which a certificate is to be

managed.

After logging in a list is provided with all certificates associated with the specific merchant and Swish number,

and the status of them. By clicking on “Download” it is possible to see further details and to attain the

certificate again.

2.4 Revoking a certificate

If the integrity of the merchant’s private key has been compromised, if a certificate has been replaced by a new

one, if the service has been terminated, or if the merchant needs to revoke a certificate for some other reason,

this can be done via the Swish Certificate Management system.

Log in to Swish Certificate Management at https://comcert.getswish.net by using Mobile BankID, BankID on

card or BxID. Only the person(s) registered by the bank for a specific merchant will be able to perform this step.

Provide the organizational number of the merchant and the Swish number for which a certificate is to be

revoked.

After logging in a list is provided with all certificates associated with the specific merchant and Swish number,

and the status of them. By clicking on the trash can it is possible to revoke a specific certificate.

Please be aware that the certificate is irreversibly revoked and that revoking a certificate that is in use may lead

to an interruption of the service.

2.5 Termination of Swish Commerce

1. The merchant terminates the agreement with the bank. The service will stop working.

2. The merchant is responsible for termination/revocation of the API certificates.

3. Refunds will not be possible to do on the terminated Swish number.

https://comcert.getswish.net/
https://comcert.getswish.net/

© Swish 10

3. Payments

3.1 Overview

The Swish Commerce API supports two type of payment requests, m-commerce payments and e-commerce

payments. It is always the consumer that initiates a payment. When the payment is initiated, a payment

request will appear in the Swish app where the consumer can choose to accept or deny the request.

3.2 Payment Requests

3.2.1 Creating a Payment Request

There are two main flows to this use case, one for Swish m-commerce and one for Swish e-commerce. The

main difference is that in the Swish e-commerce case the consumer is prompted for his/her mobile phone

number, and then the consumer has to manually open the Swish app. But in the Swish m-commerce case the

consumer’s mobile phone number is initially not known to the merchant. So instead, in this case, the API

returns a Payment request token. This token is used to build a so-called Swish URL, which the merchant can use

to call the Swish app from their app. The Payment request token is then a parameter to the Swish URL. Once

the payment request has reached a final state (either Paid, Cancelled, Timeout or Error), the merchant

provided Callback URL will be called by Swish. Even though this callback contains the payment status

information, the merchant server should retrieve the result of the payment request directly from the Swish

server (refer to Use the callback for payment requests and refunds for further details).

3.2.2 M-Commerce Payment Requests

This flow is typically used when the consumer initiates the payment in the merchant’s app or website using a

mobile device. In this case the consumer does not need to open the Swish-app as the flow switches

© Swish 11

automatically between the merchant’s app/website and the Swish app. If the payment is completed

successfully, it is expected that the merchant’s app/website displays a payment confirmation screen as no

payment confirmation screen is displayed in the Swish app.

1. The consumer chooses to pay with Swish for a product or a service in the merchant app.

2. The merchant sends a payment request to the Swish system using the API.

a. The transaction contains data such as: amount, receiving Swish-number, merchant (payee)
payment reference and an optional message to the consumer.

3. The merchant receives a Request Token.

4. The consumer’s Swish app is opened automatically by the merchant’s app/website, showing the payment
request that is preloaded with payment information.

a. The app is opened with the request token as a parameter.

5. The consumer clicks “pay” and the Mobile BankID app opens automatically for signing of the payment
transaction.

6. The consumer confirms the payment transaction by signing with Mobile BankID.

7. The amount is transferred in real-time from the consumer’s account to the merchant’s account.

8. The merchant’s app/website is opened again automatically for payment transaction confirmation.

a. Note: the confirmation screen in Swish-app is not displayed in this flow.

9. The merchant receives a confirmation of successful payment.

10. The consumer can view the payment as a sent payment in the events view in the Swish app.

The following diagram shows in detail the steps for creating and accepting an M-Commerce payment request:

© Swish 12

3.2.3 E-Commerce Payment Requests

This flow is typically used when the consumer initiates the payment in the merchant’s website in a desktop

environment. In this case the consumer needs to open the Swish-app manually after starting the payment. If

the payment is completed successfully, a payment confirmation screen will be displayed in the Swish app.

1. The consumer chooses to pay with Swish for a product or a service at the merchant website and enters
his/her mobile phone number which is enrolled to Swish.

2. The merchant sends a payment request to the Swish system using the API.

© Swish 13

a. The transaction contains data such as: amount, receiving Swish-number, consumer’s mobile
phone number, merchant payment reference and an optional message to the consumer.

3. The merchant website should inform the consumer to manually open the Swish app to confirm the
transaction.

4. The consumer opens the Swish app showing the payment request, which is preloaded with payment
information.

5. The consumer clicks “pay” and the Mobile BankID app opens automatically for signing of the payment
transaction.

6. The consumer confirms the payment transaction by signing with Mobile BankID.

7. The amount is transferred in real-time from the consumer’s account to the merchant’s account.

8. The consumer receives a payment confirmation in the Swish app.

9. The merchant receives a confirmation of successful payment.

10. The consumer receives a payment confirmation at the merchant website.

11. The consumer can view the payment as a sent payment in the events view in the Swish app.

The following diagram shows in detail the steps for creating and accepting an E-Commerce payment request.

3.2.4 Callback

When creating a payment request, a callback URL needs to be specified. Swish will make a callback HTTPS POST

request, containing a Payment Request object, to this URL when any of the following events status changes

happens:

• PAID - The payment was successful

© Swish 14

• DECLINED - The payer declined to make the payment

• ERROR - Some error occurred, like the payment was blocked, payment request timed out etc. See list

of error codes for all potential error conditions.

• CANCELLED – The payment request was cancelled either by the merchant or by the payer via the

merchant site.

A payment request has to be accepted or declined by the consumer within three (3) minutes for e-commerce

and three (3) minutes for m-commerce. When the time has elapsed an ERROR status is returned to the Callback

URL. If the consumer accepts the payment request a status is returned to the Callback URL within 12 seconds.

The callback endpoint has to use HTTPS and we highly recommend IP filtering as well. It is however up to the

merchant to make sure that the endpoint is available. Swish will only make the callback request once, if the

merchant has not received a callback response after the timeout, the merchant can choose to perform the

Retrieve Payment Request operation. Swish will always try to make a callback request before the timeout

period, but if it times out, then a timeout callback is sent with status ERROR and the error code will have value

TM01.

3.3 Payment Refunds

3.3.1 Overview

A merchant that has received a Swish payment can refund the whole or part of the original transaction amount

to the consumer.

A refund can only be done on an existing payment. The number of refunds on one payment is unlimited, until

the total amount reaches the amount of the original payment. A payer Order payment reference ID and

message to the consumer can be attached to the refund but these are optional. If the refund is successful, a

message will be sent to the payee’s app.

A refund can be made on a payment for 12 months.

3.3.2 Creating a Refund

There are two ways to make a refund: through the bank channel or through the API channel. This section

contains a high-level description of a refund through the API channel.

