

THE FUTURE OF PUBLIC TRANSPORT IN GENEVA

Exciting changes are on the way! This project optimizes routes and charging for electric ondemand public transport, cutting energy use, reducing battery costs, and improving service reliability.

By using AI and real-time data, we're lowering environmental impact, improving air quality, and making transport more efficient.

These innovations pave the way for smarter, more sustainable mobility—benefiting buses, self-driving vehicles, and beyond.

THE CHALLENGES

- High Operational Costs: Frequent battery replacements and inefficient charging processes raise costs for operators, affecting ticket prices.
- Limited Charging Infrastructure: Poorly placed or insufficient charging stations lead to inefficiencies, longer wait times, and higher energy use.
- **Environmental Impact:** Emissions from tire and brake wear and battery waste contribute to environmental challenges.
- Unreliable On-Demand Service: Inconsistent vehicle availability due to poor energy management and lack of predictive maintenance.

- Data Collection & Analysis Complexity: Requires sophisticated AI models and real-time data from sensors and charging stations.
- Optimizing Charging Locations: Balancing energy efficiency, accessibility, and infrastructure constraints in choosing charging station locations.
- **Technological Integration:** Seamless integration of automated wireless charging and predictive maintenance with existing systems.

AI-DRIVEN SOLUTION FOR EFFICIENT, SUSTAINABLE, AND RELIABLE PUBLIC TRANSPORT

🔋 Energy Efficiency & Battery Longevity

- Al-optimized routes reduce energy use and battery strain.
- Predictive maintenance prevents failures and extends battery lifespan.

5 Lower Operational Costs

- Smart charging management minimizes peaktime costs and battery wear.
- Automated wireless charging reduces downtime and labor costs.

Optimized Charging Infrastructure

- Al-driven station placement cuts travel distances and energy waste.
- Smart energy management prevents bottlenecks across the network.

Environmental Benefits

- Extended battery life reduces electronic waste.
- Efficient operations lower emissions from tire and brake wear, improving air quality.

Reliable & Scalable On-Demand Transport

- Smarter energy use increases vehicle availability and reduces wait times.
- Automated charging and monitoring ensure 24/7 service reliability.
- Scalable solutions support future self-driving public transport.

THE LOCAL IMPACT

§ Financial Benefits – Optimized routes and charging lower energy use and battery costs, saving money for operators and passengers.

Cleaner Air & Smarter Charging – Strategically placed charging stations reduce environmental impact, improving air quality for a healthier city.

- **Better On-Demand Transport** Faster, more reliable services mean reduced waiting and journey times for passengers.
- Social & Environmental Gains Lower emissions, reduced battery waste, and less tire and brake wear contribute to a more sustainable future.

Cutting-Edge Innovation — Al-driven, real-time data optimization benefits electric and autonomous transport.

Scalable & Adaptable – This model can expand to other regions and electric vehicle types, enhancing sustainable transport worldwide.