1. As a merchant, I have received a Swish payment and wish for some reason to refund the whole or part of

the original amount to the payer.

2. The merchant chooses which payment that is to be completely or partially refunded. The merchant

specifies the amount to refund and sends the refund.

3. The merchant will also be able to send its own information that will be shown to the payer in the events

view in the Swish app, and also on the payee’s bank account statement. The information will also be used

by the company for tallying.

4. The merchant receives a confirmation that the refund has been completed.

5. As recipient of a refund, the payee receives a payment notification in the Swish app. The payment is

marked as a "Refund" in the events view in the Swish app.

Alternative flow – ”payment notification”:

In cases when the recipient of a refund cannot receive data push notifications at the moment, the refund will

© Swish 15

be visible in the Swish app next time the recipient logs in. The refund will also appear in the recipient’s bank

account statement.

Alternative flow – ”refund receiver not connected to Swish”:

In cases when the recipient of a refund has terminated the Swish agreement since the original payment

occurred, the merchant will receive an error message stating that the refund cannot be processed. The refund

must in this case be done via another channel.

Refunds are initiated based on a Payment reference from an earlier payment. To make a refund, perform a

Create Refund operation similar to how you create a payment request. The result of the refund is returned in a

callback, similar to how a payment request works. A refund normally completes much faster than a payment

request, but a callback is used because the actual payment might take a long time. The callback, in the happy

case, will return an intermediate response with the status DEBITED. This response is guaranteed to have

returned in under 10 seconds or you will get an ERROR response. The DEBITED response means that the money

has been taken from the merchants (payers) account but has not been put into the payees account yet.

Normally this should happen very soon afterwards, but this "might" take a long time. Moreover, it is not

guaranteed to succeed, in other words the receiving bank might refuse to put money into the account. In that

case the commerce customer will receive an ERROR response and the money is put back into the commerce

customers account. So, these are the potential callback scenarios:

1. Happy case: DEBITED, PAID

2. Early error: ERROR

3. Late error: DEBITED, ERROR

So, in other words there is a tradeoff here, between speed and accuracy that the merchant needs to make:

1. Use the early fast guaranteed response of DEBITED to give a quick response that might turn out to be

inaccurate later on.

2. Ignore the DEBITED response and wait for the PAID response that is always accurate but not always

fast.

© Swish 16

3.3.3 Callback

Swish will make a callback HTTPS POST request with a Refund Object to the Callback URL supplied in the Create

Refund operation when either of the following status changes happens:

• DEBITED – Money has been withdrawn from your account

• PAID - The payment was successful

• ERROR - Some error occurred. See list of error codes for all potential error conditions.

3.4 Payouts

3.4.1 Overview

Swish payout is intended to solve the need of making instant payouts from corporations to a large part of the

Swedish population. Instead of having to send a file-based payout request taking a couple of days to settle, the

company can initiate an instant Swish payout on demand, integrated into the service experience when needed.

3.4.2 Creating a Payout

When invoking the payout endpoints, the request body contains three blocks of information, namely payload,

signature and callbackUrl.

payload signature callbackUrl

The payload consists of value pairs in JSON format and carries the information about the payout to be

executed. In order to authenticate the client and verify the integrity of the data, a signature signed by the

signing-certificate needs to be supplied. The signature is built by first creating a hash value of the payload using

the SHA-512 algorithm and then signing it (the hash value) with the private key of the signing-certificate. The

serial number of the signing-certificate should also be included in the payload in order for the Swish system to

validate the integrity of the payload as well as the validity of the certificate.

Payout request payload can be created as follows:

1. Extract the serial number of the signing-certificate. The value should be in hexadecimal. Note that the

TLS-certificate used for communication purposes with Swish system should not be used for this

purpose. One way to extract the serial number is to use this command:

openssl x509 -in YOUR_CERT.pem -serial -noout

© Swish 17

2. Create a JSON string representing the payout object as follows:

For detailed description of these fields, please see Payout below.

3. Hash the payout object created in step 2, using SHA512. Make sure to use UTF-8 encoding when

serializing the payload to a byte stream. Here follows an example in Java:

String payload = "JSON_PAYLOAD_GOES_HERE";

byte[] msg_bytes = payload.getBytes("UTF-8");

MessageDigest md = MessageDigest.getInstance("SHA-512");

byte[] hash_value = md.digest(msg_bytes);

4. Sign the hash code with the RSA algorithm using the private key of the signing-certificate and convert

the result to Base64. Here follows an example in Java:

KeyPair keyPair = getKeyPair(); // getKeyPair is your own function that

 // returns your key pair for

 // signing-certificate

Signature sig = Signature.getInstance("NONEwithRSA");

sig.initSign(keyPair.getPrivate());

sig.update(hash_value);

byte[] signatureBytes = sig.sign();

String signature = Base64.getEncoder().encodeToString(signatureBytes);

5. Create a JSON payout request object to send to the Swish system. The payout request content shall be

constructed in the following format:

{

 "payload": {

 "payoutInstructionUUID": "E4D773858AF5459B96ABCA4B9DBFF94D",

 "payerPaymentReference": "payerRef",

 "payerAlias": "1231388446",

 "payeeAlias": "46711111132",

 "payeeSSN": "197709306828",

 "amount": "100.00",

 "currency": "SEK",

 "payoutType": "PAYOUT",

 "message": "Message to the recipient.",

 "instructionDate": "2019 - 05 - 05 T12: 23: 23 Z",

 "signingCertificateSerialNumber":

"7BE0DA9DE336EDCE5FE9AAFEF39248AE"

 },

 "callbackUrl": "https://not.a.real.caller.com/callback",

 "signature":

"a89xIJY8TBwWzKuTh4Qvx6hrUoMDI3/2RooINGmPUNAM0fzfvUFn9RFcvm4z

2WsLuY8xO0F9aioK0MvG2FiYIeDEZjpgAlWyFxJl3R9dvN2lDFo8MMaseQfOK6IuDyIgrRVyTSrdyKKB

GXRcoihX5CN7xQY7zBgl8AtIz9lOQ0o="

}

Where the “payload” is created according to step 2 and the “signature” according to step 3 and 4

above. “callbackURL” is the URL which will be called by Swish system when the status of a payout

request is changed.

{

 "payoutInstructionUUID": "E4D773858AF5459B96ABCA4B9DBFF94D",

 "payerPaymentReference": "payerRef",

 "payerAlias":"1231388446",

 "payeeAlias": "46711111132",

 "payeeSSN": "197709306828",

 "amount": "100.00",

 "currency": "SEK",

 "payoutType": "PAYOUT",

 "message": "Message to the recipient.",

 “instructionDate”:”2019-05-05T12:23:23Z”,

 “signingCertificateSerialNumber”:”7BE0DA9DE336EDCE5FE9AAFEF39248AE”

}

© Swish 18

3.4.3 Callback

If the callbackUrl is set in the payout request the Swish system will send status information updates back to the

client using this callbackUrl. The callbackUrl will be called by the Swish system every time the state of the

Payout Request is changed. If callbackUrl is not provided by the client, no callback will be triggered by the Swish

system. In both cases, the client may use the GET operation described below in order to fetch the status of a

Payout request at any given time.

It is important to note that the Swish system will attempt to call the callbackURL a second time, if the first call is

not successfully received by the merchant system. The second call will be triggered one minute after the first

call fails.

Clients can check the current status of an initiated payout request by calling the GET method with the

payoutReference/payoutInstructionUUID received in response to a created payout request. Note that in normal

cases the payoutReference and payoutInstructUUID fields will have the same value.

4. Swish app integration

4.1 Checking if the Swish app is installed

Most modern platforms have a way of checking if a certain app is installed on the consumer’s device. Here are

some examples on how to perform this check.

4.1.1 iOS (Swift)

4.1.2 Android (Java)

public static boolean isSwishInstalled(Context context) {

 try {

 context.getPackageManager()

 .getPackageInfo("se.bankgirot.swish", 0);

 return true;

 } catch (PackageManager.NameNotFoundException e) {

 // Swish app is not installed

 return false;

 }

}

enum StringConstants: String {

 case Host = "paymentrequest"

 case SwishUrl = "swish://"

 case MerchantCallbackUrl = "merchant://"

 case Scheme = "swish"

}

func isSwishAppInstalled() -> Bool {

 guard let url = URL(string: StringConstants.SwishUrl.rawValue) else {

 preconditionFailure("Invalid url")

 }

 return UIApplication.shared.canOpenURL(url)

}

© Swish 19

4.2 Switching to the Swish app

The merchant apps, including mobile web browsers, will call the Swish app using the custom URL Scheme:

Parameter Description Required

token The payment request token that the merchant has received from the CPC.

Example: token=c28a4061470f4af48973bd2a4642b4fa

Yes

callbackurl This callback URL is called after the payment is finished. It should be URL-

encoded and can be for example an app URL or a web URL. Example:

callbackurl=merchant%253A%252F%252F

Yes

When the Swish app is finished, it (or the BankID app) will call the provided callback URL. For the merchant app

to react on this call, the merchant app needs to register for that URL scheme and provide code for handling the

request.

Code snippets describing how to switch to the Swish app as well as information about declaring URL scheme

and handling calls to it are provided below for each platform.

Note that the URL Scheme “merchant://” is used in the examples below. This is only an example – each

merchant shall use its own unique scheme.

swish://paymentrequest?token=<token>&callbackurl=<callbackURL>

© Swish 20

4.2.1 iOS (Swift)

The following code can be used to switch to the Swish app from the merchant app.

The enable the switch back from Swish, the merchant app needs to register a URL scheme. This is done by

including a CFBundleURLTypes key in the app’s Info.plist. For more information, see Defining a Custom URL

Scheme for Your App.

The merchant app must also implement the following function that will be called when the switch back

happens:

enum StringConstants: String {

 case Host = "paymentrequest"

 case SwishUrl = "swish://"

 case MerchantCallbackUrl = "merchant://"

 case Scheme = "swish"

}

func openSwishAppWithToken(_ token: String) {

 guard isSwishAppInstalled() else {

 // Swish app is not installed, show error

 return

 }

 guard let callback = encodedCallbackUrl() else {

 preconditionFailure("Callback url is required")

 }

 var urlComponents = URLComponents()

 urlComponents.host = StringConstants.Host.rawValue

 urlComponents.scheme = StringConstants.Scheme.rawValue

 urlComponents.queryItems = [URLQueryItem(name: "token", value: token),

 URLQueryItem(name: "callbackurl", value: callback)]

 guard let url = urlComponents.url else {

 preconditionFailure("Invalid url")

 }

 UIApplication.shared.open(url, options: [:], completionHandler: { (success) in

 if !success {

 // The URL could not be opened, show error

 }

 })

}

func encodedCallbackUrl() -> String? {

 let callback = StringConstants.MerchantCallbackUrl.rawValue

 let disallowedCharacters = NSCharacterSet(charactersIn: "!*'();:@&=+$,/?%#[]")

 let allowedCharacters = disallowedCharacters.inverted

 return callback.addingPercentEncoding(withAllowedCharacters: allowedCharacters)

}

https://developer.apple.com/documentation/uikit/core_app/allowing_apps_and_websites_to_link_to_your_content/defining_a_custom_url_scheme_for_your_app
https://developer.apple.com/documentation/uikit/core_app/allowing_apps_and_websites_to_link_to_your_content/defining_a_custom_url_scheme_for_your_app

© Swish 21

4.2.2 Android (Java)

The following code can be used to switch to Swish from the merchant app.

public static boolean openSwishWithToken(Context context, String

token, String callBackUrl) {

 if (token == null

 || token.length() == 0

 || callBackUrl == null

 || callBackUrl.length() == 0

 || context == null) {

 return false;

 }

 // Construct the uri

 // Note that appendQueryParameter takes care of uri encoding

 // the parameters

 Uri url = new Uri.Builder()

 .scheme("swish")

 .authority("paymentrequest")

 .appendQueryParameter("token", token)

 .appendQueryParameter("callbackurl", callBackUrl)

 .build();

 Intent intent = new Intent(Intent.ACTION_VIEW, url);

 intent.setPackage("se.bankgirot.swish");

 try {

 context.startActivity(intent);

 } catch (Exception e){

 // Unable to start Swish

 return false;

 }

 return true;

}

The app manifest file is used to register the URL scheme in the merchant app :

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<category android:name="android.intent.category.DEFAULT" />

<category android:name="android.intent.category.BROWSABLE" />

<data android:scheme="merchant" />

</intent-filter>

The merchant app also needs to process the intent in onCreate and onNewIntent methods when the switch

back happens.

func application(_ application: UIApplication,

 open url: URL,

 options: [UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool

© Swish 22

4.2.3 JavaScript

The URL syntax below works on most built-in web browsers:

window.location =

"swish://paymentrequest?token=c28a4061470f4af48973bd2a4642b4fa&callbac

kurl=merchant%253A%252F%252F";

© Swish 23

5. Swish API

5.1 Guidelines for using the Swish API

When integrating with the Swish API it is recommended to adhere to the following guidelines in order to

achieve stable performance of the system and a smooth consumer experience.

5.1.1 The consumer should be in control of payment requests

Each payment request transaction sent to the API must be initiated by a physical paying consumer. The

merchant must make sure that the consumer does not receive what he/she perceives as “spam” or unwanted

payment requests.

5.1.2 Use the callback when creating resources

When creating a payment request, refund or a payout, a callback is provided to the merchant with the status of

the operation. In a typical scenario, this callback should be used for finding out the status of the payment. As a

backup there is also a “Retrieve” operation for reconciliation in the case that the normal callback fails for some

reason. Note that this is a backup – and should not be the default way for receiving the payment status.

5.1.3 Refund transactions – avoid large batches

The “create refund” API is intended for real-time one-by-one calls. It is not intended for batching up a large

quantity and then sending the whole batch in a short period of time.

There should be at least 1 second between each refund transaction and if more than 100 transactions are to be

sent in a sequence, they should be sent during night time.

5.1.4 Renewal of the client TLS Certificate

The validity of the client TLS certificate is two years. It is the merchant's responsibility to generate new keys

and certificates in due time, prior to the expiry of the old certificate, in order to ensure uninterrupted

functionality of the commerce site. The merchant could authorize another company (a partner to the

merchant) to manage the certificate renewal process.

5.1.5 Displaying the Swish alias to consumers

When enrolling to Swish Commerce the merchant will receive a Swish alias (123 XXX YYYY) which uniquely

identifies the enrolment, and which is used as an alias to the payee’s bank account.

We recommend e-commerce and m-commerce merchants not to expose this to consumers since it:

1. Can be used for unprompted payments by entering the Swish alias in the Swish app.

2. Some banks may block unprompted payments to Swish aliases enrolled to “Swish Commerce”

The Swish alias for transactions generated by payment requests or refunds will not be displayed by the Swish

app or the bank’s consumer interfaces.

© Swish 24

5.2 Versions

Changes may be made to the API to correct errors or to introduce new functionality. When changed, a new

version of the API will be made available via a new URL. Merchants should always use the latest version of the

API.

The general rule is that old versions of the API will be discontinued two years after the release of the successor.

But if deemed necessary, for example for security reasons, a version of the API may be discontinued

prematurely. As new functionality is introduced to the system the behavior of an existing version of the API

may change, e.g. existing faults may also be used in new situations.

5.3 Environments

5.3.1 Test Environment

A Merchant Swish Simulator is available for merchants to test their integration with the Swish Commerce API.

The Merchant Swish Simulator will validate requests and return simulated but correctly formatted responses.

The Merchant Swish Simulator will return a simulated result of the request in the callback URL. It is also

possible to retrieve the payment request status and to simulate different error situations.

A user guide for the Merchant Swish Simulator can be found at: https://developer.getswish.se/merchants/.

5.3.2 Production Environment

The Swish server IP address for IP filtering:

213.132.115.94:443

Swish API URL:

https://cpc.getswish.net/swish-cpcapi/api/v1/paymentrequests

https://cpc.getswish.net/swish-cpcapi/api/v1/refunds

https://cpc.getswish.net/swish-cpcapi/api/v1/payouts

Swish server TLS certificate is issued under the following root CA that should to be configured as trusted:

CN = DigiCert Global Root CA

OU = www.digicert.com

O = DigiCert Inc

The complete certificate chain of the Swish server TLS certificate is available through Swish Certificate

Management.

© Swish 25

5.4 API Description

5.4.1 Create Payment Request

Request
POST /api/v1/paymentrequests

Parameters

None

Request body

The HTTP request body has to contain a Payment Request object.

For that object,

You must specify a value for these properties:

• callbackUrl

• payeeAlias

• amount

• currency

You may specify a value for these properties:

• payeePaymentReference

• payerAlias

• message

Response

If successful, the following response headers are returned:

Header Optional Description

Location No An URL for retrieving the status of the payment request.

PaymentRequestToken Yes Returned when creating an m-commerce payment request. The

token to use when opening the Swish app.

If a HTTP status code 422 error occurs, an array of Error objects are returned.

Errors

HTTP status code Description

201 Created Payment request was successfully created. Will return a Location header and if it is

Swish m-commerce case, it will also return PaymentRequestToken header.

400 Bad Request The Create Payment Request operation was malformed.

401 Unauthorized There are authentication problems with the certificate. Or the Swish number in the

certificate is not enrolled. Will return nothing else.

403 Forbidden The payeeAlias in the payment request object is not the same as merchant’s Swish

number.

415 Unsupported

Media Type

The Content-Type header is not "application/json". Will return nothing else

422 Unprocessable

Entity

There are validation errors. Will return an array of Error objects.

© Swish 26

500 Internal Server

Error

There was some unknown/unforeseen error that occurred on the server, this should

normally not happen. Will return nothing else

Validation errors

The following validation errors might be returned when the HTTP status code is 422.

Error code Description

FF08 PaymentReference is invalid.

RP03 Callback URL is missing or does not use HTTPS.

BE18 Payer alias is invalid.

RP01 Missing Merchant Swish Number.

PA02 Amount value is missing or not a valid number.

AM06 Specified transaction amount is less than agreed minimum.

AM02 Amount value is too large.

AM03 Invalid or missing Currency.

RP02 Wrong formatted message.

RP06 A payment request already exists for that payer. Only applicable for Swish e-commerce.

ACMT03 Payer not Enrolled.

ACMT01 Counterpart is not activated.

ACMT07 Payee not Enrolled.

Example request (e-commerce)
curl -v --data '{ "payeePaymentReference": "0123456789", "callbackUrl":

"https://example.com/api/swishcb/paymentrequests", "payerAlias":

"4671234768", "payeeAlias": "1231181189", "amount": "100", "currency":

"SEK", "message": "Kingston USB Flash Drive 8 GB" }' -H "Content-Type:

application/json" POST https://mss.cpc.getswish.net/swish-

cpcapi/api/v1/paymentrequests --cert "Swish Merchant Test Certificate

1231181189.p12:swish" --cert-type p12 --cacert "Swish TLS Root CA.pem"

Example response (e-commerce)
< HTTP/1.1 201

< Location: https://mss.cpc.getswish.net/swish-

cpcapi/api/v1/paymentrequests/DFEC8B87CFC74882BCC832DA6B125332

< Server: nginx/1.12.1

< Connection: keep-alive

< Content-Length: 0

< Date: Fri, 04 Jan 2019 08:28:17 GMT

<

* Connection #1 to host mss.cpc.getswish.net left intact

Example request (m-commerce)
curl -v --data '{ "payeePaymentReference": "0123456789", "callbackUrl":

"https://example.com/api/swishcb/paymentrequests", "payeeAlias":

"1231181189", "amount": "100", "currency": "SEK", "message": "Kingston

USB Flash Drive 8 GB" }' -H "Content-Type: application/json" POST

https://mss.cpc.getswish.net/swish-cpcapi/api/v1/paymentrequests --cert

"Swish Merchant Test Certificate 1231181189.p12:swish" --cert-type p12 --

cacert "Swish TLS Root CA.pem"

Example response (m-commerce)
< HTTP/1.1 201

< Location: https://mss.cpc.getswish.net/swish-

cpcapi/api/v1/paymentrequests/11A86BE70EA346E4B1C39C874173F088

< Server: nginx/1.12.1

< Connection: keep-alive

< PaymentRequestToken: ed16db6f415145ec93642e294c904378

< Content-Length: 0

< Date: Fri, 04 Jan 2019 08:34:59 GMT

<

© Swish 27

* Connection #1 to host mss.cpc.getswish.net left intact

5.4.2 Retrieve Payment Request

Request
GET /api/v1/paymentrequests/{id}

Parameters

Name Description

id The identifier of the payment request to retrieve.

Example: 11A86BE70EA346E4B1C39C874173F088

Request body

None

Response

If successful, a Payment Request object is returned.

Errors

HTTP status code Description

200 OK The Payment request was found. Will return a Payment Request Object.

401 Unauthorized There are authentication problems with the certificate. Or the Swish number in the

certificate is not enrolled. Will return nothing else.

404 Not found The Payment request was not found, or it was not created by the merchant. Will

return nothing else.

500 Internal Server

Error

There was some unknown/unforeseen error that occurred on the server, this should

normally not happen. Will return nothing else.

Example request
curl -v "Content-Type: application/json" GET

https://mss.cpc.getswish.net/swish-

cpcapi/api/v1/paymentrequests/5D59DA1B1632424E874DDB219AD54597 --cert

"Swish Merchant Test Certificate 1231181189.p12:swish" --cert-type p12 --

cacert "Swish TLS Root CA.pem"

Example response
< HTTP/1.1 200

< Content-Type: application/json;charset=UTF-8

< Transfer-Encoding: chunked

< Date: Fri, 04 Jan 2019 09:00:29 GMT

<

* Connection #1 to host mss.cpc.getswish.net left intact

{"id":"5D59DA1B1632424E874DDB219AD54597","payeePaymentReference":"0123456

789","paymentReference":"1E2FC19E5E5E4E18916609B7F8911C12","callbackUrl":

"https://example.com/api/swishcb/paymentrequests","payerAlias":"467123476

8","payeeAlias":"1231181189","amount":100.00,"currency":"SEK","message":"

Kingston USB Flash Drive 8 GB","status":"PAID","dateCreated":"2019-01-

02T14:29:51.092Z","datePaid":"2019-01-

02T14:29:55.093Z","errorCode":null,"errorMessage":""}

5.4.3 Cancel payment request

Request
PATCH /api/v1/paymentrequests/{id}

Parameters

None

Request body

The HTTP request body has to contain a list of Operation objects.

© Swish 28

For that object,

You must specify a value for these properties:

• op

• path

• value

Currently, the only supported operation is op = “replace”, path = “/status”, value = “cancelled”.

Request headers

Header Value
Content-Type application/json-patch+json

Response

If successful a Payment Request object is returned.

Errors

HTTP status code Description

200 OK The request completed successfully. Will return a Payment Request Object.

401 Unauthorized There are authentication problems with the certificate. Or the Swish number in the

certificate is not enrolled. Will return nothing else.

404 Not found The Payment request was not found, or it was not created by the merchant. Will

return nothing else.

415 Unsupported

Media Type

The MIME type in the Content-Type header is missing or wrong.

422 Unprocessable

Entity

The operation could not be performed, either because it is invalid (error code

“PA01”) or because it is in a non-cancellable state (error code “RP07”). Will return an

array of Error objects.

500 Internal Server

Error

There was some unknown/unforeseen error that occurred on the server, this should

normally not happen. Will return nothing else.

Example request
curl -v --data '[{ "op": "replace", "path": "/status", "value":

"cancelled" }]' -H "Content-Type: application/json-patch+json" --request

PATCH https://mss.cpc.getswish.net/swish-

cpcapi/api/v1/paymentrequests/5D59DA1B1632424E874DDB219AD54597 --cert

"Swish Merchant Test Certificate 1231181189.p12:swish" --cert-type p12 --

cacert "Swish TLS Root CA.pem"

Example response
< HTTP/1.1 200

< Content-Type: application/json;charset=UTF-8

< Transfer-Encoding: chunked

< Date: Fri, 04 Jan 2019 09:00:29 GMT

<

* Connection #1 to host mss.cpc.getswish.net left intact

{

 "id":"5D59DA1B1632424E874DDB219AD54597",

 "payeePaymentReference":"0123456789",

 "paymentReference":"1E2FC19E5E5E4E18916609B7F8911C12",

 "callbackUrl": "https://example.com/api/swishcb/paymentrequests",

 "payerAlias":"4671234768",

 "payeeAlias":"1231181189",

 "amount":100.00,

 "currency":"SEK",

 "message":"Kingston USB Flash Drive 8 GB",

 "status":"CANCELLED",

 "dateCreated":"2019-04-11T09:58:51.092Z",

https://example.com/api/swishcb/paymentrequests

© Swish 29

 "datePaid":null,

}

5.4.4 Create Refund

Request
POST /api/v1/refunds

Parameters

None

Request body

The HTTP request body has to contain a Refund object.

For that object,

You must specify a value for these properties:

• originalPaymentReference

• callbackUrl

• payerAlias

• amount

• currency

You may specify a value for these properties:

• payerPaymentReference

• messageResponse

If successful, the following response headers are returned:

Header Optional Description

Location No An URL for retrieving the status of the payment request.

If a HTTP status code 422 error occurs, an array of Error objects are returned.

Errors

HTTP status code Description

201 Created The Refund was successfully created. Will return a Location header.

400 Bad Request The Create refund POST operation was malformed.

401 Unauthorized There are authentication problems with the certificate. Or the Swish number in the

certificate is not enrolled. Will return nothing else.

403 Forbidden The payerAlias in the refund object is not the same as merchant’s Swish number.

415 Unsupported

Media Type

The Content-Type header is not "application/json". Will return nothing else.

422 Unprocessable

Entity

There are validation errors. Will return an array of Error objects.

500 Internal Server

Error

There was some unknown/unforeseen error that occurred on the server, this should

normally not happen. Will return nothing else

504 Gateway

Timeout

The Bank validation response took too long, and Swish timed out. This rarely

happens.

© Swish 30

Validation errors

The following validation errors might be returned when the HTTP status code is 422.

Error code Description

FF08 PaymentReference is invalid.

RP03 Callback URL is missing or does not use HTTPS.

PA02 Amount value is missing or not a valid number.

AM06 Specified transaction amount is less than agreed minimum.

RF08 Amount value is too large, or amount exceeds the amount of the original payment minus any

previous refunds. Note: the remaining available amount is put into the additional

information field.

AM03 Invalid or missing Currency.

RP01 Missing Merchant Swish Number.

RP02 Wrong formatted message.

ACMT07 Payee not Enrolled.

ACMT01 Counterpart is not activated.

RF02 Original Payment not found or original payment is more than 13 months old.

RF03 Payer alias in the refund does not match the payee alias in the original payment.

RF04 Payer organization number do not match original payment payee organization number.

RF06 The Payer SSN in the original payment is not the same as the SSN for the current Payee.

Note: Typically, this means that the Mobile number has been transferred to another person.

RF07 Transaction declined.

FF10 Bank system processing error.

BE18 Payer alias is invalid.

Example request
curl -v --data '{ "originalPaymentReference":

"5D59DA1B1632424E874DDB219AD54597", "callbackUrl":

"https://example.com/api/swishcb/paymentrequests", "payerAlias":

"1231181189", "amount": "100", "currency": "SEK", "message": "Refund for

Kingston USB Flash Drive 8 GB" }' -H "Content-Type: application/json"

POST https://mss.cpc.getswish.net/swish-cpcapi/api/v1/refunds --cert

"Swish Merchant Test Certificate 1231181189.p12:swish" --cert-type p12 --

cacert "Swish TLS Root CA.pem"

Example response
< HTTP/1.1 201

< Location: https://mss.cpc.getswish.net/swish-

cpcapi/api/v1/refunds/2EA344A95DD941D1ACC2F94FBB898180

< Server: nginx/1.12.1

< Connection: keep-alive

< Content-Length: 0

< Date: Fri, 04 Jan 2019 10:29:43 GMT

<

* Connection #1 to host mss.cpc.getswish.net left intact

5.4.5 Retrieve Refund

Request
GET /api/v1/refunds/{id)

Parameters

Name Description

id The identifier of the refund to retrieve.

© Swish 31

Example: 2EA344A95DD941D1ACC2F94FBB898180

Request body

None

Response

If successful, a Refund object is returned.

Errors

HTTP status code Description

200 OK The refund was found. Will return a Refund object.

401 Unauthorized There are authentication problems with the certificate. Or the Swish number in the

certificate is not enrolled. Will return nothing else.

404 Not found No refund was found, or it was not created by the merchant. Will return nothing

else.

500 Internal Server

Error

There was some unknown/unforeseen error that occurred on the server, this should

normally not happen. Will return nothing else

Example request
curl -v "Content-Type: application/json" GET

https://mss.cpc.getswish.net/swish-

cpcapi/api/v1/refunds/2EA344A95DD941D1ACC2F94FBB898180 --cert "Swish

Merchant Test Certificate 1231181189.p12:swish" --cert-type p12 --cacert

"Swish TLS Root CA.pem"

Example response
< HTTP/1.1 200

< Content-Type: application/json;charset=UTF-8

< Transfer-Encoding: chunked

< Date: Fri, 04 Jan 2019 12:00:12 GMT

<

* Connection #1 to host mss.cpc.getswish.net left intact

{"id":"2EA344A95DD941D1ACC2F94FBB898180","paymentReference":"9374A9192E73

43F39048E7061DB1DDF3","payerPaymentReference":"","originalPaymentReferenc

e":"5D59DA1B1632424E874DDB219AD54597","callbackUrl":"https://example.com/

api/swishcb/paymentrequests","payerAlias":"1231181189","payeeAlias":null,

"amount":100.00,"currency":"SEK","message":"Refund for Kingston USB Flash

Drive 8 GB","status":"PAID","dateCreated":"2019-01-

04T10:29:43.683Z","datePaid":"2019-01-

04T10:29:52.543Z","errorMessage":null,"additionalInformation":null,"error

Code":null}

5.4.6 Create Payout

Request
POST /api/v1/payouts/

Parameters

None

Request body

The HTTP request body has to contain a Create Payout Request object.

For that object,

You must specify a value for these properties:

• payload.payoutInstructionUUID

• payload.payerPaymentReference

© Swish 32

• payload.payerAlias

• payload.payeeAlias

• payload.payeeSSN

• payload.amount

• payload.currency

• payload.payoutType

• payload.instructionDate

• payload.signingCertificateSerialNumber

• signature

You may specify a value for these properties:

• callbackUrl

• payload.message

Response

If successful, the following response headers are returned:

Header Optional Description

Location No An URL for retrieving the status of the payout.

If a HTTP status code 422 error occurs, an array of Error objects are returned.

Errors

HTTP status code Description

201 Created The Payout request was successfully created. Will return a Location header.

400 Bad Request The Create Payout Request operation was malformed.

401 Unauthorized There are authentication problems with the certificate. Or the Swish number in the

certificate is not enrolled. Will return nothing else.

422 Unprocessable

Entity

There are validation errors. Will return an array of Error objects.

500 Internal Server

Error

There was some unknown/unforeseen error that occurred on the server, this should

normally not happen. Will return nothing else

Validation errors

The following validation errors might be returned when the HTTP status code is 422.

Error code Description

PA01 Invalid format of a field or otherwise invalid information in request.

PA02 Invalid format of ’amount’

AM03 Invalid format of ’currency’

RP02 Invalid format of ’message’

FF08 Invalid or missing ‘payerPaymentReference’

ACMT13 Bank does not support ’PAYOUT’

ACMT14 Payer is not allowed to perform ’PAYOUT’

ACMT15 Payee is not allowed to receive ’PAYOUT’

TM01 Swish system timed out

© Swish 33

RF07 Transaction could not be executed

Example request
curl -v --data '

{"payload":{"signingCertificateSerialNumber":"7d70445ec8ef4d1e3a713427e97

3d097","amount":"200","payoutInstructionUUID":"D7799FA730C4460EBB8EAE7121

F6FA3B","payoutType":"PAYOUT","payerPaymentReference":"orderId","instruct

ionDate":"2020-03-

23T16:08:49","payerAlias":"1234679304","currency":"SEK","payeeAlias":"467

68648198","message":"message","payeeSSN":"196210123235"},"signature":"Qhe

1pwq0SrveqHx9+dhSEvfQ4UQ3fdwWAcrGjJ4n+5wqu4MPhaGvV+30UBWSbJ3GeQUGdrObtDxX

Qe0XnciKOBYosW3Xn3FiZiPSPsPgG9FpFb1TkqIdaZkeNhiIcKe8KxfRyoFFr2b3FCUkORUuD

RE+0Nk11Uo0iaaDd/FPtmWkCkvnAfMxO1/d+RDVxIDEf8dLFh3Q7XGffXcwezdqO6sYUtUIZB

z4s3iCJdzzf0GeudOg+rCYn6E4UGAr8JEhc7ijaFF4PlUJR4kvDeOqgJyW8fdoTg/o2EO4jDI

skbl20xRra5VH+VkrT8HrVCr7wd8nkBP+LhzSVas5LqR1kQzhl6jA09Y+UA23EnhgxOIR5cHd

myo/blun7+qwFTCS3bC4U/hgRpf5CiYF87p0Ebi0/r8k7WBaMOl7l5j06ag566oQxpX1qcWDf

m+fxZZfI1cMO8YcjVFT6E8kC7bNmRqAQGptsoZF103azHrn/uuPafRb+aXx1l4VrUfqmFCL4o

PfMyxEQu+VM8U9IvruBgCKSyELZIzkGldxpgQZdYQb46czcVcLMUb/CuQpyudwUejWazgFOp/

TBCNo8W6ff6+W+9Uz42a6CsSY0Bxm0qwL0GS2GDW9ARkjeLZ5J57R5XTlm1aMlc15zVg8dYLF

dJrUpHWDnjc16iBuaRXe31Q=","callbackUrl":"https://mystore/payments/swish/c

allback/"}' -H "Content-Type: application/json" POST

https://mss.cpc.getswish.net/swish-cpcapi/api/v1/payouts/ --cert

"Swish_Merchant_TestCertificate_1234679304.p12:swish" --cert-type p12 --

cacert "Swish_TLS_RootCA.pem"

Example response
HTTP/1.1 201

Location: https://mss.cpc.getswish.net/cpc-

swish/api/v1/payouts/D7799FA730C4460EBB8EAE7121F6FA3B

Content-Length: 0

Date: Mon, 23 Mar 2020 15:08:50 GMT

Connection: keep-alive

5.4.7 Retrieve Payout

Request
GET /api/v1/payouts/{id}

Parameters

Name Description

id The identifier of the payout to retrieve.

Example: 11A86BE70EA346E4B1C39C874173F088

Request body

None

Response

If successful, a Payout object is returned.

If a HTTP status code 422 error occurs, an array of Error objects are returned.

Errors

HTTP status code Description

200 OK The Payout is returned.

400 Bad Request Request failed for some reason, i.e. bad payoutReference.

Details provided in the error message in the body.

401 Unauthorized There are authentication problems with the certificate. Or the Swish number in the

certificate is not enrolled.

500 Internal Server

Error

A server error has occurred.

Details provided in the error message in the body.

© Swish 34

Validation errors

The following validation errors might be returned when the HTTP status code is 422.

Error code Description

PA01 Invalid format of a field or otherwise invalid information in request.

TM01 Swish system timed out

RF07 Transaction could not be executed

UNKN Unknown error.

Example request
curl -v "Content-Type: application/json" GET

https://mss.cpc.getswish.net/swish-

cpcapi/api/v1/payouts/FE3082B0B38844C797E7499EADACCDF7 --cert

"Swish_Merchant_TestCertificate_1234679304.p12:swish" --cert-type p12 --

cacert "Swish_TLS_RootCA.pem"

Example response
< HTTP/1.1 200

< Content-Type: application/json;charset=UTF-8

< Transfer-Encoding: chunked

< Date: Mon, 23 Mar 2020 15:23:08 GMT

<

* Connection #1 to host mss.cpc.getswish.net left intact

{"paymentReference":"43DA7306F8DA426D8D7F82C939721031","payoutInstruction

UUID":"FE3082B0B38844C797E7499EADACCDF7","payerPaymentReference":"orderId

","callbackUrl":"https://mystore/payments/swish/callback/","payerAlias":"

1234679304","payeeAlias":"46768648198","payeeSSN":"196210123235","amount"

:200.00,"currency":"SEK","message":"message","payoutType":"PAYOUT","statu

s":"PAID","dateCreated":"2020-03-23T15:17:29.016Z","datePaid":"2020-03-

23T15:17:33.016Z","errorMessage":null,"additionalInformation":null,"error

Code":null}

© Swish 35

5.5 API Objects

5.5.1 Date format

The date fields use the YYYY-MM-DDThh:mm:ss.sssTZD date format. Times are returned in the UTC time zone.

5.5.2 Payment Request

Properties

Property Type Description

id string Payment request ID.

payeePaymentReference string Payment reference of the payee, which is the merchant that

receives the payment. This reference could be order id or

similar. Allowed characters are a-z A-Z 0-9 -_.+*/ and length

must be between 1 and 36 characters.

paymentReference string Payment reference, from the bank, of the payment that

occurred based on the Payment request. Only available if

status is PAID.

callbackUrl string URL that Swish will use to notify caller about the outcome of

the Payment request. The URL has to use HTTPS.

payerAlias string The registered cellphone number of the person that makes

the payment. It can only contain numbers and has to be at

least 8 and at most 15 numbers. It also needs to match the

following format in order to be found in Swish: country code +

cellphone number (without leading zero). E.g.: 46712345678

payeeAlias string The Swish number of the payee.

amount number The amount of money to pay. The amount cannot be less than

1 SEK and not more than 999999999999.99 SEK. Valid value

has to be all numbers or with 2-digit decimal separated by a

period.

currency string The currency to use. The only currently supported value is

SEK.

message string Merchant supplied message about the payment/order. Max

50 chars. Allowed characters are the letters a-ö, A-Ö, the

numbers 0-9 and the special characters :;.,?!()”.

status string The status of the transaction. Possible values: CREATED, PAID,

DECLINED, ERROR.

dateCreated string The time and date that the payment request was created.

datePaid string The time and date that the payment request was paid. Only

applicable if status was PAID.

© Swish 36

Property Type Description

errorCode string A code indicating what type of error occurred. Only applicable

if status is ERROR.

errorMessage string A descriptive error message (in English) indicating what type

of error occurred. Only applicable if status is ERROR.

additionalInformation string Additional information about the error. Only applicable if

status is ERROR.

Error codes

errorCode Description

ACMT03 Payer not enrolled.

ACMT01 Counterpart is not activated

ACMT07 Payee not enrolled.

RF07 Transaction declined. The payment was unfortunately declined. A reason for the

decline could be that the payer has exceeded their defined Swish limit. Please

advise the payer to check with their bank.

BANKIDCL Payer cancelled BankID signing.

FF10 Bank system processing error.

TM01 Swish timed out before the payment was started.

DS24 Swish timed out waiting for an answer from the banks after payment was started.

Note: If this happens Swish has no knowledge of whether the payment was

successful or not. The merchant should inform its consumer about this and

recommend them to check with their bank about the status of this payment.

BANKIDONGOING BankID already in use.

BANKIDUNKN BankID is not able to authorize the payment.

5.5.3 Refund

Properties

Property Type Description

id string Refund ID.

payerPaymentReference string Payment reference supplied by the merchant. This could

be order id or similar.

© Swish 37

Property Type Description

originalPaymentReference string Reference of the original payment that this refund is for.

paymentReference string Reference of the refund payment that occurred based

on the created refund. Only available if status is PAID.

callbackUrl string URL that Swish will use to notify caller about the

outcome of the refund. The URL has to use HTTPS.

payerAlias string The Swish number of the merchant that makes the

refund payment.

payeeAlias string The cellphone number of the person that receives the

refund payment.

amount number The amount of money to refund. The amount cannot be

less than 1 SEK and not more than 999999999999.99

SEK. Moreover, the amount cannot exceed the

remaining amount of the original payment that the

refund is for.

currency string The currency to use. The only currently supported value

is SEK.

message string Merchant supplied message about the refund. Max 50

chars. Allowed characters are the letters a-ö, A-Ö, the

numbers 0-9 and the special characters :;.,?!()”.

status string The status of the refund transaction. Possible values:

• VALIDATED - Refund ongoing

• DEBITED - Money has been withdrawn from

your account

• PAID - The payment was successful

• ERROR - An error occurred. See list of error

codes for all potential error conditions.

dateCreated string The time and date that the payment refund was created.

datePaid string The time and date that the payment refund was paid.

errorCode string A code indicating what type of error occurred. Only

applicable if status is ERROR.

errorMessage string A descriptive error message (in English) indicating what

type of error occurred. Only applicable if status is ERROR

additionalInformation string Additional information about the error. Only applicable

if status is ERROR.

© Swish 38

Error codes

errorCode Description

ACMT07 Payee not enrolled.

ACMT01 Counterpart is not activated.

RF07 Transaction declined. Please contact your bank.

FF10 Bank system processing error.

DS24 Swish timed out waiting for an answer from the bank after payment was started. Note: If this

happens Swish has no knowledge of whether the payment was successful or not. The merchant

should inform its consumer about this and recommend them to check with their bank about the

status of this payment.

5.5.4 Create Payout Request

Properties

Property Type Format Description

payload object A Payout object.

callbackUrl string https://<host[:port]>/

...

Max length: 265

characters

URL that swish system will use to notify caller

about the result of the payment request. The

URL has to use HTTPS.

If not set it is the responsibility of the caller to

check the status of the payout request using a

GET operation.

signature string Base64 encoded. Max

length 265 characters.

Signature of the hashed payload.

5.5.5 Payout

Properties

Property Type Format Description

payoutInstructionUUID string UUID - 32

hexadecimal (16-

based) digits.

An identifier created by the merchant to

uniquely identify a payout instruction sent to

the Swish system. Swish uses this identifier to

guarantee the uniqueness of a payout

instruction and prevent occurrence of

unintended double payments.

payerPaymentReference string 1-35 characters. Valid

characters are:

a-zA-Z0-9-_.+*/

Merchant specific reference. This reference

could be order id or similar.

© Swish 39

Property Type Format Description

payerAlias string Numeric, 10 digits The merchant Swish number that makes the

payment.

payeeAlias string Numeric, 8-15 digits The Swish number of the payee.

No preceding “+” or zeros should be added. It

should always be started with country code.

payeeSSN string YYYYMMDDnnnn 12 digit SSN of the payee. Will be validated

against the enrolled SSN of the payee.

amount number 100.00 Amount to be paid. Only period/dot (”.”) are

accepted as decimal character with maximum

2 digits after. Digits after separator are

optional.

currency string SEK The currency to use. The only currently

supported value is SEK.

payoutType string PAYOUT Currently only “PAYOUT” is allowed – meaning

immediate payout.

message string Alphanumeric,

0-50 chars.

Custom message.

status string CREATED, INITIATED,

BIR_PAYMENT_INITIA

TED, DEBITED, PAID,

ERROR.

The status of the payout request.

signingCertificateSerialNu

mber

string Serial number of the

certificate in

hexadecimal format

(without the leading

‘0x’). Max length 64

digits.

The public key of the certificate will be used to

verify the signature

instructionDate string YYYY-MM-

DDThh:mm:ssTZD

The time and date that the payout request

was created.

dateCreated string YYYY-MM-

DDThh:mm:ssTZD

The time and date that the payout request

was created.

datePaid string The time and date that the payout request

was paid. Only applicable if status was PAID.

errorCode string A code indicating what type of error occurred.

Only applicable if status is ERROR.

errorMessage string A descriptive error message (in English)

indicating what type of error occurred. Only

applicable if status is ERROR.

© Swish 40

Property Type Format Description

additionalInformation string Additional information about the error. Only

applicable if status is ERROR.

5.5.6 Operation

Properties

Property Type Description

op string The operation to perform. Possible values: “replace”

path string Document path.

value string The new value. Possible values: “cancelled”

5.5.7 Error

Properties

Property Type Description

errorCode string A code indicating what type of error occurred.

errorMessage string A descriptive error message (in English) indicating what type of

error occurred.

additionalInformation string Additional information about the error.

© Swish 41

6. Support

6.1 Deployment support

Please see the manuals and FAQ available at https://developer.getswish.se/.

If you can’t find the technical information you need, you can contact the deployment support organization. The

email address is: tekniksupport@getswish.se.

For all commercial questions, please contact your bank.

6.2 Operational status information

Operational status information is available at https://www.getswish.se/driftinformation/.

https://developer.getswish.se/
mailto:tekniksupport@getswish.se
https://www.getswish.se/driftinformation/

	1. Introduction
	1.1 Terms and definitions
	1.2 Document purpose
	1.3 Swish overview
	1.4 Security

	2. Setup
	2.1 Applying for Swish Commerce
	2.2 Technical Integration
	2.2.1 Technical Requirements
	2.2.2 Integration procedure

	2.3 Managing certificates
	2.4 Revoking a certificate
	2.5 Termination of Swish Commerce

	3. Payments
	3.1 Overview
	3.2 Payment Requests
	3.2.1 Creating a Payment Request
	3.2.2 M-Commerce Payment Requests
	3.2.3 E-Commerce Payment Requests
	3.2.4 Callback

	3.3 Payment Refunds
	3.3.1 Overview
	3.3.2 Creating a Refund
	3.3.3 Callback

	3.4 Payouts
	3.4.1 Overview
	3.4.2 Creating a Payout
	3.4.3 Callback

	4. Swish app integration
	4.1 Checking if the Swish app is installed
	4.1.1 iOS (Swift)
	4.1.2 Android (Java)

	4.2 Switching to the Swish app
	4.2.1 iOS (Swift)
	4.2.2 Android (Java)
	4.2.3 JavaScript

	5. Swish API
	5.1 Guidelines for using the Swish API
	5.1.1 The consumer should be in control of payment requests
	5.1.2 Use the callback when creating resources
	5.1.3 Refund transactions – avoid large batches
	5.1.4 Renewal of the client TLS Certificate
	5.1.5 Displaying the Swish alias to consumers

	5.2 Versions
	5.3 Environments
	5.3.1 Test Environment
	5.3.2 Production Environment

	5.4 API Description
	5.4.1 Create Payment Request
	Request
	Parameters
	Request body
	Response
	Errors
	Validation errors
	Example request (e-commerce)
	Example response (e-commerce)
	Example request (m-commerce)
	Example response (m-commerce)

	5.4.2 Retrieve Payment Request
	Request
	Parameters
	Request body
	Response
	Errors
	Example request
	Example response

	5.4.3 Cancel payment request
	Request
	Parameters
	Request body
	Request headers
	Response
	Errors
	Example request
	Example response

	5.4.4 Create Refund
	Request
	Parameters
	Request body
	Errors
	Validation errors
	Example request
	Example response

	5.4.5 Retrieve Refund
	Request
	Parameters
	Request body
	Response
	Errors
	Example request
	Example response

	5.4.6 Create Payout
	Request
	Parameters
	Request body
	Response
	Errors
	Validation errors
	Example request
	Example response

	5.4.7 Retrieve Payout
	Request
	Parameters
	Request body
	Response
	Errors
	Validation errors
	Example request
	Example response

	5.5 API Objects
	5.5.1 Date format
	5.5.2 Payment Request
	Properties
	Error codes

	5.5.3 Refund
	Properties
	Error codes

	5.5.4 Create Payout Request
	Properties

	5.5.5 Payout
	Properties

	5.5.6 Operation
	Properties

	5.5.7 Error
	Properties

	6. Support
	6.1 Deployment support
	6.2 Operational status information

